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Sazetak

Mbotivacija

Ako neka funkcija ne daje rezultat za sve moguée ulazne vrednosti, kazemo
da je parcijalno definisana. Takva funkcija f je preslikavanje iz skupa D u
skup A, gde je A neprazan skup, a D pravi podskup od A™. Ali sta ako se za
(a1,...,a,) € A"\ D ne posmatra f(ay,...,a,) kao nedefinisana vrednost,
ve¢ kao neodredena? Ova pretpostavka dovodi do znacajne razlike kad je u
pitanju kompozicija ovakvih operacija.

Neka je A = {0,1} i AND logicka konjunkcija na A. Pretpostavimo da su f i
g unarne operacije na A takve da je f(0) = 0, a vrednost ¢g(0) nije odredena.
Medutim, vrednost kompozicije h(z) = AND(f(z), g(z)) za z = 0 je odredena
i jednaka 0, odnosno vazi

h(0) = AND( f(0), g(0)) = AND(0, g(0)) = 0.

Ovakav rezultat ima smisla s obzirom da, kao Sto je poznato, operacija AND
uzima vrednost 0 kad god je bar jedan od argumenata jednak 0, bez obzira na
vrednost drugog argumenta. Ipak, operacija h ne bi bila definisana za x = 0
ukoliko bismo smatrali da je g(0) nedefinisana vrednost, tj. ako bismo date
operacije i njihovu kompoziciju posmarali kao parcijalne operacije i stan-
dardnu kompoziciju parcijalnih operacija.

Kako mozemo interpretirati ove neodredene izlazne vrednosti? Jedna mogu-
¢nost je da imamo viSe razlicitih izlaznih vrednosti za istu ulaznu vrednost,
tj. da je izlazna vrednost neprazan podskup skupa A, sto nam daje hiper-
operacije. S druge strane, mozemo izabrati neko u ¢ A i posmatrati ga kao
proizvoljnu vrednost iz A, te na taj nacin dobijamo nepotpuno specificirane
operacije.

Na dvoelementnom skupu ova dva koncepta su prakti¢no ista, s obzirom da
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vazi |[A U {u}| = |P(A) \ {0} = 3. Medutim, ocigledno je da za |A| > 2
hiperoperacije imaju vise mogucih izlaznih vrednosti nego nepotpuno speci-
ficirane operacije.

Hiperoperacije i nepotpuno specificirane operacije mozemo koristiti za mo-
deliranje nedeterministickih procesa.

Na primer, u softverskim sistemima, ponovljeno izvrsavanje istog programa
moze proizvesti razlicite rezultate, a takode konkurentni procesi mogu imati
razlicite redukcije. Ovakvo ponaSanje se moze predstaviti kao funkcija koja
datom argumentu dodeljuje skup vrednosti. Takve funkcije su sustinski
hiperoperacije. Svakako najpoznatiji primer u kome se ovakva funkcija po-
javljuje jeste funkcija prelaska u definiciji nedeterministickog konacnog au-
tomata.

S druge strane, u optimizaciji logickih kola, ulazni podaci za koje izlazne
vrednosti nisu specifikovane se nazivaju "don’t care” uslovi i oni igraju vaznu
ulogu pri odredivanju minimalnih disjunktivnih normalnih formi i dizajnu ek-
vivalentnih logickih kola.

Klonovi

Ova disertacija predstavlja uporednu analizu mreza klonova totalnih opera-
cija, parcijalnih operacija, nepotpuno specificiranih operacija i hiperopera-
cija.

Proucavanje klonova u univerzalnoj algebri je motivisano ¢injenicom da je
skup termovskih operacija neke algebre A = (A, F') uvek klon operacija.
Stavise, skup C finitarnih operacija na A je klon ako i samo ako postoji

algebra A = (A, F) takva da je C skup termovskih operacija te algebre.
Medutim postoje i drugi nac¢ini da se definise klon operacija.

Za bazni skup umesto proizvoljnog kona¢nog skupa A uze¢emo skup Fj =
{0,1,...,k— 1}, k > 2. Tada je f: E} — E} n-arna (totalna) operacija na
Ej. Oznaé¢imo sa O,E:n) skup svih n-arnih operacija na Ey, a sa Op = |J O,(C")
n>1
skup svih finitarnih operacija na Ej. Najpoznatija definicija klona je ona
prema kojoj je C' C Oy klon ako sadrzi sve projekcije, tj. operacije e} :
E} — Ey date sa e} (zy,...,2;,...,2,) = @;, 1 zatvoren je u odnosu na kom-
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poziciju, tj. za f € O,E;n) 1g1,...,0n € O,E:m) vazi f(g1,---,9n) € C, pri cemu
za sve T € B}

flgr- -, 92)(@) = f(1(2), ..., gu(@)).

Kako je presek klonova ponovo klon, to za svaki skup operacija F' C Oy
postoji najmanji klon koji ga sadrzi. Oznacavamo ga sa (F') i kazemo da je to
klon generisan sa F'. Na ovaj nacin smo dobili algebarski operator zatvaranja,
odakle sledi da skup svih klonova na Fj, ¢ini algebarsku mrezu £; u odnosu
na skupovnu inkluziju (¢iji je najmanji element skup svih projekcija Ji, a
najveéi element skup svih operacija Oy). Otuda klonove mozemo definisati
i kao poduniverzume neke algebre. Kako bismo eksplicitno zadali takvu
algebru, definiSemo sledece elementarne operacije na Oy, koje se joS nazivaju
i Mal’tsevljeve operacije. Neka su (, 7, A unarne i * binarna operacija na Oy:

o ZafEO,(Cl) neka je (f =7f=Af = f;
o zafc O,(C"),n > 2 neka su (f,7f € O,(Cn) i Af e O,E:nfl) date sa

(Cf)xr, 22,y xn) = fae,. .., Tp, 1)
(Tf) (1, 29,23, ..., Tp) = f(T2, 21, %3, ..., Tp)

(Af>(x17x27 o 7xn—1) — f(xlaxth) . 7In—1);

e za fcC O,g") ige O,(j’” neka je fxg € O,(Cmmfl) data sa
(f *g)(xb v 7xm+n*1> = f(g(xla s e 7xm)7xm+la s e >xm+n*1)'

Operacije ¢ i 7 nam daju sve permutacije promenljivih, A predstavlja iz-
jednacavanje promenljivih, * zamenu promenljive funkcijom. Algebra O =
(Ox; %, ¢, 7, A, €2) se naziva puna algebra operacija. Sada je C' C Oy, klon ako
i samo ako je poduniverzum algebre Oy.

Parcijalne operacije i nepotpuno specificirane operacije (NS operacije) ¢emo
posmatrati kao preslikavanja iz £} u Ejyq, pri ¢emu ¢emo kod parcijal-
nih operacija smatrati da je £ nedefinisana vrednost, a kod NS operacija
neodredena vrednost. Stoga ako zanemarimo razliku u interpretaciji izlazne
vrednosti k, skupovi parcijalnih operacija (Py) i NS operacija (1) su prakti¢no
isti. Razlika se uocava prilikom komponovanja ovih operacija. Kompoziciju
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parcijalnih operacija f € Pk(n) 1g1,...,0, € Pkfm , za sve T € EJ", definiSemo

Sa

flg1,--y90) (&) = { f(91(Z), ..., gn(T)), ako g;i(T) € By, 1<i<n .

- k, inace

To znaci da kad god bar jedna od parcijalnih operacija f, g1, ..., g, nije de-
finisana, tada i njihova kompozicija nije definisana.

S druge strane, kompoziciju NS operacija f € I,E") igi,....gn € I,gm), za sve
Z € B}, definiSemo na slede¢i nacin

n

Fsg0)@) = [[{@) : 7 € Ef v © 0:(@)},

i=1
pri cemu je

n

Hx'_ r1, ako zi=x9=...=1x,
! k, inace

i=1

C={(z,2): 2 € By} U{(z,k) : v € Ex}.

Zato ¢e u odredenim slucajevima vrednost kompozicije biti iz Ej iako je za
neke od NS operacija f, g1, ..., g, izlazna vrednost k.

Hiperoperacije su preslikavanja koja svakoj n-torci elemenata iz Ej pridruzuju
neprazan podskup od Fj. Radi kra¢eg zapisa skup nepraznih podskupova od
By, P(Ey) \ {0}, ¢emo oznacavati sa Pf, . Skup svih hiperoperacija na Ej
oznacavamo sa Hj,. Kompozicija hiperoperacija f € H,E,n) igi,...,gn € H,gm),
za sve & € B}, se definiSe kao

n

Flgrs- - 00) @ = J{F@) : 7 € Ef,yi € 9:()}-

=1

Slicno kao u sluc¢aju klonova totalnih operacija mozemo definisati parcijalne
klonove, NS klonove i hiperklonove kao skupove odgovarajuc¢ih operacija koji
sadrze sve projekcije i zatvoreni su u odnosu na odgovaraju¢e kompozicije
ili kao poduniverzume odgovarajucih algebri. Takode su mreza parcijalnih
klonova £F, mreza NS klonova £}° i mreza hiperklonova £} na Fj, algebarske
mreze.



Mreze

Moglo bi se reci da je predmet istrazivanja teorije klonova opis mreze klonova
na datom skupu. Na dvoelementnom skupu ova mreza je potpuno opisana
zahvaljujué¢i Emilu Postu [49]. On je pokazao da mreza L, ima prebrojivo
mnogo elemenata, koji su svi kona¢no generisani. Specijalno ima 7 atoma
(klonovi koji su neposredno iznad .J;) i 5 koatoma (klonovi koji su neposredno
ispod O3). Njena struktura nije jako komplikovana i beskonac¢na je samo zato
Sto sadrzi 8 beskonacnih lanaca. Medutim, ¢im predemo na skupove sa bar
tri elementa stvari se bitno komplikuju jer je u tom slucaju mreza L; nepre-
brojiva [75], i iako postoji dosta parcijalnih rezultata zapravo se veoma malo
zna o njenoj strukturi.

Mreze parcijalnih klonova, NS klonova i hiperklonova su veé¢ na dvoelement-
nom skupu kardinalnosti kontinuum i stoga mnogo kompleksnije od L,. Za
mrezu parcijalnih klonova £ se recimo zna da ima 11 atoma [9] i 8 koatoma
[26], 1 da sadrzi elemente koji nisu konacno generisani. Takode je poznato
za koje totalne klonove C' je interval Z(C') (skup svih parcijalnih klonova
¢iji totalni deo je klon C') konacan, dok je za sve ostale neprebrojiv [39, 20].
Mreze £ i £ su izomorfne i sadrze 13 atoma [45] i 9 koatoma [71].

Potapanja

Logi¢no je zapitati se kako su gore pomenute mreze medusobno povezane
i da li se neke od osobina mreze totalnih klonova, koja je za sada najvise
proucavana, mogu preneti na mreze £y, £33 i L. Mogude je svakoj parci-
jalnoj operaciji, NS operaciji i hiperoperaciji pridruziti odgovaraju¢u totalnu
operaciju, i ta preslikavanja nam, uz izvesne modifikacije, daju potapanja
mreza L8, L1 1 LI u odgovarajuée mreze totalnih operacija.

Parcijalnoj operaciji f € Py dodeljujemo operaciju f, € Ogy1 na slededi
nacin
. f(@), ako ¥ € E},
f+(@) = { (2) g

k, inace,

zasve & € B} . Za F C Py je Fy ={f,:fecF}

Medutim prosirenje parcijalnog klona na FEj nije klon na Fj; jer ne sadrzi
projekcije.
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Definisimo preslikavanje g — g_ iz O3 u Py sa g_(¥) = g(%), & € E}. Za
G C Oy je G- ={g_ : g € G}. Sada mozemo pokazati da je mreza parci-
jalnih klonova na Ej izomorfna podmrezi mreze klonova na Oy,4. Preciznije,
preslikavanje dato sa G — G_ je izomorfizam izmedu mreza L£({((Jx)+); ((Hk)+))
i £ [58, 16, 17].

Svakoj NS operaciji f na Ej, mozemo pridruziti operaciju f* na FEj,1 na
slede¢i nacin

@ =11{rw:veErigc ey,
za sve ¥ € I} . Preslikavanje f* naziva se prosirena NS operacija. Skup
svih prosirenih NS operacija iz F C I, oznaci¢emo sa F'*.

Ako je C klon nepotpuno specificiranih operacija na Ej, onda C* nije oba-
vezno klon na Fj,; jer kompozicija prosirenih NS operacija ne mora biti
prosirena NS operacija. I u slucaju Mal'tsevljevih operacija, skup svih prosi-
renih NS operacija ;" nije zatvoren u odnosu na A, za k > 2, i nije zatvoren
u odnosu na *, za k > 3.

Kako bismo dobili algebru prosirenih NS operacija koja je izomorfna punoj
algebri NS operacija, definisemo sledece operacije na I, :

Ai s (L)W = (KDY, e (AT

w0 (ID™ < (L™ = ()™, (ff,9%) = (fog)*.
Sada je preslikavanje f — f1 izomorfizam izmedu algebri Z;, = (Iy; ¢, (, T,
A, ) i T = (I %, ¢, 7, A e [16).

)

Proizvoljnoj hiperoperaciji f € H ,E” mozemo dodeliti n-arnu operaciju f#

*
na P datu sa

A X)) = U@ ) s e X1 <i<nd,
zasve Xi,...,X, € Py . Zaskup F C H, oznacimo F# = {f# : f € F}.

Nazalost, kao i u prethodna dva slucaja, pridruzivanje skupa C# nekom
hiperklonu C' nije Zeljeno potapanje mreze hiperklonova na FEj; u mrezu
klonova na Pf, , s obzirom da iz ¢injenice da je C' hiperklon na FEj ne sledi
da je C* klon na P, jer kompozicija nije saglasna sa operatorom #.

Zato ¢emo hiperklonu C' umesto skupa C# dodeliti klon (C#) Py - Sta vige,
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ispostavlja se da se najmanji klon koji sadrzi C# moze dobiti od C# samo
primenom transformacija mesta promenljivih, te za hiperklon C' na E} vazi
(C#) Py = §(C#) [10]. Sada mozemo definisati preslikavanje

A LZ — Lp;;, C— (5(0#)
Ovo preslikavanje je monotono potapanje, ali vazi
Takode, saglasno je sa operacijom A, ali ne i sa operacijom V [23].

S druge strane, operator # se slaze sa Mal’tsevljevim operacijama o, i 7,
ali skup svih prosirenih hiperoperacija H ,f nije zatvoren u odnosu na A.
Medutim, ako definiSemo slede¢u operaciju na H ,f ;

Ap s (HD® = (HD) Y, fF e (Af)F,

onda je preslikavanje f — f# izomorfizam izmedu algebri Hy = (Hy; o, ¢, T,
A, ) i HE = (= ¢or Ay, 6 B9

Polimorfizmi

Tako postoje razliciti pristupi u proucavanju mreze klonova, mozda najmocéniji
alat predstavlja Galoisova veza izmedu skupa operacija Oy i skupa relacija

R, = J P(EY). Do nje dolazimo na sledeéi nacin.
>1

Neka su p € R,(f) if e O,(Cn). Za operaciju f kazemo da ¢uva relaciju p,
odnosno relacija p je saglasna sa operacijom f ako vazi

a1 12 Q1n f(alh a2, ... >aln)
21 22 21 f(a217 a9, - - . 7a2n)

, : e : cp = : € p.
0731 Qg2 Qyn, f(aeb g2, ... ,Gzn)

Jos kazemo da je f polimorfizam od p. Skup svih operacija koje cuvaju
p oznacavamo sa Pol p, a skup svih relacija saglasnih sa f sa Inv f. Ako
definisemo preslikavanja
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sa

PolQ = ﬂPolp:{feOk:féuvasvakopEQ}, Q C Ry,
PeEQ

InvF = ﬂ]m}f:{pGRk:svakofEFéuvap}, F C Oy.
fer

Lako se vidi da je par (Pol, Inv) Galoisova veza izmedu operacija i relacija.

Jednostavno se pokazuje da je Pol @) klon, za svaki skup relacija @, i da
je Inv F relacijski klon za svaki skup operacija F. Medutim vazi i obra-
tno, odnosno svaki klon je skup polimorfizama nekog skupa relacija i svaki
relacijski klon je oblika Inv F' za neko F' C Oy. Taénije za klon C' imamo

C = Pol(Inv C) dok za relacijski klon @ vazi Q = Inv(Pol Q) [4, 27).

Od velike pomo¢i pri proucavanju mreze klonova je ¢injenica koja je direktna
posledica definicije Galoisove veze, a to je da sto je veci klon to je manji
odgovarajuci skup relacija. Specijalno, sto ¢emo kasnije videti, svaki maksi-
malni klon je skup polimorfizama jedne relacije.

U slucaju parcijalnih operacija posmatramo relacije na skupu Fj1. Za parci-
jalnu operaciju f € P,g”) kazemo da cuva relaciju p € R,(i)rl (odnosno, relacija
p je saglasna sa f) ako za svaku matricu M ¢ije su kolone u p vazi f (M) € p.

Sa pPol p oznacavamo skup svih parcijalnih operacija koje ¢uvaju relaciju p,
a sa pInv f skup svih relacija koje su saglasne sa f. Takode uvodimo oznaku

pPOL p = pPol(pU (Eyy, \ E})),

pri ¢emu je relacija pU(E,iJrl \E,ﬁ) puno prosirenje relacije p. Moze se pokazati
da su za proizvoljno p € Rffll skupovi pPolp i pPOL p parcijalni klonovi.
Sta vise, pPOL p je jak parcijalni klon, tj. parcijalni klon koji sadrzi sve
podfunkcije svojih elemenata.

Definisimo preslikavanja

pPol : P(Riy1) = P(Py) 1 plnv:P(FPy) = P(Rks1)



X
na slededi nac¢in

pPol Q) = ﬂpPolp: {f € Py : f cuva svaku p € Q}, Q C Ry1,

PERQ

plnv F = ﬂ pInv f ={p € Rxy1 : svako f € F ¢uva p}, F C P,
fer

Ocigledno je par (pPol,pInv) Galoisova veza izmedu relacija i parcijalnih
operacija.

Ako primenimo hiperoperaciju na matricu ¢ije su kolone elementi neke /-
arne relacije, kao rezultat dobijamo /-torku skupova, pa postoji vise nacina
da se definiSe svojstvo saglasnosti relacije sa hiperoperacijom. Ovde ¢emo
predstaviti dve relacije na Py pomocu kojih ¢emo definisati ovu saglasnost,
kao i Galoisove veze koje oni indukuju.

Nekajel >1ipe R,(f). Jako prosirenje relacije p je relacija py definisana sa
Pd = {(Al,...,Ag) € (ngy:Al X e XAggp}

Ovo znaci da je (Aj,..., As) u pg ako je svaka (-torka (ay,...,a;) € Ay X

- x Ay sadrzana u p. Kazemo da hiperoperacija f € H ,ﬁ”) d-cuva relaciju
pE R,(f) ako za svaku £ x n matricu M ¢ije su kolone u p vazi f(M) € py,
tj. Ay x .-+ x Ay C p. Skup svih hiperoperacija koje d-cuvaju relaciju p
oznacavamo sa dPol p, a skup svih relacija koje d-cuva hiperoperacija f sa
dInv f. Galoisovu vezu (dPol p,dInv f) definisemo sli¢no kao u prethodnim
slucajevima.

Za svako Q C Ry skup dPol @ je hiperklon i to hiperklon koji sadrzi sve
pod-hiperoperacije svojih elemenata. Takve hiperklonove nazivamo nadole
zatvoreni hiperklonovi 8] 53], 54].

S druge strane, za f-arnu relaciju p na Ej; mozemo definisati slabo prosirenje
pr ha sledec¢i nacin

pn=1{(A1,..., A) € (Pp)": (A1 x ... x A)Np#0},

tj. pn se sastoji od (-torki (Ay, ..., Ay) podskupova od Ej takvih da postoji
(ay,...,a7) € A; x -+ x Ay koja je u p [6I]. Hiperoperacija f € H,gn)
h-cuva relaciju p € R,(f) ako za svaku ¢ x n matricu M ¢ije su kolone u



p vazi f(M) € py. Skup hPolp se sastoji od svih hiperoperacija koje h-
cuvaju relaciju p, a hinv f je skup svih relacija koje h-¢uva hiperoperacija
f. Ponovo, Galoisova veza (hPol p, hInv f) se definise analogno prethodnim
slucajevima.

