PREDIKCIJA BROJA INDEKSNIH POENA IGRAČA U ABA LIGI SA FOKUSOM NA PRIKUPLJANJU I EKSPLORATIVNOJ ANALIZI PODATAKA
Apstrakt
Ovaj rad se bavi predikcijom broja indeksnih poena koje igrač ostvari na košarkaškoj utakmici. Fokus rada je na prikupljanju i eksplorativnoj analizi podataka. Prikupljanje podataka je vršeno sa sajta eurobasket.com pomoću tehnika web-scrapinga. Nakon sređivanja skupa podataka, ekstrakcije obeležja i eksplorativne analize podataka vršena je predikcija pomoću tri različita regresora: Lasso, Random Forest i LightGBM. Optimizacijom hiperparametara implementacija ovih algoritama došlo se do modela pomoću kojih je vršena predikcija broja indeksnih poena. Najbolje rezultate među njima pokazao je model LASSO regresije sa srednjom apsolutnom greškom MAE = 5.617. Izneti su predlozi za poboljšanje skupa podataka, a samim tim i za dalji razvoj ovog rešenja.
Reference
[2] Oliver, Dean. Basketball on paper: rules and tools for performance analysis. Potomac Books, Inc., 2004.
[3] Kubatko, Justin, et al. "A starting point for analyzing basketball statistics." Journal of Quantitative Analysis in Sports 3.3 (2007).
[4] Page, Garritt L., and Fernando A. Quintana. "Predictions based on the clustering of heterogeneous functions via shape and subject-specific covariates." Bayesian Analysis 10.2 (2015): 379-410.
[5] South, Charles, et al. "A Starting Point for Navigating the World of Daily Fantasy Basketball." The American Statistician 73.2 (2019): 179-185.
[6] FiveThirtyEight's Career-Arc Regression Model Estimator with Local Optimization, https://projects.fivethirtyeight.com/carmelo/
[7] Casals, Martí, and A. Jose Martinez. "Modelling player performance in basketball through mixed models." International Journal of Performance Analysis in Sport 13.1 (2013): 64-82.
[8] Cai W, Yu D, Wu Z, Du X, Zhou T. A hybrid ensemble learning framework for basketball outcomes prediction. Physica A: Statistical Mechanics and its Applications. 2019 Aug 15;528:121461.
[9] Thabtah F, Zhang L, Abdelhamid N. NBA game result prediction using feature analysis and machine learning. Annals of Data Science. 2019 Mar 7;6(1):103-16.
[10] Shreyas S. Shivakumar. “Learning to Turn Fantasy Basketball Into Real Money.” https://shreyasskandan.github.io/Old_Website/files/report-ChanHuShivakumar.pdf
[11] Porter, Jack W. "Predictive Analytics for Fantasy Football: Predicting Player Performance Across the NFL." (2018).
[12] Lutz, Roman. "Fantasy football prediction." arXiv preprint arXiv:1505.06918 (2015).
[13] Kengo Arao, https://github.com/KengoA/fantasy-basketball/blob/master/report.pdf
[14] Beautiful soup, https://www.crummy.com/software/BeautifulSoup/bs4/doc/
[15] Selenium Web Driver, https://www.selenium.dev/documentation/en/
[16] Scikit-learn, https://scikit-learn.org/
[17] f_regression, https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html#sklearn.feature_selection.f_regression
[18] Hyperopt, https://github.com/hyperopt/hyperopt