Skup hPol Q) je hiperklon za svaki skup relacija @), i ima osobinu da sadrzi sve
nad-hiperoperacije svojih elemenata. Takve hiperklonove nazivamo prema
gore zatvoreni hiperklonovi [17].

Svojstvo saglasnosti relacije i NS operacije mozemo definisati slicno kao u
slu¢aju hiperoperacija, pri cemu je jako prosirenje relacije p dato sa

ps = {(al,...,ag) € Bl : (Y(by,. .. be) € EL) (by, ... by) C (a1, ar)

:>(b1,...,bg)€p},

dok je slabo prosirenje definisano sa

Po = {(al,...,ag) €Ly (3(by,... b) € p)(by,... b)) C (al,...,ag)}.

Koatomi

Na kraju ¢emo predstaviti rezultate vezane za koatome mreza Ly, LV, L} i
LIS, Veoma je bitno opisati maksimalne elemente mreze jer se oni koriste pri
formulisanju kriterijuma kompletnosti. Kazemo da je skup F C Oy komple-
tan ako generise ceo skup Oy, tj. (F') = O. Poznato je da postoji kona¢no
mnogo maksimalnih klonova na Fj i svaki pravi potklon od Oy je sadrzan
u nekom maksimalnom klonu [74]. Stoga je skup F' C O, kompletan ako
i samo ako nije podskup nijednog maksimalnog klona. Isto vazi i za mreze
parcijalnih klonova, NS klonova i hiperklonova.

Kriterijumi kompletnosti za totalne i parcijalne klonove su odredeni, ali smo
jos uvek daleko od dostizanja takvog rezultata u slucaju hiperklonova i NS
klonova. Ipak poznate su neke klase maksimalnih klonova hiperoperacija i
NS operacija.

Jedno od najznacajnijih dostignuca u teoriji klonova do sada je kompletna
klasifikacija koatoma mreze L, do koje je dosao I.G. Rosenberg. Iako je ovo
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velicanstven rezultat, moramo reé¢i da on predstavlja kulminaciju udruzenih
napora vise matematicara koji su se 50tih i 60tih godina proslog veka bavili
problemom opisivanja svih maksimalnih klonova na datom skupu.

Jablonski je u [74] pokazao jedan specijalni slucaj, da je Pol.}, gde je
= {(z1,...,2,) € Ef : {z1,...,2,}| < n— 1}, maksimalan klon, i
to jedini maksimalan klon koji sadrzi sve unarne operacije na Ej. Opstije,
Kuznjecov je u [35] dokazao da je svaki maksimalan klon potpuno odreden
jednom relacijom, preciznije, svaki maksimalan klon je oblika Pol p za neku
nedijagonalnu relaciju p. Mozemo se zapitati da li je ovo najpreciznija karak-
terizacija maksimalnih klonova koju mozemo dobiti. Sre¢com odgovor je neg-
ativan.

Nakon Posta, koji je opisavsi sve klonove na dvoelementnom skupu takode
naveo i 5 maksimalnih, Jablonski je u [73] odredio svih 18 maksimalnih
klonova na Fj3, a navodno je Mal’tsev pokazao da postoje tatno 82 maksi-
malna klona na E;. Zatim je u [55] Rosenberg opisao Sest klasa relacija koje
odreduju maksimalne klonove na proizvoljnom konac¢nom skupu, a konac¢no
je u [56] dokazao da je ova lista potpuna.

Navedimo sada poznatu Rosenbergovu teoremu.

Klon na Ej je maksimalan ako 1 samo ako je oblika Pol p, gde je p jedna od
sledecih relacija:

(Ry) ograniceno parcijalno uredenje;
(Rs) graf permutacije prostog reda;
(R3) prosta afina relacija;

(Ry) netrivijalna relacija ekvivalencije;
(Rs) centralna relacija;

(Rg) (-reqularna relacija, ¢ > 3.

Skup Oy U (cg), Cine sve totalne operacije na Ej i sve parcijalne operacije
koje nisu definisane ni za jednu ulaznu vrednost. Ovaj skup je maksimalan
parcijalni klon, i to je jedini maksimalni parcijalni klon koji sadrzi Oy.

Problem kompletnosti za Bulove parcijalne operacije je resio Freivald [26].
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Isti problem na FEj3 su nezavisno resili Lau [36] i Romov [51], dok su za opis
svih koatoma mreze parcijalnih klonova na proizvoljnom konacnom skupu
zasluzni Haddad i Rosenberg [28, 29, B0]. Naveséemo njihovu klasifikaciju.

Parcijalni klon M na Ej, je maksimalan ako i samo ako je M = Oy U (ck),
ili je oblika M = pPOLp, pri cemu je p jedna od sledecih relacija:

e (-arna (1 < ¢ < k) netrivijalna totalno refleksivna i totalno simetricna
relacija;

o (-arna ({ > 2) koherentna arefieksivna ili kvazi-dijagonalna relacija;

e kvatenarna koherentna relacija o U p;, i € {1,2}, gde je o neprazna
kvatenarna arefleksivna relacija i

pL= {(a,a,b,b),(a,b,a,b) cabe Ek},
P2 = {(a’a’b’ b)’ (a’b7a7b)7 (CL?ba b? a’) : (I,b S Ek}

Skup svih totalnih operacija je koatom u mrezi hiperklonova, sto nije bio
slucaj kod parcijalnih klonova. Dakle za svako f € Hy \ Oy imamo (O U
{f}n = Hyg, pa posto je Oy konaéno generisan, zaklju¢ujemo da isto vazi i
za Hk

Sada ¢emo predstaviti ¢etiri klase maksimalnih hiperklonova odredenih nekim
od Rosenbergovih relacija. Radi se o hiperklonovima oblika hPolp i dovoljan
uslov da takav hiperklon bude maksimalan je da je Polp maksimalan klon i
vazi

(Vf € Hy, \ hPol p) (3f € Ox\ Polp) f' € (Pol pU{f})1.

Tako je konstrukcijom odgovarajuce totalne operacije f' ¢ Polp pomocu
nekih operacija iz Pol p i hiperoperacije f ¢ hPol p dokazano da je hPol p
maksimalan hiperklon u slu¢aju kada je p ogranic¢eno parcijalno uredenje [17]
i kada je p netrivijalna relacija ekvivalencije, centralna relacija ili regularna
relacija [41].

Sli¢no kao u sluc¢aju hiperklonova mozemo pokazati da je skup svih totalnih
operacija maksimalan NS klon, pa je i I; kona¢no generisan.

U nastavku razmatramo cetiri klase relacija na Ej sa osobinom da je njihovo
slabo prosirenje jednako punom prosirenju, a koje su takve da je wPol p
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maksimalan klon nepotpuno specificiranih operacija. Ovi rezultati su ana-
logni gore navedenim rezultatima za hiperklonove. Naime, i u ovom slucaju
kako bismo pokazali da je wPol p maksimalan NS klon ako je Pol p mak-
simalan klon, odredujemo totalnu operaciju f' ¢ Pol p koja je generisana
operacijama iz Pol p i NS operacijom f ¢ wPol p. Lako se dokazuje da ako je
relacija totalno refleksivna, onda je njeno slabo prosirenje jednako sa punim
prosirenjem. Ovo vazi za sve relacije iz Rosenbergovih klasa (R1), (R4),
(R5) i (R6), pri ¢emu su relacije iz (R4), (R5) i (R6) istovremeno i totalno
simetricne. Konstrukcija operacije f’ je u slucaju NS klonova mnogo jed-
nostavnija nego u sluc¢aju hiperklonova, pogotovu za relacije iz (R1). Dakle,
wPol p je maksimalan NS klon u slucaju kada je p ograni¢eno parcijalno
uredenje, netrivijalna relacija ekvivalencije, centralna ili regularna relacija.

Struktura rada

Ovaj rad se sastoji iz 7 poglavlja. Prvo poglavlje je uvodno, i u njemu
su dati motivacija za istrazivanja, kao i pregled rezultata po poglavljima, sa
naglaskom na originalnim doprinosima.

U drugom delu dajemo pregled osnovnih definicija vezanih za klonove to-
talnih operacija, parcijalnih operacija, nepotpuno specificiranih operacija i
hiperoperacija.

Originalni doprinos predstavlja deo o nepotpuno specificiranim operacijama,
objavljen u radovima [I5] i [I6], gde formalno uvodimo pojam NS operacije,
definiSemo kompoziciju takvih operacija i njihove klonove, i navodimo os-
novne osobine mreze NS klonova. Takode definiSemo tri unarne i jednu bi-
narnu operaciju na skupu svih NS operacija, ¢ime dobijamo punu algebru
nepotpuno specificiranih operacija.

U treéem poglavlju je prikazano kako je moguce svakoj parcijalnoj opera-
ciji, nepotpuno specificiranoj operaciji i hiperoperaciji na skupu FEj, pridruziti
totalnu operaciju na Fjr,; u slucaju parcijalnih i NS operacija, odnosno na
Pg,u slucaju hiperoperacija. Koristeci ova preslikavanja mozemo dobiti
potapanja mreza parcijalnih klonova, NS klonova i hiperklonova u odgo-
varaju¢e mreze totalnih klonova, Sto nam omogucava da izvesne osobine
mreze totalnih klonova prenesemo na preostale tri mreze.

Originalni doprinos je deo o prosirenju NS operacija objavljen u radu [16].
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Kao sto je receno, NS operacijama na Fj, se dodeljuju odgovarajuce operacije
na FEj.1. S obzirom da ovako dobijeno preslikavanje nije homomorfizam,
uvodimo pogodne modifikacije Mal’tsevljevih operacije na skupu prosirenih
NS operacija kako bismo dobili algebru prosirenih NS operacija izomorfnu
punoj algebri NS operacija.

U ¢etvrtom delu se bavimo poznatom Galoisovom vezom (Pol, Inv) izmedu
relacija i operacija, kao jednim od najvaznijih alata u proucavanju mreze
klonova, i modifikacijama ove veze za parcijalne operacije, NS operacije i
hiperoperacije.

Originalni doprinos je deo o prema gore zatvorenim hiperklonovima, obja-
vljen u radu [I7]. Dualno slu¢aju nadole zatvorenih hipeklonova, koji sadrze
sve svoje pod-hiperoperacije, a koje su nezavisno proucavali Bérner [8] i Ro-
mov [53, 54), mozemo posmatrati hiperklonove koji sadrze sve nad-hiperope-
racije svojih elemenata i njih zovemo prema gore zatvoreni hiperklonovi. Oni
formiraju algebarsku mrezu u odnosu na skupovnu inkluziju. Potom opisu-
jemo jednu klasu prema gore zatvorenih hiperklonova uvodeci odgovarajucu
Galoisovu vezu izmedu relacija i hiperklonova, indukovanu slabim ¢uvanjem
relacije.

Originalni rezultati se nalaze i u sekciji o polimorfizmima u mrezi nepotpuno
specificiranih klonova, pri ¢emu je deo o vezi izmedu prosirenih NS operacija
i relacija objavljen u radu [16]. Definisemo nadole zatvorene i prema gore
zatvorene NS klonove i dve Galoisove veze izmedu relacija i NS operacija
analogno kao u sluc¢aju hiperklonova. U poslednjem delu pokazujuemo da
skup svih prosirenih NS operacija koje ¢uvaju neku relaciju u opstem slucaju
ne mora biti zatvoren u odnosu na modifikovane Mal’tsevljeve operacije de-
finisane u prethodnom poglavlju, a onda predstavljamo dve klase relacija,
koje odgovaraju jakom i slabom prosirenju, takve da je skup prosirenih NS
operacija koje ih ¢uvaju zapravo prosirenje nekog NS klona.

U petom poglavlju navodimo neke poznate rezultate vezane za mreze to-
talnih klonova, parcijalnih klonova i hiperklonova na dvoelementnom skupu.
U ovom slucaju mreze hiperklonova i NS klonova su izomorfne.

Sesto poglavlje je posveéeno koatomima. Navodimo kriterijume komplet-
nosti za skupove totalnih i parcijalnih operacija, a zatim predstavljamo neke
klase maksimalnih hiperklonova i nepotpuno specificiranih klonova.

Sekcija o hiperklonovima odredenim ograni¢enim parcijalnim uredenjima ob-
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javljena je u radu [I7]. Ovi rezultati se takode pojavljuju u autorkinom
master radu [13], s obirom da je to bio deo istrazivanja u tom trenutku.
Pokazujemo da je za svako ogranic¢eno parcijalno uredenje p skup svih hiper-
operacija koje slabo ¢uvaju relaciju p (hPolp) maksimalan hiperklon, tako
sto konstruisemo operaciju f’ koja nije u Polp koristeéi proizvoljnu hiper-
operaciju f ¢ hPolp i neke operacije iz Polp. Centralni deo je definicija
pomocne operacije gl'fyc i dokaz da ona cuva p.

Originalni doprinos je sekcija o maksimalnim NS klonovima. Najpre dokazu-
jemo da je, kao i u slucaju hiperklonova, skup svih totalnih operacija mak-
simalan NS klon. U ostatku sekcije pokazujemo da ako je p ograniceno
parcijalno uredenje, netrivijalna relacija ekvivalencije, centralna relacija ili
regularna relacija, onda je skup svih NS operacija koje slabo ¢uvaju relaciju
p (wPolp) maksimalan NS klon. Ono $to omogucava da ovi dokazi budu
znatno jednostavniji nego u slucaju hiperklonova je ¢injenica da su za relacije
iz pomenutih klasa slabo proSirenje i puno proSirenje jednaki.

U sedmom poglavlju su predstavljene neke primene nedeterminizma i
teorije klonova u teorijskom racunarstvu, kao i pregled otvorenih problema
koji bi mogli biti interesantni za dalje istrazivanje.
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Abstract

This thesis is a survey of some well known and several new results concer-
ning lattices of total clones, partial clones, incompletely specified clones and
hyperclones. We assign to every partial operation, incompletely specified ope-
ration and hyperoperation a suitable total operation and investigate thereby
induced embeddings of the three lattices into corresponding lattices of total
clones. Next we modify the famous Galois connection (Pol, Inv) between
relations and operations for partial operations, IS operations and hyperope-
rations. In the latter two cases we analogously describe certain classes of
clones which correlate to two of the possible ways to define a preservation
property. We also state some known results concerning the four lattices on a
two-element set. Finally, we present completeness criteria for the lattices of
total and partial clones, and in the case of hyperclones and incompletely spe-
cified clones we describe four classes of coatoms, determined by four classes
of Rosenberg’s relations.
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Chapter 1

Introduction

If an operation does not provide output values for all of the input values, we
say that it is partially defined. For a nonempty set A, and D a proper subset
of A™ such an operation f is a mapping from D into A. But what if we
do not consider f(ay,...,a,), where (ai,...,a,) € A"\ D, to be undefined,
but rather unspecified? This assumption yields significant difference when it
comes to the composition of such operations.

Let A = {0,1} and AND be the ordinary conjunction on A. Suppose f and
g are unary operations on A for which f(0) = 0 and the value g(0) is not
specified. Then the (output) value of the composition h(x) = AND(f(x), g(x))
for x = 0 is specified as 0, i.e., we have

h(0) = AND(f(0), g(0)) = AND(0, g(0)) = 0.

This makes perfect sense since the binary operation AND takes the value 0
whenever at least one of the arguments is 0, regardless of the value of the
other argument. However, operation A would not be defined on {0} if we
take ¢(0) to be undefined, in other words if operations and composition are
considered in the setting of partial operations and their standard composi-
tion.

How can we interpret those unspecified outputs? One possibility is that we
have different outputs for the same input value, i.e., the output is a nonempty
subset of A, which gives us hyperoperations. On the other hand, we may take
some u ¢ A, and regard it as any one of the values from A, which gives us
incompletely specified operations.
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On a two-element set, these two concepts are basicaly the same, since |A U
{u}| = |P(A) \ {0} = 3. Nevertheless, it is evident that for |A] > 2 hy-
peroperations have more possible output values than incompletely specified
operations.

We can use both hyperoperations and incompletely specified operations for
modelling nondeterministic processes.

For instance, in software systems, repeated executions of a program may pro-
duce different results, or concurrent processes may have different reductions.
This behaviour can be formally modelled as a function that assigns a set of
values to a given argument. These functions are basically hyperoperations.
A widely studied example where such a function also appears is the transi-
tion function in the definition of nondeterministic finite automata.

On the other hand, in optimization of logic circuits, input assignments, for
which output is not specified, are called "don’t care” conditions and they
play important role in determination of minimal disjunctive normal forms
and design of equivalent logic circuits.

This thesis presents a comparative study of the lattices of total clones, partial
clones, incompletely specified clones and hyperclones.

For more details about clone theory we refer the reader to books by Pdschel
and Kaluznin [48], Szendrei [70] and Lau [38]. The last one also covers results
concerning partial clones to some extent.

Instigated by the lack of coherent theory for general hyperstructure, Rosen-
berg introduced the notion of a hyperclone in [59] and [60], while paper [1§]
summarises different approaches to the study of the hyperclone lattice.

Investigation of incompletely specified operations was initiated by the Kleene’s
three-value logic [34] and a non-standard composition of Boolean partial ope-
rations, introduced by Tarasov in [71].



Chapter overview

In Chapter we introduce clones of total operations, partial operations,
incompletely specified operations and hyperoperations, by defining each of
them both as the composition closed set of operations that contains all pro-
jections and as subuniverse of a certain algebra.

Original contribution is Section about incompletely specified operations,
published in [I5] and [16]. Here we formally introduce the notion of an IS op-
eration, then we define the composition of such operations and consequently
give a definition of an IS clone. We also state some basic properties of the
lattice of IS clones. Analogue to the total, partial and hyper case we define
three unary and one binary operation (called Mal’tsev operations) on the set
of all IS operations, thereby obtaining full algebra of incompletely specified
operations.

In Chapter |3| we assign to every partial operation, incompletely specified
operation and hyperoperation a suitable total operation. Using these map-
pings we can induce embeddings of lattices of partial clones, IS clones and
hyperclones into corresponding lattices of total clones, which enables us to
transfer certain properties of the (total) clone lattice onto the other three
lattices.

Original contribution is the Section on one-point extension of IS opera-
tions, published in [I6]. As we said, to each IS operation on Ej a corre-
sponding operation on FEj; is assigned. Since the induced mapping is not
homomorphic, we modify Mal’tsev operations on the set of extended IS ope-
rations [, in order to get algebra of extended IS operations isomorphic to
the full algebra of IS operations.

In Chapter [4] we deal with the famous Galois connection (Pol, Inv) be-
tween relations and operations, as one of the fundamental tools used in the
investigation of the clone lattice, and we suggest some modifications of this
connection for partial operations, IS operations and hyperoperations.

Original contribution is in the Section about upward saturated hyper-
clones, published in [I7]. Dually to the case of down closed hyperclones, that
is, hyperclones containing all sub-hyperoperations of their elements, which
were independently studied by Borner [§] and Romov [53] [64], we can con-
sider hyperclones containing all super-hyperoperations of their elements, and
we call them upper saturated hyperclones. The set of all such hyperclones
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forms an algebraic lattice with respect to set inclusion. Next we describe
one class of upper saturated hyperclones by introducing Galois connection
between relations and hyperoperations induced by weak preservation of a
relation.

Original results also appear in Section on polymorphisms in the lattice
of incompletely specified clones. Analogous to the case of hyperclones we
define down closed and upper saturated IS clones and two corresponding
Galois connections between relations and IS operations. Section about
the connection between extended IS operations and relations is published in
[16]. Here we show that the set of all extended IS operations that preserve
some relation does not necessarily have to be closed under modified Mal’tsev
operations defined in the previous chapter. Then we present two classes of
relations on Fj 1, corresponding to strong and weak extension, such that the
set of extended IS operations preserving them is actually extension of some
IS clone.

In Chapter 5| we state some known results concerning lattices of total clones,
partial clones and hyperclones on a two-element set. As we already men-
tioned, in this case lattices of hyperclones and IS clones are isomorphic.

Chapter [6] is dedicated to coatoms. We state completeness criteria for the
lattices of total and partial clones, and then present some classes of maximal
hyperclones and maximal IS clones.

Section about hyperclones determined by bounded partial orders is pub-
lished in [I7]. These results also appeared in author’s Master thesis [13], as
it was the part of the ongoing research at that time. We show that for every
bounded partial order p set of all hyperoperations that weakly preserve rela-
tion p (hPolp) is a maximal hyperclone, by constructing an operation f’ not
in Polp using an arbitrary hyperoperation f ¢ hPolp and some operations
from Polp. The central part is definition of the auxiliary operation ggyc and
the proof that it preserves relation p.

Original contribution is Section about maximal IS clones. First we prove
that, as in the case of hyperclones, the set of all total operations is a maximal
IS clone. In the remainder of this section we show that if p is a bounded par-
tial order, nontrivial equivalence relation, central relation or regular relation,
set of all IS operations that weakly preserve relation p (wPolp) is a maximal
IS clone. What makes these proofs considerably simpler than in the case of
hyperclones is the fact that for relations from the afore mentioned classes



weak extension and full extension coincide.

In Chapter [7] we present certain applications of nondeterminism and clone
theory in theoretical computer science, as well as some open problems that
could be interesting for future investigation.



Chapter 2

Clones

Investigation of the clones in universal algebra is motivated by the fact that
the set of term operations of an algebra A = (A, F) is always a clone. As a
matter of fact, a set C' of finitary operations on A is a clone if and only if
there exists an algebra A = (A, F') such that C is the set of term operations
of A. Nevertheless, in the first section of this chapter two other equivalent
definitions of a clone are given: as a composition-closed set of operations
containing all projections and as subuniverse of a certain algebra. We also
state that the set of all clones on given domain A ordered by set inclusion
forms an algebraic lattice. Then in the remainder of the chapter we present
similar characterizations for partial clones, IS clones and hyperclones.

In this thesis our domain will be the set £, = {0,1,...,k — 1}, with £ > 2.

2.1 Clones of operations

A function f : E}} — Ej is an n-ary operation on Ej. We will denote by

O,(Cn) = E,f’? the set of all n-ary operations on Ej, and by O = |J O,(Cn) the
n>1

set of all finitary operations on Ej. For F C Oy let F™ = Fn O,(;n).

We specify some operations that will also appear later in the text.

Definition 2.1.1

(i) A constant operation is an operation ¢, defined by

A(x1,...,x,) = a, a € FEy.

6
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(i) Fori € {1,...,n}, i-th n-ary projection e is defined by
Xy, ooy Tjy oo ) = Ty
We denote by Jy. the set of all projections on Ej.
(i1i) A ternary majority operation, ma € O,(CS), is such that

ma(l‘,{L‘,?/) = ma(:v,y,x) = ma(y,l‘,ﬁ) =, fO?“ all T,y € Eka

(iv) A ternary minority operation, mi € O,(;’), satisfies

mi(z,z,y) =mi(z,y,z) =mi(y,z,z) =y, foralx,y € Ei.

Definition 2.1.2 Composition of operations f € O,(C") and g1, ..., G, € O,(Cm)
is the m-ary operation f(g1,...,qgn) € O,(gm), defined as follows

(f(gh i ,gn))(f) = f(gl(f)7 cee 7gn(f))’

where ¥ = (x1,...,xy) € E.

Example 2.1.3 In Figure [2.1] we see a binary operation f and two unary
operations g1, gz, as well as their composition f(gi1, g2). For instance, we have

(f(91792))(1) = f(91(1>a92(1)) = f(2,0)=0.

f‘o 1 2 ‘91‘92 ‘f(gl7g2)
00 1 2 0101 0 1
110 1 1 11210 1 0
210 2 0 21112 2 1

Figure 2.1: The composition of a binary and two unary operations on FEj.

Definition 2.1.4 Set C' C Oy is called clone of operations on Ej if the
following two conditions are satisfied:

(i) C contains all projections and

(i1) C is closed with respect to composition.



8 CHAPTER 2. CLONES

Example 2.1.5 The following sets of operations on E}, are clones
(i) Oy - set of all operations;
(ii) Jy - set of all projections;
(i11) set of all idempotent operations (f € Oy is idempotent if f(x,...,x) =
x, for all x € Ey).

Evidently, it holds that the intersection of an arbitrary family of clones is
also a clone.

For a set F' C Oy the least clone containing F' will be denoted by (F') and
we have

(F}:ﬂ{C’QOk:C’isacloneanngC}.

We say that (F) is a clone generated by F. Whenever F' is a finite set, that
is, if F'={f1,..., fn}, we will write (f1,..., fn) instead of ({f1,..., fn})-

It is easy to prove that ( ) : P(Oy) — P(Oy) is an algebraic closure operator,
which directly implies the following theorem.

Theorem 2.1.6 Clones of operations on a finite set Ey form an algebraic
lattice Ly with respect to the set inclusion. The least element of the lattice s
Ji, and the greatest element is Oy. Lattice operations are defined as follows

ClACQIClﬂCQ and Cl\/C2:<ClUCQ>.

As a consequence of the previous theorem, a clone can also be defined as a
subuniverse of some algebra. In what follows we introduce one such algebra.
Let ¢,7,A be unary and % binary operation on Oj. These operations are
also called Mal’tsev operations. For the sake of simplicity we shall write

Cfirf,Af and f % g instead of C(f), 7(f), A(f) and (f, g).
o For fe OV let (f =7f=Af=f;
o for f€ O™ n>21let (f,7f € O and Af € 0" be defined as
(CF) (@, @,y an) = fl@a, .. T, 1),

)
(Tf) (1, 09,23, ..., ) = (T2, 1, T3, ..., Tp),

(Af) (@1, 2, Tpo1) = f(21, 21,22, .., Tpo1);
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e for f € O,(Cn) and g € O,im) let f*g¢€ O,(chr"_l) be defined as
(f * g)(l'l, C 7$m+n—1) - f(g('xla ce. ax’m)a xm-i—la s 7xm+n—1)-

With the addition of the first binary projection e?, we obtain the algebra
O = (Og; %, ¢, 7, A, €2), called the full algebra of operations.

Theorem 2.1.7 A set C' C Oy is a clone if and only if it is a subuniverse
of the algebra Oy.

Sketch of a proof. If C' C Oy is a clone, then J;, C C, and thus e? € C. Since
C is also closed with respect to composition of operations, for f € C™ and
g € C™ we obtain

Cf= f(eg,...,ez,e’f),

Tf = f(ey, el e, ... el),
Af = fleterter ™t ... e'1) and
frg=flglem™ e ) et eninDi)-

On the other hand, if C' is a subuniverse of the algebra Oy, then it is closed
with respect to ¢,7,A and *, and contains e?. We can make an arbitrary
projection in the following way

1 _ 2 n __ ,n—iyvn—2 2
e; =Ae; and e ="'V req,

where V is adding of a fictitious variable, i.e., (V f)(x1, 22, ..., 2n11) = f(22,

.., Tny1) and it holds Vf = f * (7e?). Hence, J, C C. Furthermore,
composition f(g1,...,g,) of operations f € O,(j” and g1,...,9, € O,(gm) can
be expressed by *, A and permuting variables. Therefore, C' is a clone.

2.2 Clones of partial operations

A mapping from E}' to Ejyq is said to be a partial operation on Ey, if k

)

is regarded as undefined. If we denote by P,gn the set of all n-ary partial

operations on Fj, then P, = |J P]E") will be the set of all partial operations
n>1

on Ey. For F C P, let F™ = Fn P™,



10 CHAPTER 2. CLONES

Let f € Pk(:n) and ¢1,...,9, € Pk(m). Composition of partial operations
fyg1, ..., 9gn is an m-ary partial operation f(g,...,gn), defined as

o fn(@),.. . 0.(D)), if g(T) € By, 1 <i <,
(f(g1, o ,gn)) () = { k, otherwise,
(2.1)
where 7 = (z1,...,2,) € B

This means that whenever at least one of the partial operations f, g1,...,gn
is undefined, the whole composition is going to be undefined, as shown in the
following example.

Example 2.2.1 In the Figure we have one binary (f) and two unary
(91, 92) partial operations on Es, and their composition f (g1, g2). For example
we have

(f(g1,92)) (1) = 3, since g,(1) = 3.

f‘o 1 2 ‘91‘92 ‘f(91792)
00 1 2 0[]0 |1 0 1
110 1 1 11310 1 3
210 2 0 21113 2 3

Figure 2.2: The composition of a binary and two unary partial operations
on Eg.

Definition 2.2.2 Set C' C Py is called partial clone on Ej if the following
two conditions are satisfied:

(i) C contains all projections and
(11) C is closed with respect to composition of partial operations.
Example 2.2.3 (i) Every total clone is trivially a partial clone.

(11) Set O U (ck), consists of all total operations on Ej and all nowhere
defined partial operations. It is obviously a partial clone since J, C
Or C Oy U (ck)p and it is closed with respect to composition, because
composing a nowhere defined partial operation with any other (partial)
operation yields again a nowhere defined partial operation.
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For a set /' C P, we denote by (F'), the least partial clone containing F' and
it holds

(F), = ﬂ {C’ C P, : C is a partial clone and F' C C’}.

We say that (F), is a partial clone generated by F.

The set of all partial clones on Ej forms an algebraic lattice £} with respect
to set inclusion. Lattice operations are defined as

Cl /\p Cg = Cl N CQ and Cl \/p CQ = <01 U 02>p.

Similarly to the case of total clones we can define Mal’tsev-type operations
on Pkl

o forfGPk(l) let (f=7f=Af=Ff;
o for f € Pk(n),n >2 let (f,7f € Pk(n) and Af € Pk("_l) be defined as
(Cf)($1ax27"'7xn) :f<x27"'7xn7x1)7

(Tf)(l'l,.fg,l'g, ce 7'1771) - f(anxl)x& ce. axn)a
(Af) (@1, 29, Tp1) = f(71, 20,20, , T 1);
o for f € P! and g € P'™ let f+g e P Y be defined as
(f*g)(x1,. .., Tmyn_1) =

_ f(g(a:l,...,xm),xmﬂ,...,mern,l), it g(z1,...,2m) € E},
k, otherwise.
(2.2)

It is easy to see that if f,g € O, then fxg= fxg.

The algebra Py, = (Py; %, (, 7, A, €2) is called the full algebra of partial oper-
ations.

Theorem 2.2.4 A set C' C P, is a partial clone if and only if it is a sub-
universe of the algebra Py.

At the end of this section we give the definition of a strong partial clone,
since strong partial clones play an important role in the investigation of the
lattice LF.
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Definition 2.2.5 Let f,g € Pk("). Then we say that g is a subfunction of f
(short: g < f) if for every & € E} it holds g(Z) € {f(Z), k}.

A partial clone C' C Py, is called strong if it contains all subfunctions of its
functions, i.e., (Vf € C)(Vge P;) (9 < f=g€C).

2.3 Clones of incompletely specified opera-
tions

Results from this section appeared in papers [I5] and [16].

A mapping from E}} to Ex44 is said to be an incompletely specified operation
(IS operation, in short) on Ej, where k is considered as the unknown value.

The set of all n-ary IS operations on E) will be denoted by [ ,ﬁ”’, and the set
of all IS operations by I, i.e., I = | J,E"). For I C I, let F'N I,gn) be

n>1

denoted by F™.

Notice that, if we disregard the interpretation of the output value k, the sets
P, and I, are basically the same, that is, they contain the same functions.
It is the way we compose those functions that makes the difference.

We will now introduce one binary relation and one binary operation on Fy
that will be used in the definition of the composition of incompletely specified
operations. The binary relation T on FEj,; is defined by

c— 0011 ... k=1 k-1 k%
= \N0 k1 k ... k=1 k k /7
which can be rewritten as

C = {(a:,x) cx € Ek+1} U {(a:,k) cx € Ek}

The relation C is obviously a partial order on Fj.; (Figure .

We will write (y1,...,9yn) C (21,...,2,) in case y; C x; for all 1 <i <n.

Example 2.3.1 All quadruples in relation T with (1,2,0,2) are (1,0,0,0),
(1,0,0,1), (1,1,0,0) and (1,1,0,1).
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0 1 k-1

Figure 2.3: Hasse diagram of the partialy ordered set (Fy.1,C).

The binary operation M on Ej,; is defined by

Zy, if T = Tg,
z1 Mxy = .
! 2 { k,  otherwise.

It is clear that the operation M is commutative and associative. Thus,

n .

S T if 11 =a0=...=1x,,
I I1 ‘ k, otherwise.
1=

?
We can apply this operation on n-tuples by coordinates, i.e.,

(1, @) T (Y1 Yn) = (X1 Ty, 2, T Y.

Note that a C a b for all a,b € Ej,; and, consequently,
xcy = [[xc]]v

Finally, we can define the composition of incompletely specified operations.
Definition 2.3.2 Let f € I,i") and g1, ..., 9n € I,gm). The composition of IS
operations f and g1, ..., gy, is the m-ary IS operation f(g1,...,gn) defined by

n

(flgr,-- > 90)) (@) = [[{f @) : 7 € B, v C ai(®)}, (2.3)

i=1

where & = (x1,...,Tm) and ¥ = (Y1, ..., Yn)-
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In more detail, for all i € {1,...,n}, if g;(¥) € Ej, then y; = ¢;(¥), and
if ¢;(¥) = k, then y; takes all the values from FEj. That is, we take all
the n-tuples (y1, . ..,y,) from E} such that (y1,...,y,) C (91(2), ..., ga(T)).
Lastly, we make a ”product” of the values we obtain by applying IS operation
f to those n-tuples.

Contrary to the case of the composition of partial operations, although some
of the IS operations f, g1, ..., g, have the output £, in certain cases the output
of their composition is in Ej, (if all f(y) have the same value from FE}), as
shown in the next example.

Example 2.3.3 In Figure we see a binary IS operation f and two unary
IS operations gi,g2, with their composition f(g1,92). For instance, since
g1(1) = 3, and (0,0), (1,0),(2,0) are all pairs in relation T with (3,0), we
have

(£(g1,92))(1) = £(0.0) M £(1,0) 11 £(2,0) = 011010 = 0.

flo 1 2 |91 ] 92 | f(91,92)
00 1 2 0] 011 0 1
110 1 1 11310 1 0
210 2 0 21113 2 3

Figure 2.4: The composition of a binary and two unary IS operations on Ej.

Note that if f, g1,..., g, are completely specified, that is, if f,g,..., g, are
total operations, composition of IS operations coincides with the composition
of total operations.

The new composition naturally induces the following definition of a clone of
IS operations.

Definition 2.3.4 A set C' C I is a clone of incompletely specified opera-
tions (or IS clone) if

(i) C contains all projections, and

(i1) C is closed under composition of IS operations.
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The intersection of an arbitrary family of IS clones is an IS clone. For F' C I,
let (F),, denote the least IS clone that contains F,

(F), = m{C C I, : Cisan IS clone and F' C C’}.

We say that the IS clone (F') is generated by F.

1S

The set £15 of all IS clones is an algebraic lattice with respect to the set
inclusion, with operations

Cl /\IS CQ = Ol N CQ and Cl vIS 02 = <C1 U CQ>IS.

Equivalently as above, the Mal’tsev-type definition of an IS clone can be
introduced as follows. Consider the following operations on I} :

o for felVlet (f=71f=Af=F;

o for [ € ],gn),n >2,let (f,7f € ]’gn) and Af € I,(Cn_l) be defined as
((f) Il,l’g,...,l’n):f<l’2,...7xn,l’1),

Tf

(
(/) (@1, 29,23, ..., Tn) = f(w2, 21,23, ...,T,),
)

(Af (1131@2, cee ,l‘n—l) = f($1,$1,9€2 cee ,l‘n—1);

o for f € I,g") and g € I,E,m) let foge I,ngrn_l) be defined as

(f<>g)(l’1,...,$m+n_1> - H f(y,xm+1,...,xm+n_1) (24)

y € Ey
yCg(zy,. .., Tm)

Obviously, if f and g are total operations, then fog= f xg.

The algebra Z = (I1;0,(, 7, A, €?) is said to be the full algebra of incom-
pletely specified operations.

Theorem 2.3.5 A set C' C Iy, is an IS clone if and only if it is a subuniverse
of the algebra Z,.

We will present several additional properties of the relation C .
Definition 2.3.6 If n-ary IS operations f and g satisfy
g(x1, .. ) CE fxg, ... xy)

for all (xq, ..., x,) € E}, then we say that g is an IS suboperation of f (or
f is an IS superoperation of g) and we write g C f.
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Lemma 2.3.7 Composition of IS operations is monotone with respect to the
relation C .

Proof. Let f, f' € ],g") and g1,..., 90,91, 0, € ] ) be IS operations such
that f'C f,¢1 C g1,..., g, C gn. For (xq1,..., 2 )GEm denote
Y ={(y1,..-,yn) € E} 14 C gi(z1,...,20),1 <i<n} and
Y/:{(yly"'ayn) GE}:}yZEg’:(xh?xm)alglgn}

Since gi(z1,...,Tm) C gi(x1, ..., 2m), for all 1 <i < n, it is easy to see that
Y’ C Y. Therefore it holds that

f/(g:/[,---7g;)(l'1,---, H{f yla---vyn (yla"'>yn)€Y/}
EH{f Yis - Un) (Y1) €Y}

CII{fn. - wm) (e yyn) €Y}
= (g1, 9n)(T1, .-, Tp)-

4

It is easily observable that for f € I (= P™) and g1,.. ., g, € I{™ (= P™)
we have
f(gb e 7gn)IS E f(gla CI agn)p-

Therefore, an IS clone is closed with respect to the composition of partial
operations if it contains all IS superoperations of its elements. Moreover,
in the case of partial operations IS superoperations are in fact subfunctions,
and the partial clone containing all subfunctions of its elements is a strong
partial clone.

2.4 Clones of hyperoperations

Let P(Ek) be the power set of Ey. An n-ary hyperoperation f on Ej is a
mapping

f:Ep—P(E)\ {0}
We will write Pg, for P(Ej)\ {0}. Let HM = (P* )E? be the set of all n-ary
hyperoperations on Ey, n > 1, and H, = | H ) be the set of all finitary

n>1
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hyperoperations on Ej. For F C Hy, let F™W = Fn H,i").

An n-ary hyperoperation whose values are all singletons can be considered as
an n-ary operation (if we identify each singleton value {a} with the element
a). We will identify the clone of all total operations and the clone of all
hyperoperations with singleton values, and they will both be denoted by the
same symbol Oy.

An i-th n-ary (hyper)projection on Ey, 1 < i < n, is the n-ary hyperoperation
el € H,in) defined by el (z1,..., 24, ...,x,) = {zi}.

Let f € H,g") and ¢i,...,9, € H,gm), for positive integers m and n. The
composition of hyperoperations f and gy, ..., g, is the m-ary hyperoperation

f(glv s 7gn) defined by

n

(flgr,- 2 92)) (@) = J{F @) : 7 € B i € g:(D)}, (2.5)

=1

where & = (z1,...,2y) and ¥ = (Y1, .., Yn)-

Example 2.4.1 Figure (2.5 shows us a binary hyperoperation f and two
unary hyperoperations g1, ge, and their composition f(g1,g2). For example,
we have

(f(g1,92)) (1) = f(0,0) U f(1,0) = {0} U {0} = {0}.

f‘ 0 1 2 ‘ 91 ‘ 92 ‘f(gl,g2)
0110} {1} {2} 0 {0} | {1} 0 {1}
11{0y {1} {1} 140,13 | {0} 1 {0}
2[{0} {2} {0} 2] {1} [{0,1} 2] {0,1}

Figure 2.5: Composition of a binary and two unary hyperoperations on Ej.

Definition 2.4.2 Set C' C Hy, is called a clone of hyperoperations (or hy-
perclone) on Ey, if the following two conditions are satisfied:

(i) C contains all (hyper)projections and

(i1) C is closed with respect to composition of hyperoperations.
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For a set F' of hyperoperations, the least hyperclone containing F' is
(F)p, = ﬂ {C C H},: C is a hyperclone and F C C'}.

Analogous to the case of clones, the set of all hyperclones, ordered by set
inclusion, and denoted by £}, is an algebraic lattice. Lattice operations are
defined by

01 /\h CQ = Cl N Cg and Cl \/h CQ = <Cl U Cg>h.

Here we introduce the full algebra of hyperclones, with the following opera-
tions on Hy, :

° forfEH,gl) let (f=71f=Af=F
e for f € H,gn),n >2 let (f,7f € H,gn) and Af € H,gn_l) be defined as

(Cf)(xlux?a s 737“) = f(x27 e 7xn71'1),
(Tf) (@1, 0,23, ..., xy) = f(x2, 21,23, ..., Ty),

(Af)(tha cee )xn—l) = f($1,$1,$27 e a%—1)§

o for f € H,gn) and g € H,i’") let foge H,ﬁ””‘*”*” be defined as

(fog)(xl,...,meL,l) = U f(yuxm+17---7$m+n71)- (26)

Clearly, if f,g € O, then fog= fxg.

The algebra Hy = (Hy;o,(, 7, A, €?) is called the full algebra of hyperopera-
tions.

We can prove the following theorem similarly as in the case of clones.

Theorem 2.4.3 A set C C Hy, is a hyperclone if and only if it is a subuni-
verse of the algebra Hy,.

Now we introduce a relation on the set of all hyperoperations, which will be
used later in order to define two special classes of hyperclones.
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Definition 2.4.4 If f,g C H" satisfy
g(xy,...,x,) C f(x1,...,20) for all (xq,...,2,) € E}

then g is said to be a sub-hyperoperation of f (or f is said to be a super-
hyperoperation of g). We write g C f.

It is easy to prove that the composition of hyperoperations is monotone
with respect to inclusion, i.e., if ¢ C ¢1,...,9, C g, and f' C f then

f/(gia"'vg;z) - f(gla“-?gn)'

Concluding remark

It is obvious that both partial composition and IS composition applied to
total operations coincide with the total composition. Therefore the lattice
Ly, of total clones is a sublattice of both the lattice £} of partial clones and
the lattice £ of IS clones.

In the case of hyperclones, we can assign to every total operation f a hyper-
operation f" such that f*(%) = {f(Z)}, ¥ € E}, and this mapping induces a
full order embedding of the lattice £ into the lattice £} of hyperclones.

The subsequent chapter provides us with the opposite direction, that is, em-
beddings of the lattices £F, £1% and L} into the corresponding lattices of
total clones.



Chapter 3

Extensions

In this chapter we will demonstrate a method of assigning to every partial
operation, incompletely specified operation and hyperoperation a suitable to-
tal operation and investigate thereby induced embeddings of lattices of par-
tial operations, incompletely specified operations and hyperoperations into a
corresponding lattice of total operations.

3.1 One-point extension of partial operations

Let us define a map f +— f, from the set Py of all partial operations on Ej
to the set Og,q of all total operations on Ej 1 by

):{ f(@), it Te By,

(@ k, otherwise,

for all n > 0 and ¥ € E}, ;. We call f| the extended partial operation (or the
one-point extension) of f. For F' C P, we put

Fy={fy: feF}

One-point extensions of Boolean functions AND and OR are presented in Fig-

ure B.11

Clearly, for f € P' and ¢, ¢1,...,9, € P} we can write
(f(gl,...,gn))(xl,...,:L‘m) :f+(gl(:r;1,...,xm),...,gn(xl,...,xm)) and

(fxg) (@1, s Tmgn1) = f—i—(g(xlv e Tm)s Tt 1 - - >$m+n—1)

20
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AND, |0 1 2 OR [0 1 2
0 [0 0 2 0 [0 1 2
1 |01 2 1|11 2
2 |2 2 2 2 |2 2 2

Figure 3.1: Operations AND, and OR,.

instead of (2.1) and (2.2)).

As an immediate consequence of the definition of this extension we get

(1) for f € Pk(") and g1,...,0, € P,gm) it holds

(flgrs-v90)) = F((90) 455 (9n)4);

(2) for f € Pk(n) and g € Pk(m) it holds a(fy) = (af)+, for every operation
Q€ {CaTa A}? and also f+*g+ = (f*g)Jr'

However, extension of a partial clone on Ej is not a clone on Ejq, since it
does not contain projections. Although we would expect that the projection
»PE1 should be extension of e?’E"', this is not the case, as it is shown in

Figure 3.2

e l0 1 2 (e1™).]0 1 2
0 [000 0 |00 2
1 |11 1 1 |11 2
2 |2 2 2 2 |2 2 2

Figure 3.2: First binary projection on E3 and the one-point extension of first
binary projection on FEs.
Moreover, there is no n-ary partial operation f on Ej, such that e?’Ek“ = fi,
since for every n-tuple (z1,...,%,) € Ep,, with z; # k and some z; = k we
have

e?’E’““(xl, e xp) =3 F k= fo(x, . x).

Reversely, we can define a map g — ¢g_ from Oy, to P, in the following way

9-(7) = g(2), ¥ € E}.
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We call g_ the restricted function of g, and for G C O, we denote
G- ={g9-:9¢€G}.

It is obvious that for every partial operation f € P, we have (fy)_ = f.
However, if g € Oyy1 is not the extension of some partial operation on Ej,
then (g_)4 # g, as it is shown in the following example.

Example 3.1.1 We can see in Figure[3.3 that g is an operation on Es which
is not the extension of any partial operation on Es, and therefore (g_)+ # g.

N OO
— = =
1

g_
— 0
1

DO = =
N DO NN

Figure 3.3: Extension of a restricted operation.

The subsequent theorem states that the lattice of partial clones on Ej is
isomorphic to the sublattice of the lattice of clones on Ej..

Theorem 3.1.2 ([58, 6], [7])
(1) For every partial clone F' C Py we have F' = ((F))_.

(2) For every clone G C Oy, with ((Ji)+) C G, the set G_ is a partial
clone on Ej, with the property G = ((G_),)+.

(8) The mapping
@ LU((Jr)+); ((Hy)+)) = L, given by G — G_,

is a lattice isomorphism between the lattices L(((Jx)+); ((Hg)+)) and
LY, where ¢~ (F) = (F) holds for every F € L.
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3.2 One-point extension of IS operations

Next we extend mappings from [, to operations on the set Ej,; and introduce
a corresponding definition of an extended IS clone. Results of this section
are published in [16].

Let us define a map f + fT from the set I} of all IS operations on Ej, to the
set O of all total operations on Ej1 by

7@ =1[{f@) : 7€ E; and jC 7},

for all n > 0 and ¥ € E},,. We call f* the extended IS operation (or the
one-point extension) of f. For F' C I, the set of all extended IS operations
from F' will be denoted by F*. Note that the map f — f* is injective.

In more detail,

flze, . o xy), if (xq,...,2,) € EL,
[y, ) = a, if case () holds
k, otherwise,

Case (x) happens if f maps all n-tuples, with coordinates from Ej, and which
are in relation with (z1,...,z,) € £}/ ;, to the same value a € Ej.

One-point extensions of Boolean functions AND and OR are presented in Fi-

gure [3.4

ANDT |0 1 2 ORT[0 1 2
0 1000 0 [0 1 2
1 |01 2 1111
2 |0 2 2 2 |21 2

Figure 3.4: Kleene’s strong ternary logic functions AND™ and OR™.

We can use the following notation
(f(gl,...,gn))(xl,...,xm) = f+(gl(a:1,...,xm),...,gn(xl,...,xm)) and
(fog)wr, , Tmin) = f+(g(x1, T )y T - amernfl)

instead of (2.3) and ([2.4)).



24 CHAPTER 3. EXTENSIONS

If C is an IS clone on Ej, then C" need not be a clone on Ej, ;. Contrary to
the case of extended partial clones, C't does contain all the projections, since
now Ji41 = J;°, but it is not closed with respect to composition, meaning
that the composition of extended IS operations is not necessary an extended
IS operation, which we illustrate by the following example.

Example 3.2.1 In Figure we have extended IS operations ORT, gi, g5
and their composition h = OR™ (g, g5 ). Suppose that there exists f € I such
that f+ = h. Then f(0) = f(1) =1, but

Fr2) = FONFA) =111=1#2=h(2).

Thus, h is not an extended IS operation.

ORT[0 1 2 g1 |95 | h
0 [0 12 0/ 1712 0[1
1|11 1 121 1)1
2 |21 2 2| 2|2 2|2

Figure 3.5: The composition of extended IS operations

Also if we consider Mal’tsev operations, set of all extended IS operations I,"
is not closed under A, for k£ > 2, and it is not closed under *, for £ > 3.

Lemma 3.2.2 ([16])
(a) For k > 2 there exists f € Iy, such that (Af)T # A(fT).
(b) For f € I and g € IL™ it always holds that f+  g* = (fog)™.
(¢c) For k > 3, there exist f,g € I such that f**gt # (fog)™.

Proof.

(a) Let f € Iy, for k > 2, satisfy f(0,1) = 1 and f(i,i) = 0 for every
1 € E. Then

(AF)YF(k) = Af(O) M AF(L)M...AAf(k — 1)
= £(0,0) N f(L, V)M ...Nf(k—1,k—1) =0 and

AfT (k)= fr(k, k)= f0,0)n1 f0,1)M---M f(k—1,k—1)
=0M1m---M0=k.
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(b) It follows from the fact that in the two element case we have
f+(y1 |_|927$2a .. 71'”) - f+(yl7$27 o 7:En> M f+(927$2»- .. 71771)'
(One can notice that, in general, this does not hold for k > 3.)

(¢) Let us choose f € I ? and g € I() such that f(0,2) = f(1,2) = 0,
£(2,2) = 1, 9(0) = g(1) = 0, g(2) = 1. Then

(fo9)"(3,2) = (f©9)(0,2) N (fog)(1,2)MN(fog)(2,2)
= f(9(0),2) M f(g(1),2) N f(9(2),2)
= f(0, )I_If(12)—0 and

(f" g = f(973),2) = fT(9(0)Mg(1) M g(2),2)

—f+( ) f(0,2) M f(1,2) 1 f(2,2) = 3,

hence (f o g)™ # (f**g™).
O

In order to get an algebra of extended IS operations that is isomorphic to the
full algebra of IS operations, we introduce the following operations on ;! :

A; s (LH™ = (1) D fF o (Af)T and
x 0 (L™ x (L™ = (1H™ (ffg7) = (fog)™

Since the map f +— fT is injective as noted above, f(g) is determined
uniquely from f* (¢g*), and therefore the operations A; and x; are well-
defined.

Theorem 3.2.3 ([16]) The mapping f — [T is an isomorphism from alge-
bra 1), = (Ik’ ©, C Ty A 62 Ek) to IJF (Lj? *i, C T, AM 2Ek+1)

Proof. Tt follows directly from the definitions of A; and *;, and from the fact
that (Cf)" = ¢f*, (f)t = 7f and (n7")t = QE’““ . We give here a proof
for 7 and the proof for ( is similar.

For ¥ = (xl,xg,... xn) and i = (yl,yg,...,yn) we have
H{Tf ngx}
:H{f<y27y1>"'7yn) . yeEl?a ng f}
= fH(@g, 21, ..., 2,) = 7T (D).
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g

As an immediate consequence of the previous theorem we obtain the following
corollary.

Corollary 3.2.4 ([16]) A set C C I is an IS clone iff CT is a subuniverse
of Z,f.

3.3 Power set extension of hyperoperations

To an arbitrary n-ary hyperoperation f on E} we can assign an n-ary oper-
ation f# on Py, defined as

f#(Xl,...,Xn):U{f(xl,...,xn) : xiEXi,lgign},
for Xy,..., X, € Pp,.

We call f# the extended operation of f. For an arbitrary set F of hyperop-
erations, let F# = {f# . f € F}.

Here we will state a few obvious properties of this extension. For more detail
we refer the reader to [59], [60] and [23].

Notice that we can write
(f(gl, . ,gn))(xl,...,xm) = f#(gl(xl,...,xm),...,gn(xl, . ,ajm)) and

(fog) (@, s Tmin1) = f# (g(xlv s Tm)s Tng s - - 75€m+n71)
instead of (2.5)) and ({2.6)).

Unfortunately, same as in the two previous cases, assigning the set C# to
some hyperclone C' is not the desired embedding from the lattice of hyper-
clones on Ej, into the lattice of clones on Py, , since C' being a hyperclone on
E}, does not imply that C# is a clone on Pr, . More precisely, it is obvious

*

7P . . .
that (ef"™)# = e? “kand therefore C# contains all projections, but com-
position of hyperoperations is not compatible with the operator #. Namely,

we have

(f(gl7agn))#(Xla7Xn> C f#(g#(xh7Xn>7vg#(X177Xn))?

and generally equality does not hold, which we illustrate by the following
example.
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Example 3.3.1 Let us define binary hyperoperations f, g1 and g on Ey by

Ty | T2 / 25 g2
010 |{o}| {o} | {0}
01 {1}| {1} |{o0,1}
Lo {0} {1} |{0,1}
1| 1 jf{o} {0, 1} | {0}

Then we have

( (g1, 92)) ({0},{0,1}) = ( (91,92) ( 91792) ,1)
= *(4:(0,0), 92(0 0) U f#(91(0,1), 92(0, 1))
= f*({0},{0}) U f*({1},{0,1})
= f(0,0) U f(1,0) U f(1,1) = {0},

(F*(g7.95)) ({0}, {0, 1}) = f# (g7 ({0},{0,1}), g§ ({0}, {0, 1}))
= [*(91(0,0) U g1(0,1), g2(0,0) U g2(0, 1))
= fF({0}u{1},{0} u{0,1}) = f#({0,1},{0,1})
= f(0,0) U f(0,1)U f(1,0) U f(1,1) = {0,1}.

Therefore, instead of mapping a hyperclone C' to the set C# we will map it to
the clone (C#) p;- Nevertheless, it turns out that the least clone containing
C# can be obtained from C# simply by place transformations.

Definition 3.3.2 For a set F' of (hyper)operations on Ey. and for every map-
pinga: {1,...,n} — {1,...,m}, the place transformation 4, : F™ — F(m)
is defined by

5a(f)($1, PN ,l‘m) = f(l‘a(l), PN ,l’a(n)).

The 6-closure of the set F' is the set
=J {1 FeF™ a:{1,...,n} = {1,...,m}, m € N}.
neN

Example 3.3.3 For the first unary projection ei (identity function) and
transformation of : {1} — {1,...,n}, defined by af(1) = i, for some
ie{l,...,n}, n €N, we obtain

(504?(6%))(331, ey Tp) = e%(xa?(l)) =ej(r) =2, = 504;1(6%) =el.
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Therefore,
5({e1}) = {Oan(e}) | af(1) =i, neN, 1 <i<n}
={e' | neN, 1<i<n}=J,.
Theorem 3.3.4 ([23]) Let C be a hyperclone on Ey. Then
(C*)p; = 6(C*).

Proof is the same as in the case of lifted total clones (see [10]).

Consequently, we can define a mapping
ALl — Lpy, Cw8(CH).

This mapping obviously is an order embedding, i.e.,

(VC,,Cy € L) C, C Cy = MCY) C ANCy),
although not the full one, i.e.,

(3C1, Cy € L) [MNCL), MC)] \ imA # 0.

Furthermore, it is a A-semilattice embedding, i.e.,

(VC1,Cy € L) MC1 N Cy) = A(Cy) N A(Cy),
but not the lattice embedding, i.e.,

(ElCl, Cy € LZ) <)\(Cl) U )\<02)>ng g )\(<Cl U Cg>h).

Proofs and counterexamples for previous assertions can be found in [23].

On the other hand, this extension is compatible with Mal’tsev operations o, ¢
and 7, but the set of all extended hyperoperations H ,f is not closed under

A.

Lemma 3.3.5 For k > 2 there exists f € Hy, such that (Af)# # A(f7).
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Proof. Let us choose f € H,g2) such that f(0,1) = {1} and f(i,7) = {0} for
every ¢ € Ej. Then

(AS#(B) = AfO)UAF(1) U .. UAF(k—1)
= f(0,0)U f(I,H)U...Uf(k—1,k—1)={0} and
Af#(Ey) = f#(Ex, Ey) = f(0,0) U £(0,1)U...U f(k—1,k—1) 2 {0,1}.
O
Let us introduce the following operation on H. f :
At (HE) = (HE™D,  f# o (Af)*
The operation Ay, is well-defined because the map f — f# is injective.

Theorem 3.3.6 ([59]) The mapping f — f# is an isomorphism from alge-
2,Ps
bra Hy = (Hy; o, ¢, 7, A, €% to ’Hf = (H,fé; %, C, T, Ap, €] F).
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Polymorphisms

Generally, it is quite difficult to explicitly describe all elements of a clone.
Therefore we need a method to represent them using somewhat simpler struc-
tures. Luckily such a characterization exists and it is obtained by means of
a Galois connection. Namely we have a correspondence between clones and
their relational counterparts, co-clones. Co-clones are usually described using
elementary operations on relations, i.e., as subuniverses of a certain algebra,
but we will not go into detail about that, since we are more interested in
representing clones using relations.

In this chapter definition of a Galois connection will be given, as well as
the method of creating one for arbitrary sets. We proceed by describing a
property of preserving a relation by an operation (resp. partial operation, IS
operation, hyperoperation), which will yield corresponding Galois connection
between relations and operations (resp. partial operations, IS operations, hy-
peroperations).

4.1 Galois connection

Let us recall what is a Galois connection in general.

Definition 4.1.1 Galois connection between sets A and B is a pair of map-
pings («, B) where

a:P(A)— P(B) and p:P(B)— P(A),
such that for all X, X1, X5 € P(A) and Y,Y1,Ys € P(B) it holds

30



4.2. OPERATIONS PRESERVING RELATIONS 31

(1) X1 C Xo= a(X;) Da(Xs) and Y1 C Y, = B(Y1) 2 B(Ya);
(i) X C B(a(X)) and Y C a(B(Y)).

It directly follows from the definition of Galois connection («, ) between
sets A and B that mappings a3 and S« are closure operators on B and A,
respectfully.

Next we show how to construct a Galois connection between arbitrary sets

A and B.

Theorem 4.1.2 For nonempty sets A and B, and R C A x B we define
mappings -
B .P(A) = PB) and R:P(B) = P(A)

by
RX)={yeB:(vzeX)(x,y) € R}, X C A,

<E(Y):{:JL’EA:(VyEY)(JU,y)ER}, Y C B.

(_
Then the pair (ﬁ, R) is a Galois connection between sets A and B.

This construction will be used excessively in the remainder of the current
chapter.

4.2 QOperations preserving relations

We will write a relation in a form of a matrix whose columns are elements of
the relation.

Example 4.2.1 Relation p = {(1,0,4,2),(2,3,2,1),(0,1,3,4)} can be writ-
ten as

— N0 W N

s

Il
N =~ O —
N =)

Let us denote by R,(f) the set of all f-ary relations on Ey, i.e., R,(f) = P(E}),

and let R, = | R,(f) be the set of all finitary relations on FEj.
>1
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For a relation p € R,(f) denote by p; the set of ¢ X n matrices over Fj, whose
columns are all in p, and by p* = |J p}, the set of all such matrices over E.

n>1
For a matrix M = [aij]exn, Mix, Mo, ..., My, will represent its rows, and
My, My, ..., M,, will represent its columns.

If M = [aj]exn and f € O,in), we write

a1 Q12 ... Qin f(alb 12, - .- 7a1n)

ag1 Qoo ... G flagy,ass, ..., a
f(M) _ :21 :22 " 2n _ ( 215 22., ) 2n)

Qg1 Qg2 ... GQyn f(@a,am,---,aen)

Definition 4.2.2 We say that an operation f € O,g") preserves a relation

p € R,(f) (or p is invariant of f) if for every ¢ x n matriz M € p* it holds
(M) € p.

Example 4.2.3 Let p be a ternary relation on Es given by

0011
p=101 0 1
1 010

Let f € Eél) be a negation function and g € Ef) logical disjunction, that is,

f
0[1
10

Obuviously, operation f preserves relation p since

01
01
11

— Ol

0 1 0 1
flo]=11fep {1 ])=]0]c€n,
1 0 0 1
1 0 1 0
flo]l=(1]c¢€np fli1]l=10]c¢ep

—_
e}
e}
—_
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On the other hand, p is not invariant of g, e.g.,

11 1
gl 01 |=111/]¢np.
10 1

The set of all operations preserving a relation p is usually denoted by Pol p,
and every f € Pol p is called polymorphism of p. Also the set of all relations
which are preserved by operation f is denoted by Inv f.

Example 4.2.4

(1) For a relation &; oy = {(z,2) : @ € By} we have Pold} (5, = Ok,
i.e., binary diagonal relation is invariant of every operation on Ej,
since for arbitrary f € O,(Qn) we have

ry - oz \ [ flz,. 1) 2
f<a;1 xn)(f(xl,...,xn))e%{lv?}'
(2) For an arbitrary relation p € Ry it holds Ji, C Pol p, i.e., every pro-

jection preserves all relations. If p C Ef, M € p* and €? is i-th n-ary
projection, it holds

6?($11,---7$1i7-‘~,$1n) T1;

6”(1‘21 ooy Ly, T ) T2
ey(M) — (A ) 7‘ 1) ) n _ YA E p

e (Ters s Tais o5 Tin) Ty;

Now we can define mappings
Pol : P(Ry) = P(Ox) and Inv:P(Oy) — P(Ry)
by

PolQ = m Polp={f € Oy, : [ preserves every p € Q}, Q C Ry,
pPERQ

InvF = ﬂ Invf={pée€ Ry :every f € F preserves p}, F' C Oy.
feF
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Using Theorem we deduce that the pair (Pol, Inv) is a Galois connec-
tion between operations and relations.

It is easy to see that Pol () is a clone, for every ) C Ry, and also Inv F' is a
co-clone for every F' C Oj. Nevertheless, the opposite also holds, i.e., every
clone is a set of polymorphisms of some set of relations and every co-clone is
of the form I'nv F for some set of operations F.

Theorem 4.2.5 ([4, 27])
(1) If C C Oy is a clone, then C = Pol(Inv C).
(2) If Q C Ry is a co-clone, then Q@ = Inv(Pol Q).

What is of great assistance in the investigation of the clone lattice is the fact
that the bigger the clone is the smaller the corresponding set of relations
is, which is the obvious conclusion from the definition of Galois connection.
Specially, as we will see in Chapter |§| (Theorem , every maximal clone
is the set of polymorphisms of a single relation.

4.3 Partial operations preserving relations

In the case of partial operations we are considering relations p C EJ, +1- Again
we will denote by p* the set of all matrices whose columns are the elements
of p.

Definition 4.3.1 We say that a partial operation f € P,gn) preserves an (-
ary relation p on Exiy (or p isinvariant of f) if for all { x n matrices M € p*
it holds f (M) € p.

We denote by pPol p the set of all functions from Py that preserve the relation
p and by pInv f the set of all relations that are preserved by f.

Furthermore, we put
pPOL p = pPol(pU (Ej,, \ Ey)),
where the relation p U (Ef_; \ E}) is the full extension of p.

Lemma 4.3.2 For every p € Ri(ﬁ1 sets pPolp and pPOLp are partial
clones. Moreover, pPOL p is a strong partial clone.
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Proof. We will prove that pPolp is a partial clone. Proof for pPOL p
is analogue. Same as in the case of total operations, any projection pre-
serves every relation, hence J, C pPol p. Also if f,¢g1,...,9, € pPolp, then

fg1,- -, 9a) € pPolp since (f(g1,---,9n)), = F((g1)+s -, (gn)+)-

Next we show that the partial clone pPOL p contains all subfunctions of its
elements. Let f € pPOLp, g < fand M € p*. If fL(M) = (a1,...,a),
then g (M) = (by,...,b;), where b; € {a;,k}, for i € {1,...,¢}. Thus
g+(M) € pU (Ef; \ Ef), which means that g € pPOL p. O

Let us define the mappings
pPol : P(Riy1) — P(Pr) and plnv:P(FPy) = P(Rks1)
by
pPolQ = (\pPolp = {f € Py : f preserves every p € Q}, Q C Rypn,
pPEQ

plnv F = ﬂ pInv f ={p € Rgy1 : every f € F preserves p}, F C F.
fer

Evidently, the pair (pPol, pInv) is a Galois connection between relations and
partial operations.

More details about this Galois connection can be found in [6§].

4.4 Hyperoperations preserving relations

There are several ways to define the property of preserving a relation by
a hyperoperation. In this section we will introduce two Galois connections
between hyperoperations and relations on a finite set.

4.4.1 Down closed hyperclones

The first Galois connection that will be presented here was independently
studied by Borner (in [§]) and Romov (in [53], [54]). Corresponding Galois
closed sets are hyperclones that contain all sub-hyperoperations of their ele-
ments, and they are called down (or restriction) closed hyperclones.
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Let F' C Hy, and let us denote by | F'|, the set of all sub-hyperoperations of
all the elements of F', i.e.,

|\Fln={9€Hy: 3f€F)gC [}
Lemma 4.4.1 If C C Hy is a hyperclone, then |C|y, is also a hyperclone.

Proof. Since obviously C C |C'], and hyperclone C' contains all projections,
the same holds for [C]},.

For hyperoperations f, g1,..., g, € |C|n, there exist f',g},...,¢g,, € C such
that f C f', g1 C ¢4, ..., gn C g,,. Using the fact that C' is a hyperclone
and that the composition of hyperoperations is monotone with respect to
inclusion we obtain f'(gy,...,9,) € C and f(g1,...,9.) € f'(91,---,9,)
which implies f(g1,...,9n) € |C]n. O

Let us define a mapping d : P(Hy) — P(Hg) by d(F) = |[{F)n]n.
Lemma 4.4.2 The mapping d is an algebraic closure operator.
Proof.

(i) Trivially, FF C (F), C |(F)p]n, ie., FF Cd(F).

(ii) If F C G, then obviously (F), C (G)n. For f € [(F)n]n there is
g € (F)y, such that f C g. However, g is also in (G)p, which implies
f € |_<G>th7 i'e'7 d(F) - d(G)

(iii) In order to prove d(d(F)) = d(F) it is sufficient to show that d(d(F)) C
d(F) since the opposite inclusion holds by (i). For any f € d(d(F))
there exists g € (d(F))n(= d(F)) such that f C g. Next, there is
h € (F), with g C h. Therefore, since h € (F);, and f C h, we obtain
fedF).

(iv) We are going to show that d(F) = J{d(G) : G C F and G is finite}.
(Q) If f € d(F), there is g € (F), such that f C g. If we choose

G = {g}, then f € d(G).

(D) Assume that there is a finite subset G of F' such that f € d(G).
It means that there is ¢ € (G), such that f C g. Now, since
(G)n, C (F)p, it follows that g € (F), and f € d(F).
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O
Definition 4.4.3 A set F' C Hy, is called down closed hyperclone if
d(F)=F.

Every clone is trivially a down closed hyperclone, and obviously Hj is the
largest down closed hyperclone on FEj.

Lemma 4.4.4 If C C Hy is a hyperclone, then |C|y is a down closed
hyperclone.

Proof. 1t follows directly from Lemma and Lemma [1.4.2] (iii). O

It is also easily deduced that the intersection of an arbitrary family of down
closed hyperclones is again a down closed hyperclone.

By LZ’U we will denote the set of all down closed hyperclones on Ej and EZ’U
will be the corresponding poset (LZ’u, Q).

The following theorem is also an immediate corollary of the previous lemmas.

Theorem 4.4.5 Down closed hyperclones form an algebraic lattice EZ” with
respect to the set inclusion. The lattice operations on EZ’u are defined as
follows

Cl /\h,lL CQ = Cl N CQ and Cl \/}«hu CQ = d(Cl U CQ)

From the definition of the join operation it is easily deduced that EZ’u is not
the sublattice of the lattice of all hyperclones on E}, which we are going to
illustrate by the next example.

Example 4.4.6 Let us consider hyperclones Cy = d({f1}) and Cy = d({ f2})
on E3, where hyperoperations f1, fo € Hél) are defined by

0 1 2

fi] {0}y {0,2} {2}
LA {1y {12}

We know that (Cy U Cs)y, contains hyperoperation fi(fs) :

|0 1 2
fl(fZ) ‘ {0’2} {0’2} {0’2}
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Down closed hyperclone d(Cy U Cy) contains all sub-hyperoperation of its ele-
ments, and therefore it contains a sub-hyperoperation h of fi(f2), given by
h(z) = {2}, x € Es. However, h is not generated by Cy U Cy, since no
composition of elements from Cy U Cy yields h(0) = {2}. Thus, Cy Vpy Co #
Cy Vy, Cs.

Next we will introduce the Galois connection for which down closed hyper-
clones are Galois closed sets.

Definition 4.4.7 Let £ > 1 and p € R,(f). The strong extension of p is the
relation pg defined by

pd:{(Al,...7Ag)€(PEk)e : A1><-'-><Ag§p}.

This means that for (Ay,..., Ay) to be in py it is necessary that all ¢-tuples
(ay,...,ap) € Ay X -+~ x Ay are contained in p.

Example 4.4.8 If p and 6 are binary relations on Ey given by p = < 8 ? )

and 0 = ( 1 ) , then the strong extensions of p and 6 are

= (o) ) ) o e ()

Definition 4.4.9 We say that hyperoperation f € H ,gn) d-preserves relation
pE R,(f) (or p is d-invariant of f) if for every £ x n matriz M in p* it holds
f(M) € pa, €., f(Ml*) X X f(MZ*) C p.
Example 4.4.10 Consider relation p and its strong extension from Ezam-
plels.4.8 Than for a binary hyperoperation f € Hy given by

fl o 1

0| {0} {0,1}

11{0,1} {1}

we have

(o) =Ca e o(50)- (4
(o) =Cam e o(17)-(

Thus, hyperoperation f d-preserves relation p.
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Let dPol p denote the set of all hyperoperations on £} which d-preserve
relation p, a dInv f be the set of all relations on Ej which are d-invariant for
hyperoperation f. We can now define the mappings

dPol : P(Ry) — P(Hy) and dInv:P(Hy) — P(Ry)
by

dPol Q = ﬂ dPolp ={f € Hy : f d-preserves every p € Q}, Q C Ry,

PER

dinv F = ﬂ dinv f ={p € Ry, : every f € F d-preserves p}, F' C H.
feFr

Clearly, the pair (dPol,dInv) is a Galois connection between relations and
hyperoperations.

Theorem 4.4.11 ([8])
(i) For any Q C Ry, dPol Q is a down closed hyperclone.
(i1) If C' C Hy is a down closed hyperclone, then C' = dPol(dInv C).

4.4.2 Upward saturated hyperclones

Dually to the case of down closed hyperclones, described in Section 4.4.1
we may consider hyperclones that contain all super-hyperoperations of their
elements. Here we present part of the results from [17].

For F' C Hy, let [F'], denote the set of all super-hyperoperations of hyper-
operations from F) i.e.,

For the following two lemmas proofs are dual to those of Lemma and
Lemma [£.4.2]

Lemma 4.4.12 ([I7]) If C C Hy is a hyperclone, then [C, is a hyper-
clone.

Let us define a mapping w : P(Hy) — P(Hy) by u(F) = [{F)n]h-
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Lemma 4.4.13 ([17]) The mapping u is an algebraic closure operator.

Definition 4.4.14 A set F C Hy, is called upward saturated hyperclone if

u(F) = F.

Analogous to the case of down closed hyperclones, we can conclude

Lemma 4.4.15 IfC C Hy is a hyperclone, then [C'|,, is an upward saturated
hyperclone.

We will write LZ’Tr for the set of all upward saturated hyperclones on Fj and
L™ for the poset (LT, C).

Using the previous lemmas, we can easily prove the following theorem.

Theorem 4.4.16 ([17]) Upward saturated hyperclones form an algebraic
lattice [,Z’ﬁ with respect to the set inclusion. The lattice operations are defined
as follows

01 /\h,ﬂ CQ = Ol N 02 and Cl vh,ﬂ Cg = U(Cl U CQ)

We will describe one class of upward saturated hyperclones, by introducing
a particular Galois connection.

Definition 4.4.17 ([61]) Let ¢ > 1 and p C Ef. The weak extension of p
1s the relation p, defined by

pn={(A1,...,A)) € (P5)" : (A1 x ... x A)Np#0}.

Thus, py, consists of ¢-tuples (Ay, ..., Ay) of subsets of Ej, such that for some
a; € A;, 1 =1,...,¢, we have (aq, ..., ag) € p.

Example 4.4.18 If p is a binary relation on Ey given by p = < 8 (1) ) 7

then the weak extension of p is

ph:<{0} {o} {0} {o0,1} {0.1} {0,1})
o) (1 01 {0y {1} {01} )
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Definition 4.4.19 Hyperoperation f € H,i") h-preserves relation p € R,(f)
(or p is h-invariant of f) if for every £ xn matriz M in p* it holds f(M) € py,

i.e., (f(Ml*) XKoo X f(MK*)) np 7& 0.

Example 4.4.20 Consider relation p and its strong extension from Ezam-
plels.4.18. Than for a binary hyperoperation g € Hy given by

g ‘ 0 1
0|{0,1} {0}
1| {1} {01}

we have

0 0Y\ ({01} c 0 0Y\ ({01} c
g 1 0 - {1} Ph; g 1 1 - {O, 1} Ph;s
Therefore, hyperoperation g h-preserves relation p.

Set hPol p consists of all the hyperoperations that h-preserve relation p, and
by hinv f we denote the set of all relations that hyperoperation f h-preserves.
Let us define the mappings

hPol : P(Ry) — P(Hg) and hinv:P(Hy) — P(Rk),
as follows:

hPol Q = ﬂ hPolp ={f € Hy : f h-preserves each p € Q}, Q C Ry,
PER

hinv F = ﬂ hinv f ={p € Ry : each f € F h-preserves p}, F C Hj.

fer

It is clear that the pair (hPol, hInv) is a Galois connection between relations
and hyperoperations on Ej.

Lemma 4.4.21 ([17]) Let ¢ > 1 and p C E.. Then hPolp is an upward
saturated hyperclone.
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Proof. Evidently Polp C hPol p and therefore hPol p contains all projec-
tions. For f € (hPol p)™ and g1,..., g, € (RPolp)™ let h = f(g1,...,9n).
Suppose that h ¢ hPol p, i.e., there exist an ¢ x m matrix M in p* such that

(h(Ml*)7 T h(Mf*>) ¢ Ph;

where My,, ..., My, are the rows of M, or equivalently
(R(M1y) X ... x h(Mg)) Np = 0.

Then from f € hPol p we conclude that there is some i € {1,...,n} such
that

(gi(Ml*)7 s ,,%(MZ*)) ¢ P, le., (gi(Ml*) XX gi(Mﬁ*)) Np= 0.

Since g; € hPolp, we deduce that for some j € {1,...,m} the column M,; ¢
p, which is not possible by the choice of matrix M. Therefore, h € hPol p,
and consequently hPol p is a hyperclone.

We shall now prove that the hyperclone hPol p is upward saturated. Let us
suppose that f € (hPol p)™ and f C g. If we assume that g & hPol p, than
there is an ¢ x n matrix M in p* such that

(g(Ml*)v ce 7g(M£*>) ¢ Ph-

Therefore, we have

(f(Ml*)v s ’f(Mf*)) - (g(Ml*)7 ce 79(M4*))
and
(g(Ml*) X ... X g(Mg*)) Np=>0,
which implies
(f(Ml*)7 BRI f(Mf*>) N pP= ®a

and hence yields a contradiction. [J

4.5 IS operations preserving relations

In this section we present two Galois connections between relations and IS
operations that are analogue to those defined in sections i and
we also investigate correspondence between relations on Ej ., and extended
IS operations.
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4.5.1 Down closed IS clones

Down closed IS clones are analogue to the down closed hyperclones that we
presented in section [4.4.1

If ' C I, then | F'|1s denotes the set of all IS suboperations (Definition [2.3.6)
of the IS operations from F) i.e.,

|Flis={f€l,:(3geF)fCg}

We say that the set of IS operations F' is down closed if and only if | F'|1s = F.
In case C is an IS clone, |C|ig is also an IS clone. One can prove that
intersection of down closed IS clones is again a down closed IS clone.

Same as in the case of down closed hyperclones the following theorem holds.

Theorem 4.5.1 The set of all down closed IS clones forms an algebraic
lattice ELS’U with respect to set inclusion and the lattice operations are given
by

CiNgyCo=0C1NCy  and C) Vigy Cy = [(C1 UCo)is]is

Next we define a relation on Ej,; which is analogue of the strong extension
of the relation on Ej, to the relation on Pf, (Definition . This enables
us to introduce one type of preservation property between IS operations and
relations that will yield a matching Galois connection and eventually give us
one class of down closed IS clones.

Definition 4.5.2 Let £ > 1 and p C Ef. The strong extension of p is the
relation ps defined by

Ps = {(al,...,ag) € Eﬁﬂ : (\V/(bl,...,bz> € Eﬁ) (b1,...,be) E (a1, ..., a)
= (bs,...,be) ep}.
Hence, (-tuple (aq,...,ap) € E£+1 is in pg if all ¢-tuples, with coordinates

from Ej, and which are in relation C with (ay,...,as), belong to p. In some
cases relations are equal to their strong extensions.
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Example 4.5.3 If p and 6 are binary relations on Ey given by p = ( 8 (i) )

and 0 = ( } ) , then the strong extensions of p and 6 are

000
ps—(o 1 2) and 0, =20.

Definition 4.5.4 An IS operation f € I,ﬁ”) 1 said to s-preserve relation
pE R,(f) (or p is s-invariant of f) if for every £ x n matrix M € p* it holds

f(M) € ps.

Let sPol p denote the set of all IS operations on Fj which s-preserve rela-
tion p, a sInv f be the set of all relations on Fj which are s-invariant for
hyperoperation f. Now we define the mappings

sPol : P(Ry) — P(I;) and sInv:P(I,) — P(Ry)
by

sPol Q = ﬂ sPolp={f € Iy : f s-preserves every p € Q}, Q C Ry,
peQ

sinv F = ﬂ sInv f ={p € Ry, : every f € F s-preserves p}, F C I.
fer

Obviously, the pair (sPol, sInv) is a Galois connection between relations and
IS operations.

Lemma 4.5.5 For every p C Ef set sPol p is a down closed IS clone.

4.5.2 Upward saturated IS clones

Upward saturated IS clones are dual to down closed IS clones and analogue
to the upward saturated hyperclones that were studied in Section [4.4.2]

If FF C I, then [Fis denotes the set of all IS superoperations (Defini-
tion [2.3.6]) of the IS operations from F) i.e.,

[Fls={fel,:(3geF)gE [}
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The set F' of IS operations is said to be upward saturated if and only if
[F|is = F. Evidently, if C'is an IS clone, then [C'ig is also an IS clone, and
moreover, intersection of an arbitrary family of upward saturated IS clones
is an upward saturated IS clone.

Theorem 4.5.6 The set of all upward saturated IS clones forms an algebraic
lattice E}CS’TT with respect to set inclusion and the lattice operations are given

by
Cinisy Co=CiNCy  and  Cy Vigy Co = [(C1 U Co)is s

In what follows we introduce one class of upward saturated IS clones. The
next definition of the relation on Ej., which is the extension of some relation
on Fy, is analogue to Definition [4.4.17|in the case of hyperclones.

Definition 4.5.7 Let £ > 1 and p C Ei. The weak extension of p is the
relation p,, defined by

Pw = {(ah'"aa’é) € Eli—&-l : (El(blw--ubf) S p) (bh---abf) E (ala"'aaf)}‘
We can say that p,, is the least relation with the property

(b17---,b£)€p A (bla"'abf)g(a'lv"';ae) = (al,...,ag)épw.

We will also use the fact that if (aq,...,as) € py and (ay,...,a¢) C (¢1,...,¢0),
then (¢1,...,¢0) € py, because thereis (by,...,by) € psuch that (by,...,b) C
(a1, ...,ay) and thus, by transitivity of T, (by,...,b) C (c1,...,¢p).

Example 4.5.8 If p is a binary relation on Ey given by p = ( 00 ) , then
the weak extension of p is

01
(00 2
Po=1 0 1 2 )

Definition 4.5.9 An n-ary IS operation f w-preserves relation p € R,(f) (or
p is w-invariant of f) if for every ¢ x n matriz M in p* it holds f(M) € py.

0 2 2
2 01
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We denote by wPol p the set of all IS operations that w-preserve relation
p, and by wlnv f we denote the set of all relations that IS operation f w-
preserves. Let us define the mappings

wPol : P(Ry) — P(Ix) and wlInv:P(Iy) — P(Ry),
as follows:

wPol Q = ﬂ wPolp ={f € Iy : f w-preserves each p € Q}, Q C Ry,
PEQ

wlnv F = ﬂ wlnv f ={p € Ry : each f € F w-preserves p}, F C Ij.
feF

Clearly, the pair (wPol,wInv) is a Galois connection between relations and
IS operations on Ej.

Lemma 4.5.10 For every p C E& set wPolp is an upward saturated IS
clone.

Proof. Since Pol p C wPol p, we have J, C wPol p. Let f € (wPol p)™ and
gi,---,9n € (wPol p)™. For an arbitrary ¢ x m matrix M € p* it holds

(9;(M1s), ..., 9;(Mp)) € pu, forall j=1,... n. (4.1)
We also have
91(M1*) gn<M1*)
g(Me) -+ gn(My)
Yirn. - Yin
- I P B
(Y1j>---» ) E (95 (M14), .., 9;5(Mp.)) Yei 0 Yen

Condition [£.1] implies that there exists at least one matrix
Yyin o Y

M= - ...

Yoo - Y

such that (yij,...,y) C (gj(Ml*), . ,gj(Mg*)), for all j = 1,...,n, which
is in p* and thus f(M') € p,. Finally, using transitivity of the relation C
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and the fact that a C a M b, we may conclude that f(g1,...,9.)(M) € puw,
e, f(g1,...,9n) € wPol p. Therefore, wPol p is an IS clone.

To prove wPol p is upward saturated we need to show that it contains all
IS superoperations of its elements, i.e., if f € (wPolp)™ and f C g, than
g € wPolp. For each M € p* we have f(M) = (f(My.),...,f(My)) €
pw and (f(Miy.),..., f(Mu)) E (9(Mis),...,9(Me)). Then by transitivity
(9(Miy),...,g(My)) € pu, resulting in g € wPol p. O

4.5.3 Extended IS operations and relations

Another way to investigate the correspondence between relations and IS ope-
rations is to observe relations on Ej;; and extended IS operations.

Let p C E,f,ﬂ. In general, Polp N I," does not have to be an extended IS
clone since it is not closed under A; for k > 2 and it is not closed under x;
for k > 3, as illustrated by the following example.

Example 4.5.11
(a) For k=2 let p=1{(1,0,2),(1,1,2)} and f*,A;f* be as follows:

STlo1 2 | AT
01 0 2 0 1
101 2 1] 1
2 |2 2 2 2| 1

Then it is clear that f+ € Polp and A;f* & Polp.

(b) For k = 3 let p = {(0,3),(3,0),(1,3),(3,1),(2,3),(3,2),(3,3)}, and
consider the binary operation f* € Polp and the unary operation g* €
Polp, that are given by:

ff1o0 1 2 3 g
0/0 0 2 3 0l 2
1122 2 2 1] 2
212 2 0 3 211
313333 313

Since (2,3),(3,1) € p and ((f+ % 97)(2,3), (fT % g7)(3, 1)) = (2,2),
it follows that f* *; g* & Polp.
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We will introduce two classes of relations that induce closed sets of extended
IS operations. With this aim, we prove the following properties.

Lemma 4.5.12 ([16]) Let f € I"”) and g € 1™ . Then
(a) AifT CAf* and
(b) frxigt T fFxgh.

Proof.

(a) Let ay,...,a,—1 € Egi1 and denote (ay,...,a,—1),(b1,...,bp—1) by @
and b, respectively. Then

@) =]]{ar®) :be Ept b a}
=[] {for.br,....000) b€ EF T BEG
C L@ vy ba . boa) (6,0 b, bucn) € B
(b, 07, b, ..., bp_1) E (a1, aq,as, ... ,an_l)}

= er(&l, ay, ag, ... ,&nfl)
= AfH(a).
(b) Let aiy, .. .iam+n_1 € Ek+1, and denote (al, e ,am+n_1), (bl, ey bm+n—1>
by @ and b, respectively. Then
(fog)" H{fog bEEer”lgEc_i}

be E;”+"—1, b a}
C f+(g+(a1, ey )y Qg1 - - - ,am+n_1)
= (f"*g")(a).
O
Let p C E}, satisfy the following property: (ai,...,as) € p if and only if
V(by,...,b)) € EL:(by,....,b)) C (a1,...,a0) = (by,....,b)) €p  (4.2)
Equivalently, (aq,...,a,) € p if and only if
3(by,...,by) € Ef i (by,...,b) € pand (by,...,b) C (ar,...,a;) (4.3)

Evidently, p and p are strong and weak extension of some relations on FEj.
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Lemma 4.5.13 ([16]) Letp C Ey., satisfy property (4.2) and let (z1, ..., x),
(Y1, -, Ye) € Epyy be such that (z1,...,20) T (y1,- .., ye)-

((I) ]f(ylw-'ayf)ep’ then (‘Tlv"‘?xf>€p'

(b) ]f(‘rlw"axe)eﬁv then (yla"‘ayf>€ﬁ‘

Proof. Straightforward from the properties (4.2) and (4.3)) using transitivity
of the relation C . [J

In the subsequent theorem we prove that whenever relation p on Fj; satisfies
property , then a set of extended IS operations preserving either relation
p or its complement is a clone of extended IS operations. If we denote this
set by CT, then (by Corollary C' is a clone of incompletely specified
operations.

Theorem 4.5.14 ([16]) Let p C Ef., satisfy property . If
(a) If CT = PolpN I}, then C is an IS clone.
(b) If C*t = PolpN I}, then C is an IS clone.
Proof. 1t is enough to prove that C" is closed with respect to A; and ;.

(a) Let f* € (Polp)™,g* € (Polp)™. Since Polp is a clone, it follows
that Af* fr* g™ € Polp. If A = (AL,...,Awn)T € p:_,, then by
Lemma [4.5.12] it holds

(Aif (AL, AT (Aw) E (AfH(AL), ... AT (An)) €p
Then using property and Lemma (a) we obtain
(AifH(An), .. A f T (Aw)) €
Next, for any A = (A, ..., Au)? € piy,_q we have

(<f+ *q g+>(A1*)7"'7( *; +>(AE*)) =
C (ST g ) (A, (fTxg)(Aw)) € p

Hence, by (4.2) and Lemma (a),
((f gD (Ar), - (F % g7)(Aw)) € p.
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(b) Let f+ € (Polp)™ and A = (A, ..., An)T € p*_,. There is a matrix

B = (B, ..., Bu)' € pr_, with all components from Ej such that
Bi. C Ay, ..., By E Ayg,. Since f1 is monotone with respect to C we
have

(Aif (A, AT (An) 3 (Af T (B, .-, A fT(Be)).
For Bj, € B!, j=1,...,¢, it holds
AifT(Bjs) = (Af)T(Bj) = Af(Bj) = AfT(Bjs),
and using the fact that f* € Polp implies Af™ € Polp, we get
(AifT(Bis), .., AifT(Be)) = (AfT(Bu), ..., AfT(Bw)) € p.
Now, by property and Lemma [4.5.13] (b) it follows that
(Aif*(Ar), . Aif T (Aw)) € p.

Let f* € (Polp)™ and gt € (Polp)™). Again for any matrix A = (A,
ooy Ap) € Phin_y there is a matrix B = (B, ..., Bu)' € plhin s
with elements from E}, such that By, C Ay, ..., By T Ay,

For j =1,...,¢ we denote by Bj the first m components of B, and by
B} the last n — 1 components. Hence, for B, € Eptrlg =14,
it holds

(f* i g")(By) = (fo9)™(By) = (fo9)(By) = [ (9(B]), B),
and therefore, for h* = f*+ %; g*,
(W (Aw), ..., h*(An)) 3 (B (Buw), ..., h*(Bw))
— (£*(a(BD). B), .../ (9(B,), BY) ).
Also g(B}) = g*(B}), and since g* € Polp, we have
(9(B1), - 9(By) = (4% (BY),....g7(B)) € p.
Now, f* € Polp implies
(F* (9B BY)... (9B, BY) ) € b
Finally, using property and Lemma (b) we obtain
((fF g™ ) (A, (fF % g")(Aw)) € 0.
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O
The following property is an immediate consequence of Lemma
Corollary 4.5.15 Let p C EﬁH satisfy property .

(a) If fT € Polp and g* C f+ then g™ € Polp.

(b) If g* € Polp and g* C f* then fT € Polp.

o1



Chapter 5

Lattices on a two-element set

Lattice of clones on a two-element set was completely described by Emil Post
in [49]. Its structure is not very complicated and it has countably many ele-
ments since it contains eight infinite chains. However, even on F, lattices of
partial clones, hyperclones and IS clones (last two being isomorphic) are of
continuum cardinality, and thus far more complex than Post lattice. Never-
theless, certain properties of these lattices are known and some of the results
will be presented in the remainder of this chapter.

5.1 Lattice £,

In this section we will describe Post lattice in more detail. Notation, defini-
tions of closed classes and the lattice diagram are taken from [5] (with a few
slight changes). We use the usual symbols A (conjuction), V (disjunction), @&
(addition modulo 2) and for negation we will use T instead of —z. Following
shortened notation will also be used

hn($1,...,In+1): \/ZEl/\.../\J]Z’_l/\JIi+1/\.../\In+1
=1

dual(f)(a1,...,an) = f(ay,...,a,).

We now introduce some classes of Boolean functions that will be used in the
definition of the clones on E,. For a € F,, an n-ary Boolean function f is
said to be

o a-preserving if f(a,...,a) = a;

52



5.1.

o self-dualif f(aq,...

e monotoneif f(aq,...

LATTICE L,

,CLn) S f(bl,

€ EY such that a; < b;, 1 =1,...,n;

e affineif there exist ay, . ..,

a;)) @ - @ (ay A ay), for all (aq, ...,

e a-separating if there exists i € {1,...,

{a} x B}

e a-separating of degree m if for every U C f~

exists i € {1,...,n} such that U C B! x {a} x Ey~*

,ay) = dual(f)(ay,...
,by), for all (aq, .. .,

o, € Fysuch that f(ay, ...
a,) € EY;

93

a,), forall (ay,...,a,) € EY;

an), (b1, ..., by)

?

,an) = ap®(ar A
n} such that f~'(a) C Ei ' x

Y(a), with \U\ = m, there

In the following table we present the list of all Boolean clones, each with its
definition and one possible generating set.

Clone | Definition Base

Oy all Boolean functions {z Ny, T}

Ty {f| fis O-preserving} {z Ny, z Dy}

T, {f|fis 1l-preserving} {zVy,zdyodl}

Ty ToNTy {zVy,zNydzd1)}
M {f | fis monotone} {xVy,x Ny, co,c1}
M, MNT; {zVy,zNyc}

M, MNT, {zVy,zNy, c}

M, MNT, {zVy,zNy}

Sy {f | fis O-separating of degree n} | {x = y,dual(h,)}

So {f | fis O-separating} {z =y}

Sy {f | fis 1-separating of degree n} | {x A7, h,}

S1 {f| fis l-separating} {z N7}

St Sy Ny {zV (y NZ),dual(h,)}
Soz SoNTy {zV (ynz)}

Sty SgnNM {dual(h,),c1}

So1 SoNM {zV(yNnz),a}

St SenNTynM {zV (y A z),dual(h,)}
Soo SoNTyN M {zV(ynz)}
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Clone | Definition Base
STy ST NTy {t AN (yVZ),h.}
Sio S1NTy {zN(yVZz)}
ST STNM {hn,co}
S11 SiNM {xAN(yVz),c0}
STo STNTyN M {x AN (yV2),h.}
S1o SiNTaNM {zA(yV2)}
S {f| f1is self-dual } {x AG)V(xAZ)V (TAZ)
D, SNTy {zAy)V(tAZ)V(yNZ
D, |SNM (s}
L {f | fis affine} {r®y,c1}
Lo LNTg {z @y}
Ly |LNT {zey®al
Lo LNT, {royd 2}
Ls LNnS {roy®zda}
Vv {f | fis a disjunction or a constant} {zVy,co,c1}
Vo VNTy {zVy,co}
Vi VNt {zVy,c}
V5 VNnT, {zVy}
A {f | fis a conjunction or a constant} {x Ny, co,c1}
Ay ANT, {z Ny, co}
A ANTy {z Ny, c1}
Ay ANT, {z ANy}
N {f | f depends on at most one variable} | {Z, co, ¢1}
Ny NNT, {7}
I {f| fis a projection or a constant} {co,c1}
I |INT, {co}
L |InT {e1}
Ja INT, {el}

Table 5.1: List of all Boolean clones



. EF—F—E)
oD S @ C ¢ DO QG
. e

=X\




56 CHAPTER 5. LATTICES ON A TWO-ELEMENT SET

Clearly, there are 5 maximal clones (clones directly bellow Os) in the lattice
Lo, and they are

TO = POZ(O), T1 = POl(].),
01 0 01
S:P0l<1 0), M:POZ(O 1 1),and
000O0T1T1T11
001 100T171
L=Poll g 1010101
01101001

On the other hand, there are 7 minimal clones (clones directly above Js).
The minimal functions generating them are the following:

e constant functions ¢y and ¢; ~ Iy and I;

e negation T ~» N,

conjunction x Ay ~» Ay

disjunction z Vy ~» V;

ternary majority function (z Ay)V (x Az) V (y A z) ~ Dy

ternary linear (minority) function t @y @ z ~ Ly

5.2 Lattice £}

Here we present the list of coatoms and atoms of the lattice of partial clones
on F5y and one result investigating position of the lattice £y in £5.

Description of all maximal partial clones was given by Freivald, who also
showed that there exist partial clones on E5 which are not finitely generated.

Theorem 5.2.1 ([26]) There are exactly 8 mazimal partial clones on Es,
and they are the following:

0L @y pPOL(0). proL(1) proL (1 )owror (g 1),
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pPOL ( - ) . pPOLpy. pPOLp,.

where

P1= {(%%iyay) STy € EQ} U {(%%?Jam) HEPNTNS EQ} and
P2 = P1 U {(xvyaxyy) ST,y € EZ}

There are 11 minimal partial clones [9] where 7 of them are total minimal
clones and the minimal properly partial clones are generated by the following
partial projections

el | €10y | €l et {oo.any [0 1
2 0 0 2
1 1 2 1

For clone C on FE}, let
)= {D C P, : D is partial clone such that D N O, = C’},

that is, Z(C') is the set of all partial clones on Ej whose total part is clone
C. It is known that the set Z(C) is an interval in the lattice £} (see [38]).

In [37] Lau posted the problem of describing the set Z(C'), where C'is a total
clone on Fjs.

Some partial results were obtained in several papers and the classification
was finalised in [39] and [20].

Theorem 5.2.2 ([20]) Let C be a clone on Ey. Then the interval Z(C') is
finite if and only if

C e {027 TOa Tla T2a M7 M07 M17 MQa Sa Dl}
Otherwise, it is of continuum cardinality.

Example 5.2.3 Interval for the set of all total operations consists of 3 ele-
ments and it holds

02 C OQU <Cg>p C PQ.
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Example 5.2.4 It is known that the clone To = {f € Oy : f(0,...,0) =0}
is mazimal. Let us define following sets of partial operations

T070:{f€P2Zf(O,...,O):O},
T072:{f€P2Zf(o,...,O)ZZ}.

Interval of Ty is given in Figure[5.3

TooUTpho
TO U T072 T070 U <C2>p
To U (ca)p To 0

1o

Figure 5.2: Hasse diagram of the interval Z (7).

5.3 Lattice £}

As we previously mentioned, lattices £4 and £1° are isomorphic by the fol-
lowing obvious isomorphism. Let the mapping n : Iy — Hs be defined by

n(f) = f*, where

{0} ,f(x1,...,2,)=0
[, z,) = {1}y f(z1,.. . x) =1 .
{0,1} , f(z1,.. . 2n) =2

Therefore, every property we have for hyperclones on FE, also holds for IS
clones on FE,.

H. Machida in [40] proved that the lattice £} of all hyperclones on Ej is of
continuum cardinality. Since the cardinality of the set of hyperoperations
on a two-element set is countable, the lattice of hyperclones has at most the
cardinality of continuum. Therefore, this theorem is proved by constructing
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continuum many distinct hyperclones on F5 in the following way.

We define the set G = {g, : n > 1}, where g, is an n-ary hyperoperation on
E5 given by

: = {1}, ifz+... 42, <1
In\ L1, .- T {0,1}, otherwise.

It can be shown that for arbitrary n > 1 hyperoperation g, cannot be ge-
nerated by the remaining elements of G. Consequently, distinct nonempty
subsets of G generate different hyperclones, and since G is a countable set, it
has continuum many subsets.

In [71], Tarasov introduced a different composition of partial functions on
a two-element set. With this new definition, a partial function essentially
coincide with a hyperoperation on FEs.

In [42], the authors adjust this description to the language of clones, by
defining the set of all operations on P, that r-preserves p C EY as follows

rPol p = {f €Op;, - (5({f}))# C Polp}.

If there is a relation p; C Ef such that p = p; U (ES\ EY), we will write
rPOL p;.

Theorem 5.3.1 ([71]) There are nine mazimal hyperclones on Ey. They
are of the form M} = M;lro1y, i =1,...,9, where

M, =rPol(0 1),

My = rPOL{(x1,22) € Ej : (z1,22) # (1,0)},

M; = rPOL{(x1,22) € Ej : (z1,22) € {(0,0),(1,1)},

My = rPOL{ (1,22, 23,24) € Ey : 1 + x3 + 13 + 14 = 0},

My = TPOL{(:Ul,xQ,xg) € By : (w1, 19,23) € {(0,1,1), (1,0,0)}},

Mg = rPOL(0),
M: = rPOL(1),
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Mg = TPOL{<J;1;I2> € Eg : (Ihx?) ¢ {<070)7 (1’0)7 (17 1)}}7

Mgy = rPOL{(:Ul,xg,xg,x4) €Ey: v =xy=123=u1y4

V (zg # x3 Ny # x4)}.

The proof of the previous theorem consists of two parts:

(i) the proof that any set C' C HJ such that C' Z M, for each i € {1, 2, 3,
4,5, 6, 7,8, 9} is complete in Hﬁ and

(ii) the proof that sets M;, 1 <i <9, are pairwise disjoint. This was done
by creating suitable representatives.

As for the atoms in the lattice £}, using the following facts:
(i) every minimal clone on FJ is also a minimal hyperclone on Fj,

(ii) for each hyperoperation f on FEs, set (f) is a minimal hyperclone on
B, iff (f#) is a minimal clone on Py, [45], and

(ili) description of all minimal clones on Ej3 by Csdkany (in [21]),
we can conclude that there are 13 minimal hyperclones on Fj.

Theorem 5.3.2 ([45]) FEach minimal hyperclone on Es is of the form (f)y,
where f belongs to one of the following sets:

MinV = {co, c1, 2, Z, fo, 1}
Min® = {max",min", g1, go, g3 };

Min® = {ma" mi"},
where

co(z) = {0}, er(x) = {1}, ea(x) = {0,1},
T =1z}, fo(r) ={0,2}, filx) = {x,1},
max"(z,y) = {max(z,y)}, min"(z,y) = {min(z,y)},
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g1 g2 93
{o} | {0} | {0}
{0,1} | {0} |{o,1}
{1} [{0,1} {0, 1}
{1} | {1} | {1}

ma"(z,y, z) = {ma(z,y,2)} and mi*(z,y,2) = {mi(x,y,2)}.

— O O8
— O = oI

Notice that hyperoperations ¢y, ¢1, T, max", min", ma” and mi” correspond to 7
minimal total operations, while hyperoperations cs, fo, fi and g3 correspond
to 4 minimal properly partial operations. Only hyperoperations ¢g; and g
generate essentially new atoms.



Chapter 6

Coatoms

Describing maximal elements of a lattice is of great importance since they
are used in obtaining the completeness criterion.

We say that a set F' C Oy, is complete if it generates the whole set Oy, that is
(F) = Og. It is known that, since Oy, is finitely generated, there are finitely
many maximal clones on Fj and every proper subclone of Oy is contained in
some maximal clone [74]. Therefore, set F' C Oy is complete if and only if it
is not a subset of any of the maximal clones. The same holds for the lattices

LY, L5 and L},

All maximal clones of total and partial operations are described, but we are
still far from getting the same result for hyperclones and IS clones. However,
some classes of maximal clones of hyperoperations and incompletely specified
operations are known.

6.1 Maximal clones

Definition 6.1.1 Clone M C Oy is maximal if for every clone C' such that
M C C COy it holds C =M or C = Oy.

Clearly, clone M is maximal if and only if M # Oy and for all f € Oy \ M
it holds that (M U {f}) = Ox.

One of the greatest achievements in clone theory so far is the complete classi-
fication of coatoms of the lattice L, done by I.G. Rosenberg. And although
it is a magnificent result, it was in fact the culmination of the joint effort of

62
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the number of mathematicians who in the 1950s and 1960s dealt with the
problem of describing all maximal clones on a given set.

For one special case, Yablonskii showed in [74] that Pol.}, where i} =
{(z1,...,20) € E} : |{z1,...,2,}| <n—1}, is a maximal clone, and more-
over it is the only maximal clone that contains all unary operations on FEj.
More generally, Kuznecov in [35] proved that every maximal clone is com-
pletely determined by a single relation, more precisely, each maximal clone
is of the form Polp for some non-diagonal relation p. One might ask if this
is the most precise characterization of the maximal clones we can achieve.
Fortunately, the answer is no.

After Post, who by completely describing all clones on a two-element set
also listed the 5 maximal ones, Yablonskii in [73] determined all 18 maximal
clones on FEj3, and reportedly Mal’'tsev proved that there are exactly 82 max-
imal clones on Fj. Then in [55] Rosenberg described six classes of relations
determining maximal clones on an arbitrary finite set (although most of the
work was already done by Yablonskii in [74]) and eventually in [56] he proved
that this list was complete.

Finally, we state Rosenberg’s famous theorem.

Theorem 6.1.2 ([56]) Let Ey be a finite set with k > 2. A clone on Ej, is
mazximal if and only if it is of the form Pol p, where p is one of the following:

(R1) a bounded partial order, i.e., a partial order with the least and the
greatest element,

(Ry) a prime permutation, i.e., the graph of a fized point free permutation
on Ej with all cycles of the same prime length;

(R3) a prime affine relation, i.e., the graph of the ternary operation x —y+z
for some elementary Abelian p-group (Ey;+,—,0) on Ey (p prime);

(Ry) a nontrivial equivalence relation, i.e., an equivalence relation that is
neither the equality relation on Ej nor the full relation EZ;

(Rs) a central relation, i.e., ) # p C EL, p is totally reflexive and totally
symmetric and there exists an element ¢ € Ej, such that {c} x Ey ' C p

(c is a central element of p, the set of all such elements is called center
of p and is denoted by C(p));
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(Rs) an C-reqular relation, £ > 3. Let © = {01, ...,0,}, h > 1, be a family of
equivalence relations such that each 6;,1 <1 < h, has exactly ¢ blocks,
and for arbitrary blocks e; of 0;, 1 < i < h, it holds that () &; # 0.

1<i<h
The relation

p:{(al,...,ag)EEﬁ . forevery 1 <1< h thereare 1 <j<k</
such that (a;,ax) € 0;}

is said to be L-reqular.

The original proof is quite technical and difficult to follow. Probably the best
known newer proof was done by Quackenbush [50], who proved that every
maximal clone is of the form Polp for some of the Rosenberg’s relations
by using the connection between maximal clones and preprimal algebras.
Similar proof was provided by Pinsker in [47].

6.2 Maximal partial clones

Set O U (cy), consists of all total operations on Ej, and all partial operations
that are undefined for every input. We will now show that this set is a
maximal partial clone. Moreover, it is the only maximal partial clone which
contains Oy. The proof of the following lemma is more detailed version of the
proof given in [6§].

Lemma 6.2.1 Set Oy U (c), is a mazimal partial clone, i.e., for any f €
P\ (Ok U {ck)p) we have ((Or U (ck)p) U{f})p = P

Proof. We already pointed out that Oy U (cy), is a partial clone. Let us now
prove that it is a coatom in the lattice of partial clones.

For an n-ary partial operation f € P \ (O U (cx),) there exist two n-tuples
(ay,...,a,), (b1,...,b,) € E}} such that

f(al,...,an) GEk and f(bl,,bn):k
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Let h be an arbitrary m-ary partial operation from Py. For every (z1,...,2,,)
€ B we define operations fi,..., f,,g € O,(j”) in the following way

fi(Il,..,,xm>_{ Qj, h(x1,-~-,Im) € E;

a bi, h(l’l,...,l'm) =k

| h(xy,. . xm), B(an,...my) € Ey
g(xl,...,ajm)—{ 0, h(zy,...,xn) =k

Now we can show that h = e3(g, f(fi,..., f2)).
If h(xy,...,2Tm) € Ey, then (f(fl,...,fn))(arl,...,xm) = flay,...,a,) € Ek.

Hence,
<e%(g,f(f1, . ,fn)))(xl,...,a:m) =g(x1,.. . xm) = h(z1,. .., T).

If h(zq,...,2,) = k, then (f(fl,...,fn))(xl,...,xm) = f(by,...,b,) = k
and g(z1,...,x,) =0, and thus,

(39 F v ) )@y ) = (€)10,8) = .

g

As we already mentioned, completeness problem for the Boolean partial func-
tions was solved by Freivald in 1966 [26]. The same problem on Ej3 was solved
independently by Lau in [36] and Romov in [51], while the description of all
coatoms of the lattice of partial clones on an arbitrary finite domain is due
to Haddad and Rosenberg 28], 29] 130].

Before we state Haddad-Rosenberg theorem we need the following defini-
tions. Notation and formulations used here are a combination of those used
in [38] and [67]. In what follows we suppose that 1 < ¢ < k unless stated
otherwise.

Definition 6.2.2 We define following quaternary relations on Ej:

p1 = {(a,a,b,b),(a,b,a,b) cabe Ek},
P2 = {<a’a7b’ b)’ <a7b7a7b)7 <a7b7 bv CL) : a,b € Ek}
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Definition 6.2.3 Let Eqy be the set of all equivalence relations over {1, ..., (}.
Fore € Eqp, { > 2, we define

(5,52 = {(al,...,ag) cEp: (i,)) €= a :aj}.
If k and ¢ are obvious from the context, we just write ..

Definition 6.2.4 An (-ary relation p C E, is called

e areflexive if pNd. = 0 for every ¢ € Eqp, € # 13, i.e., for all (z1,..
%) € p we have x; # x; for all1 <i < j </

)

e quasi-diagonal if p = o UJ., where o is a nonempty areflexive relation,
e € Eq\ {2}, and p # E} for ¢ = 2.

Definition 6.2.5 Let p C EL, 0 =p\ ¢, and § = p N1 Let
G, = {WE S, : onol #@},
where Sy is the set of all permutation over the set {1,...,¢} and ol™ =

{(aﬂ.(l), .. ,aﬂ-(g)) : (al, c. ,CL() S O’}.
The model of p is the (-ary relation on {1,..., ¢}

M(p) = {(r(1),....7(0)) : m € G,y U (6N {L,...,0}").

Definition 6.2.6 Relation p C Ef is coherent if the following conditions
hold:

1. p s non-trivial relation;
2. (a) p is a unary relation, or
(b) p is areflezive, 2 < < k, or
(c¢) pis quasi-diagonal, 2 < { < k, or
(d) § =i, 3<(<k, or
(e) 6 = p;, i € {1,2} (from Definition[6.2.3) and { = 4;

3. ol =g, for all m € Gy,

4. for every nonempty subset o' of o there exists a relational homomor-
phism ¢ : E, — {1,....0} from o' to M(p), such that (¢(i),...
go(ig)) =(1,...,0), for some (iy,...,i;) € 0';

Y
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5. (a) if 6 =1, and £ > 3, then G, = Sy,
(b) if 6 = p1, then G, = ((0231), (12)),
(c) if 0 = pa, then G, = Sy.

Theorem 6.2.7 ([30]) M C Py is a mazimal partial clone iff M = Oy U
(ck)p or M =pPOLp, where p is one of the following relations:

o an l-ary (1 <V < k) non-trivial totally reflexive and totally symmetric
relation;

e an l-ary (€ > 2) coherent areflexive or quasi-diagonal relation;

e a quaternary coherent relation oUp;, © € {1,2}, where o is a nonempty
quaternary areflexive relation.

There are significantly more maximal partial clones than maximal clones on
the same set. Let M, and pM,. be the sets of maximal clones and maximal
partial clones on Ej, respectively. In [67], using a computer program, Scholzel
determined all elements of p M5 and pMg. The numbers of elements in My,
and pM,, for 2 < k < 6, are presented in Table

k| (Mgl | [pMal

2 5 8

3 18 58

4 82 1102

5] 643 325722

6 | 15182 | 5242621816

Table 6.1: Sizes of M, and pM;

6.3 Maximal hyperclones

In the lattice of hyperclones set of all total operations is a coatom, which
was not the case for partial clones. This fact was firstly proved by Romov in
[53] and here we give the idea of the proof from [22].
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Lemma 6.3.1 ([53]) Clone Oy of all total operations is a maximal hyper-
clone, i.e., for any f € Hy \ Oy we have (Ox U{f})n, = Hy.

Sketch of a proof. For any n-ary hyperoperation f € Hy \ Oy there is at least
one n-tuple (ay, ..., a,) € E} such that f(a1,...,a,) ={co,...,cp_1}, 0 > 2.

It is sufficient to prove that an arbitrary m-ary hyperoperation h € Hj can
be constructed using (hyper)operations from O, U {f}. We define maps

fi,oo o fn € O,(Cm) and g € O,(f+m) in the following way.
If R(yr,...,ym) = {do,dy,...,dg—1}, ¢ > 1, then

(fl(yl, e Ym)s s fa(Yrs - ,ym)) = ({al}, . {an})

and

91y s Ymy Cos- -+, CosCo) = {do}
g(yh ceeyYmy Coy et 700701) - {dl}

g(yla vy Ymy Cp—15 -+, Cp—1, cp—l) = {dq—l}

where ¢ € N is such that p*~* < max  |h(y1,...,ym)| < p"

(Y1,eeym )EA™

Now, it can easily be shown that

h:g(eT,...,ez,f(fl,...,fn),...,f(fl,...,fn)),
which implies h € (Ox U f)5.

Knowing that Oy is finitely generated, we conclude that the same holds for
Hj.. Consequently, there are finitely many maximal hyperclones and every
hyperclone distinct from Hj, is contained in some maximal hyperclone.

In [53] Romov also proved that for an arbitrary nonempty proper subset M
of E}, set of all hyperoperations with the property

(‘v’al,...,anéM) f(aly---aan)ﬂM%wa

is a maximal hyperclone.

We will now present four classes of maximal hyperclones determined by some
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of the Rosenberg’s relations.

The following theorem gives a sufficient condition for a hyperclone hPolp to
be maximal in the hyperclone lattice on Ej.

Theorem 6.3.2 ([41]) Let Polp be a mazimal clone on E) such that

(Vf € Hy,\ hPolp) (3’ € Oy \ Polp) f' € (PolpU{f}.  (6.1)
Then hPolp is a maximal hyperclone.

Sketch of a proof. Let p be a relation on FEj such that Polp is a maximal
clone on Ej and let f € Hy \ hPolp. Then we have an operation f’ not
in Polp, generated by f and some operations from Polp. Clearly, constant
hyperoperation cg, is in hPolp because p # (). Considering that Polp is a
maximal clone and Oj, is a maximal hyperclone, we obtain

Hy, = (O, U{cp })n = (Polp U{f'} U{cg,})n C
C (PolpU{f}yU{cg, })n € (hPolpU{f})n C Hy,

implying (hPolp U {f}), = Hg, i.e., hPolp is a maximal hyperclone.

Subsequent theorems are all proved by constructing the operation f’ from

Theorem [6.3.21

6.3.1 Hyperclones determined by bounded partial or-
ders

In this section we will show that for every bounded partial order p hyperclone
hPolp is maximal because it satisfies the conditions of Theorem[6.3.2] that is
for every hyperoperation f which is not in hPolp we are going to construct an
operation f’, which does not preserve p, as a composition of some operations
from Polp and the hyperoperation f.

Let p C E? be a bounded partial order, with the least element 0, and the
greatest element 1. Next we choose B,C' € Py, such that (B x C)Np = 0.
Since p is reflexive, it holds BN C = ().
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Let us define the following sets:

B ={z € E,:(V,z) € pand (z,0") € p for some V,b" € B},

C'={z € By:(d,z) €pand (z,c") € p for some ¢, " € C},
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C"={x € E,:2¢ B and (¢,z) € p and (z,b') € p for some V' € B

and ¢ € C},

G:{JZEEk:l‘QB/UC/UC//aHd ((t',z) € p for some V' € B
or (,x) € p for some ¢ € C' U C’")},
L:{xEEk:ngB’UC'UO”and ((z,b') € p for some V' € B

or (z,c) € p for some ¢ € C'U C’")}.

Lemma 6.3.3 ([17]) For allb € B' and c € C" U C" it holds (b,c) & p.
Proof. Suppose that there exist b € B’ and ¢ € C" U C” such that (b,c) € p.

There are two possibilities.

e If c € (', then for some ¥/ € B and ¢ € C we have (V',b), (b, ¢), (¢,c) €
p. Hence, by the transitivity of relation p, (b, ) € p, which contradicts

the choice of the sets B and C.

e If, on the other hand, ¢ € C”, then there exist ',b” € B such that
(t',0), (b, c), (c,V") € p, thus (V,c),(c,b") € p. However, this would

imply ¢ € B, which is impossible since B’ N C” = ().

g

Choose arbitrary b € B and ¢ € C'if (C'x B)Np =, or choose (b,c) € BxC
such that (¢,b) € p, otherwise. Let us define the unary operation 95,0 as

follows
4

b,
C?
Ghelr) =4 1,
0,
x?

x € B
xeCc'uc”
redG
reL

otherwise.

(6.2)
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Lemma 6.3.4 ([17]) Operation g; . € O is well defined.

Proof. We should prove that the sets B/, C" U C”,G and L are pairwise
disjoint. As G and L by definition satisfy

(GUL)N(B'uCc'ucd”) =0,

we only have to show that BN (C"UC”) =0 and GN L = 0.

B’ and C” are disjoint by definition of C”. Suppose that there is x € B'NC".
Then we have (¢, z), (x,0') € p, for some ¥’ € B and ¢ € C, and therefore
x € C”, which is not possible.

If x € GNL, there are &/, 0" € B and ¢, " € C" U C” such that
((t,z)epVv(c,z)e€p)A((@b)epV(zd)ep).
We discuss the following cases:

i) (V,x),(x,0") € p, implying = € B, which is impossible since (G U L)
and B’ are disjoint sets;

i) (V,x),(z,c") € p, implying (V',c") € p, for ¥ € B C B and ¢’ €
C" U C", which is not possible by Lemma [6.3.3}

iii) (¢, x), (z,b") € p. For ¢ € C"UC" there is ¢; € C such that (¢, ) € p,
ie., (c1,2), (x,b") € p, for some v’ € B and ¢; € C. Therefore, x € C”,
giving a contradictions with the definition of G and L;

iv) (d,z),(z,d") € p. For ¢ € C"UC” there is ¢; € C such that (c1, ) € p.
If & € ', we will take co € C such that (¢, ¢;) € p, and if ¢ € C”|
we will take by € B such that (¢”,by) € p. In both cases x € C" U C”,
which gives a contradiction with the definition of G and L.

g

Operation g} . is one of the operations that we are going to use for the con-
struction of the operation f' € Oy \ Polp, and therefore it is essential that
gy . preserves p, which we will prove next.

Lemma 6.3.5 ([I7]) Let g, be defined by . Then gy, € Polp.
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Proof. Let z,y € E). We distinguish the following 25 cases:

| z\y || B [C’uC”| G | L |other|

B’ 1 2 3 4 5
cruc” 6 7 8 9 10
G 11 12 13 14 15

L 16 17 18 19 20
other 21 22 23 24 25

We are going to show that in each of the cases (z,y) ¢ p, or (z,y) € p implies
(glf,c(x)aglic(y)) € p.

In the following table we denote by v" all the cases with (z,y) € p implying
(g{;c(x), g{;c(y)) € p, and by x all those cases in which assumption that
(x,y) € p leads to contradiction.

| z\y | B [C’uC”] G | L |other]
B’ v X v X X
c'uc” v v v X X
G X X v X X
L v v v v v
other X X v X v

1) Let x,y € B’ and suppose that (x,y) € p. Then (ggc(:v),gbp’c(y)) =
(b,b) € p, since p is reflexive.

2) If x € B"and y € C"UC”, then (x,y) ¢ p by Lemma [6.3.3]

3) For z € B' and y € G, if (x,y) € p, then (g} .(z), g5.(y)) = (b,1) € p,
since 1 is the greatest element. Let € B" and y € L, and assume that
(x,y) € p. We have the following possibilities:

(a) There is ¢ € C" U C” such that (y,¢) € p. Then (z,c) € p for
r € B'and ¢ € C" U C”, which is not possible by Lemma[6.3.3]

(b) There are v'," € B such that (V/,z),(x,y), (y,bt") € p, which
means that y € B’, contradicting the fact that B'N L = ().

5) In case x € B’ and y ¢ B'UC'"UC" UG U L we would have that
(z,y) € p implies y € G.
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6) If x € C"UC” and y € B, then (¢, x), (x,y), (y,b') € p, and therefore
(V) € p, for some ¢ € C and V' € B. Hence, (C x B) N p # 0 implies

(95,c($)795,c(y)) = (c,b) € p.

7) From (z,y) € p for z,y € C'UC” it holds that (g (z),g.(y)) = (c,
c) € p, since p is reflexive.

8) For x € C"UC” and y € G, as in the case (3), (z,y) € p implies
(gg,c(‘r)?ggc(y)) = (C, 1) cp.

9) If e C"UC",y € L and (z,y) € p, we consider the following cases:

(a)

d,x), (x,y), (y,b') € p, for some v/ € B and ¢ € C', meaning that
), (y,V) € p,forty € Band ¢ € C,ie.,y € C”.
@), (

d,x), (x,y), (y, ") € p, for some ¢ € C and ¢’ € C" U C”. Then
dy),(y,d") € pfor ¢ € C and " € C"UC” and therefore
yeCc'uc”.

(b)

NN NN

10) Let z € C"UC” and y ¢ BUC'"UC” UG U L. Then (z,y) € p would
imply y € G.

11) Let us suppose that (x,y) € p for x € G and y € B’. We have:

(a) There are V', b" € B such that (V',x),(x,y),(y,b") € p, and so
reB.

(b) There are ¢ € C'UC” and b” € B such that (¢, x), (x,y), (y,b") €
p, e, ("), (d,x),(z,b") € p, for some ¢’ € C,¢ € C"UC” and
b" € B. Thus z € C".

12) Ase e GAye C'UC" (e GAyeC)V(re GAy e C), we
distinguish the following four cases:

(a) (V,x),(z,y),(y,c") € p, for some b’ € Band ¢’ € C, ie., (V/,) €
p, for b/ € B and ¢ € C, which is not possible by the choice of B
and C.

(b) There are ¢ € C"UC” and ¢ € C such that (¢, x), (z,y), (y, ") €
p. Hence, thereis ¢” € C such that (¢, ) € p,ie., (¢, x), (z, ") €
p, for some ¢”’, " € C, which implies x € C’.

(c) It holds (¥, x), (z,y), (y,b") € p, for some V', b" € B, and therefore
x e B
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(d) There are ¢ € C"UC" and 0" € B such that (¢, x), (x,y), (y,b") €
p. Then x € C".

13) If 2,y € G and (z,y) € p, then (gf (), g}.(y)) = (1,1) € p.

14) Let x € G and y € L. Then, by the definition of G and L, the following
cases are possible:

(a) There are b, 0" € B, such that (V',z), (z,y), (y,b") € p, and there-
fore z € B'.

(b) It holds (¥, z), (z,v), (y,c") € p for some ¥’ € B and ¢ € C'"UC",
implying that (V/,c") € p, for & € B and ¢ € C" U C” which is
not possible by Lemma [6.3.3

(c) (d,x),(z,y),(y,b") € p, for some ¢ € C"UC" and b" € B, implies
x e .

(d) There are ¢, " € C"UC” such that (¢, x), (x,y), (y, ") € p. From
this condition, we have x € C' U C".

15) Forxr e Gandy ¢ B UC'UC"UGU L, from (z,y) € p it follows that
y € G.

16) If x € L and y € B, then (z,y) € p and (glic(x),glic(y)) = (0,b) € p,
since 0 is the least element.

17) Similarly as in the previous case, z € L and y € C'"UC” imply (x,y) €
p= (g95.(x),9.(y) = (0,¢) € p.

18) If z € L,y € G and (x,y) € p, then (g} (z), g5 .(y)) = (0,1), which is
obviously in p.

19) In case (x,y) € p for z,y € L, we have (g} (z), g} .(y)) = (0,0) € p.

20) Let z € Land y ¢ BBUC'"UC" UG U L. Then, as in cases (16) and
(17), from (z,y) € p we obtain (gf (x), g5.(y)) = (0,y) € p.

21) Forx ¢ BUC'UC"UGUL and y € B’ the assumption (z,y) € p
implies x € L.

22) As in the previous case, from (z,y) € pforx ¢ B UC'UC" UG U L
and y € C"UC”, we have x € L.
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23) If e ¢ BUC'UC"UGUL and y € G, as in the cases (3) and (8), from
(z,y) € p we get (g5.(2), g5.(y) = (x,1) € p.
24) Forx ¢ BUC'"UC"UGU L and y € L, (x,y) € p implies x € L.

25) If (x,y) € p for 2,y ¢ BUC'"UC" UG UL, it holds (g} .(2), g}.(y))
= (z,y) € p.

g

Now we can prove that if p is a bounded partial order, then hPolp satisfies
the conditions of the Theorem [6.3.2]

Theorem 6.3.6 ([I7]) Let p C E? be a non-trivial bounded partial order
relation on Ey. Then hPolp is a maximal hyperclone on Ej.

Proof. Let f € Hy \ hPolp be an n-ary hyperoperation. Then there exists a
matrix
w= (o) e
such that f(M) = (B,C), where (b,c) & p, for all b € B and c € C.
For every i € {1,...,n} define f; € O,il) as follows

fi(iﬂ):{ ZZ: v =0

otherwise.
We shall prove that fi,..., f, € Polp. For (x,y) € p we get

(a;,a;), for z=y=0

(fi(2), fily)) =4 (aib;), for x=0andy+#0
(bi,b;), for x#0 and y # 0,

hence (f;(z), fi(y)) € p for all i € {1,...,n}.

Let g,’;’c be the unary operation defined by (6.2). We proved (Lemma [6.3.5])
that g{:’c € Polp, and therefore we can define operation f' € (Polp U {f})

by
f/ = g{;ig(f(fl??fn))
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Although f1,...,f, and 95,0 are total operations, when we compose them
with a hyperoperation, we consider them to be hyperoperations with the
singleton output values. Then for all x € E; we have

P@) = (s £ @) = (G (PR ) 1))

From this definition and since B C B’ and C' C ("’ trivially holds, we obtain

710) = (g )* (/# (A1), Ja(0)) = (g * (F#({ar}. . {an}) )
= () (Flar,- ) = (G *(B) = {b},

F@) = (g )* (F# (A @) Ja@)) = G * (£ (o) b))
= (GF (b b)) = (G)*(C) = {ch, @ £0.

Since 0 is the least element, it follows that (0,z) € p for every x € A. For
z # 0 we have (f/(0), f'(z)) = (b,c) € p. Hence, f' € Oy, and f' & Polp.

Therefore, conditions of the Theorem [6.3.2] are satisfied and we may conclude

that hPolp is a maximal hyperclone for every bounded partial order p. [J

Example 6.3.7 Let p C E? be a non-linear order given by

/012340000123
P={ 01234123444 4)"

Figure 6.1: Hasse diagram of the partialy ordered set (Ej, p).
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0 3
2 4

(B,C) ¢ pp, we can define operations fi, fo € Oél) as follows

If we take M = ( ) € p* and f € H? such that f(M) = ({1},{2,3}) =

001 2 3 4
fi]02 2 22
f]3 44414

Sets used for defining the auxiliary operation g{;c in this case are
B ={1},C"uC”" ={2,3}, L ={0}, G = {4},
and if we choose b =1, ¢ = 2, we get

01 2 3 4
gl |0 1 2 2 47

It is easily verified that fi, f2, g1 5 € Polp and for the operation f' = g7 , (f(fl, fz))
we have

10) = ga(F(h £2)(0) = (652)* (F#(£10), £20)) )
= (o) (F*{O0L {31) = (eh)*({1}) = {1},

1@ = (U 2)@) = 6ho)* (F#(h(2), £(2)))
= (o) (F*({21.{41) = (6h)*({2.3}) = {2}

Since (0,2) € p and (f’(()),f’(l)) = (1,2) ¢ p, we conclude that f’ ¢ Polp.
Finally, applying Theorem [6.3.4 we get (hPolp U{f}), = Hs.

6.3.2 Hyperclones determined by equivalence relations

In this section we again prove that hPol p is a maximal hyperclone if p is
a nontrivial equivalence relation by showing that the conditions of Theo-
rem [6.3.2] are fulfilled.

Theorem 6.3.8 ([41]) Let p C E}? be a nontrivial equivalence relation.
Then hPolp is a maximal hyperclone on Ej.
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Sketch of a proof. Suppose that f € Hy \ hPolp. Then there exists a matrix
. a; az ... Qp *
M_(bl by ... bn>€p
such that f(M) = (A", B') ¢ pp, i.e., (A’ x B )N p=1.

For i = 1,...,n we define operations f; € O,(gl) by

a;, T=a

a;, otherwise
where a = a; and b = b;, for some j € {1,...,n}, such that a; # b;.
We also define operation g € O,(Cl) as follows

a, v eC,, for some qge A
g(x) =< b, zeC,, for some ¢qe B

a’, otherwise,

where (), is an equivalence class of the relation p containing element ¢, and
a’ and O’ are arbitrary elements of A" and B’ respectively.

Since fi,..., fn,g € Polp, it is now possible to define f" € (Polp U{f}), by
fl :g(f(fb?fn))
For (a,b) € p we have (f'(a), f'(b)) = (a’,V) ¢ p, implying f" & Polp.

Finally, using Theorem we may conclude that hPolp is a maximal hy-
perclone.

Example 6.3.9 For an equivalence relation p on Es with classes {0} and

{1,2}, i.e.,
/(0121 2
P={o 1221 )

€ p* and a binary hyperoperation f such

(A", B’) & pn, so that f ¢ hPolp. If we select
b =1, we can define fi, fo,g € Oél) by

we can choose M =

that f(M) = ({0}, {1,2}

a=1,b=2 and also a’ =

01
0 2
)

Y
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(001 2
10 0 0
L1 1 2
g |0 1 1

For the operation [ = g(f(fl,fg)) it holds (1,2) € p and (f’(l),f’(Z)) =
(0,1) & p, hence f" ¢ Polp.

6.3.3 Hyperclones determined by central relations

Using the same general idea as in the previous cases we will prove that hPol p
is a maximal hyperclone whenever p is a central relation, i.e., totally reflexive
and totally symmetric relation with a non-empty center.

Theorem 6.3.10 ([41]) Let p C Ef, ¢ > 1, be a central relation. Then
hPolp is a mazimal hyperclone on Fj.

Sketch of a proof. If we take f ¢ hPolp, then we have a matrix

a1 a12 ... Qipn
91 Q922 ... Q9pn

M = . . . €p’
Qpr Qp2 ... Qup

such that f(M) = (Ay, As, ..., Ay) ¢ pp. Total reflexivity of the relation p
implies that the sets Ay,..., Ay are pairwise disjoint.

We choose distinct elements ¢ € C(p) and by, ..., b, € Ej and define opera-

tions f; € O,(:), 1=1,...,n, as follows
aiyy, T =2¢C
fil) = ani, =0y, 2< k<A

¢, otherwise.

For arbitrary d; € A;,ds € As, ..., dy € A; we define operation g € O,gl) by

dl, T e Al

dg, RS A2
g(x) =

dg, T € Ag

¢, otherwise.
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Using the fact that c is a central element, and also total reflexivity and total
symmetry of the relation p we can prove that fi,..., f.,g € Polp. Therefore
we can define f € (Polp U {f}), as usual by

fr=g(f(fio-- o, f0).

Then for (¢, by, ..., by) € p we have (f'(c), f'(ba), ..., f'(be)) = (du,....d¢) &
p since (Ay, ..., Ay) & pn, which means that f ¢ Polp.

Thus, we have shown that for a central relation p hyperclone hPolp satisfies
the conditions of Theorem [6.3.2] and therefore is a maximal hyperclone.

Example 6.3.11 Let p be a binary central relation on E3 with the center

C(p) = {2}, i.e.,
(0120212
P=lo122021)
0 2 . 2)
Let us choose M = 9 1) €P and f € H3” such that f(M) =

({1},{0}), which means that f ¢ hPolp. If we choose ¢ = 2, by = 1 and
di =1, dy = 0, operations fi1, fa,g € O?El) are defined by

001 2
A2 20
L2 1 2
g0 1 2

Then for operation f' = g(f(f1, f2)) we have (2,1) € p, but (f'(2), f'(1)) =
(1,0) & p, which implies f' ¢ Polp.

6.3.4 Hyperclones determined by regular relations

In this chapter we are going to show that hPolp is a maximal hyperclone if
p is a regular relation.

From the definition it is easily deduced that every f¢-regular relation is to-
tally reflexive and totally symmetric, which will be used in the proof of the
following theorem.
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Theorem 6.3.12 ([41]) Let p C Ei, ¢ > 3, be l-regular relation. Then
hPolp is a mazimal hyperclone on Fj.

Sketch of a proof. Let f be an n-ary hyperoperation on Ej which is not in
hPolp. Then there exists a matrix

a1 a2 ... Qi
A91 Q922 ... Q9pn

M = L . €p’
Qpr Qp2 ... Qup

such that f(M) = (A1, Aa, ..., Ay) & pp. Again, since p is totally reflexive,
sets Ay, ..., Ay are pairwise disjoint.

When we can choose distinct elements by, . ..,b, € Ey, such that (by,...,b,) €
p, we define operations f; € O,(:), 7 =1,...,n as follows:

‘ _ ) Gy, T= bi
1) {alj, otherwise.

Otherwise we select (by,...,b),(c1,...,¢c0) € p where all pairs (by,¢y), ...,
(be, c) are distinct and define operations f; € Ol(f), j=1,...,n by:

a;j, r=>b;andy=c
) ={ 2 ’

ap;, otherwise.

If we choose arbitrary d; € A;, i = 1,...,¢, then (dy,...,ds) ¢ p, and there
also exists an equivalence relation 6* such that (d;,d;) ¢ 6* for all i # j.
Denote by Cj equivalence class of the relation 6 which includes ¢ € Ej.
Since there are no x € A; and y € A;, for ¢ # j, such that (x,y) € 0*, their
equivalence classes C; and C are disjoint. Therefore we can define operation
g E O,(Cl) by

( dl, x e Cr

q1’
dy, x € (), for someqy € Ay

for some q; € A;

g(x) = .
de, € C;e,
| di, otherwise.

for some g, € A,

Total reflexivity and total symmetry of p imply that fi,..., f.,g € Polp.
Hence we can define f' € (PolpU{f}), by f' = g(f(fl, . ,fn)).
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Now we have (by, ...,b) € p and (f/(b1), ..., f'(be)) = (du,...,do) ¢

P
(b1, ..., be), (c1, ..., ¢0) € p and (f’(bl,cl), ...,f/(bg,Cg)) = (dv,...,do) ¢ p),
which implies f" ¢ Polp.

Consequently, by Theorem hPolp, for a regular relation p, is a maximal
hyperclone.

Example 6.3.13 Let p be a ternary regular relation on E,, corresponding
to the equivalence relation with classes {0}, {1,2} and {3}, i.e.,

001133002233
p=E\[13 0301230302
3130103232020
10
IfM=1 3 1| €p*and f is a binary hyperoperation such that f(M) =
2 1

({0}, {3},{1,2}), then f ¢ hPolp. If we select by = 0, by = 1, by = 2 and
d1 =0, dy = 3, d3 = 1, operations f1, f2,9 € OS) are given by

001 23
A1 3 21
L0110
g0 1 1 3

Define operation [’ = g(f(fl,fg)). Then (0,1,2) € p, and (f’(O),f’(l),
f’(?)) =(0,3,1) ¢ p, and therefore f' ¢ Polp.

6.4 Maximal IS clones

Similarly to the case of hyperclones we can prove that the set of all total
operations is a maximal IS clone.

Lemma 6.4.1 ([15, 16]) Fork > 2, Oy is a mazimal IS clone, i.e., for any
f € I\ O we have (O, U{[f}),s = Ii.

Proof. If f € 1;”)\Ok, there is at least one n-tuple (ay, ..., a,) € E} such that
fla,...,a,) = k. It suffices to prove that the statement (O U {f}) 2 Ik
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is correct, since the opposite inclusion is straightforward.

Let h be an arbitrary m-ary IS operation from I, and let us define the

mappings fi,..., fn € O,S”) and g € O,imﬂ) for all x1,...,ZTm, Tmy1 € Ej
as follows:
(fl(acl,...,xm),...,fn(xl,...,xm)) = (al,...,an)
and
oo m) = { i, M) =

Now we can prove that

h:g(eanw"aemaf(fla'"7fn))-

For h(zy,...,z,) =k we have

g(e’lﬂ,...,em,f(fl,...,fn))(ml,...,mm) =g (xy,...,xm, k) =k,

whereas for h(zy, ..., x,) = a € F,

g(eT,...,eﬂ,f(fl,...,fn))(wl,...,a:m) =gt (z1,..., Tm, k)
=h(z1,...,2m) = a.

Therefore, h € (O U{f}),. O

Since Oy is finitely generated, it follows directly from the previous lemma
that I is also finitely generated, and therefore every proper IS clone is a
subset of some of the finitely many maximal IS clones.

In what follows we consider four classes of relations on Fj, with the property
that their weak extensions are equal to their full extensions and state that
the corresponding clones of incompletely specified operations are maximal.
These results are analogous to the results obtained for maximal hyperclones
in [17] and [41], and presented in Section [6.3]

In the following theorem we state that wPolp is a maximal clone of in-
completely specified operations if the condition (6.3) holds. The proof is
analogous to that of Theorem [6.3.2
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Theorem 6.4.2 Let Pol p be a mazximal clone on E} such that:

(Vf € I\ wPol p) 3f' € O\ Polp) f' € (PolpU{f}s.  (63)

Then wPol p is a maximal clone of incompletely specified operations.
Next lemma asserts that for every totally reflexive relation its weak extension
coincides with the full extension.

Lemma 6.4.3 Let £ > 2 and let p C E{ be a totally reflexive relation. If
(a,...,a0) & pw then (ay, ..., as) € EL.

Proof. Let us suppose that there exist (a1,...,ar) € Ej,; \ (pw U Ep). We

can assume, without loss of generality, that a; = k. Choose by, ..., b, € E}
such that (by, by, ..., b)) C (ay,as,...,as). Then by the total reflexivity of p
we obtain (by, b, ..., by) € p and therefore (ay, as, ..., ag) € py. O

Let p be a bounded partial order on Ej with the least element 0 and the
greatest element 1. Since p is reflexive, according to Lemma the weak
extension p,, contains E_, \ EZ. Moreover, we can conclude that (b, c) & py,
implies b,c € Fy, and b # c.

Lemma 6.4.4 Let p C E? be a bounded partial order and f € I \ wPol p.
Then there ezists f" € O \ Pol p such that f" € (Pol pU {f})1s.

Proof. Let f € I \ wPol p be of arity n. There is a matrix
. a; as ... Qg *
M_(bl by ... bn>€p
such that

fM) = (flar,... an), f(br, ... b)) = (b,¢) & pu

Let us define for each i € {1,...,n} the operation f; € O,(cl) as follows

fi(@) :{ Z r=0

otherwise.
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We will prove that fi,..., f, € Polp. For (z,y) € p we have

(a;,a;), for x=y=20
(fi(z), fily)) =« (a;,b;), for z=0andy#0 ,
(b, b;), for x#0,y #D0.

and therefore (fi(z), fi(y)) € p for every i € {1,...,n}.
Define " € (Pol p U {f})1s as follows

fr=rffis s fo)-
Thus, for x # 0 we have
= f(al,...,an) :b,
f/(ZU) = f(fl(x)v . afn(ﬁ))
= f(b1,...,by) =c¢

Since 0 is the least element, we have (0,x) € p for each x € Ey. If z # 0 we
get (f(0), f'(z)) = (b,¢) & p. Hence, f' € O\ Polp.
U

Nontrivial equivalence relations, central relations and regular relations are
all totally reflexive and totally symmetric. In the next two lemmas we will
show that they satisfy condition (6.3)).

Lemma 6.4.5 Let p C Ef, £ > 1, be a relation with the following properties:
(i) p is totally reflexive and totally symmetric relation,
(1) there is an {-tuple (ai,...,a;) € p such that |{ay,...,as}| =¢.

If f € wPol p then there is f' € (Pol pU{f}hs such that f' € Oy \ Pol p.

Proof. Let f € wPolp be of arity n > 1. Then there is

ai; ... QAip

M=1 ... ... ... |ep
Ay ... Qyp
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such that

f(a117-~7a1n) by

f(M) = = ... | € puw-

flag, ... am) be
Since p is totally reflexive relation, then Lemma holds, hence we can
deduce that by, ..., b, are distinct elements of Fj.
For distinct elements ay,...,ay € Ej such that (aj,...,a;) € p we define
operations fi, ..., f, € O,(:) by

py={ oo 7o

a1j, otherwise

for each j € {1,...,n}.

We need to prove that fi,..., f, € Polp. Let (x1,...,2¢) € p. If 2y, = p,,
for some 1 < ky < ko < ¢, then f;(zx,) = fj(xk,), and by total reflexivity
of p we get (fj(xl), e f](l‘g)) € p. If, on the other hand, all z1,...,z, are
distinct, we can distinguish the following cases.

1) If {x1,...,2¢} = {ai,...,as}, using total symmetry of p, we may as-
sume that (zi,...,2,) = (a1,...,as), and then for all j =1,... n we
get

(filar), - file) = (filar), ..., fi(ar)) = (asj, ..., ae) € p;

2) There is exactly one m € {1, ..., ¢} such that z,, ¢ {ai,...,as}, which
means that f;(z,,) = a1;. If a; belongs to {x1,..., 2.}, then there are
two same coordinates in (f;(z1), ..., fj(z,)), which puts it in p using
total reflexivity. In the case a; ¢ {z1,...,x,} we have

{f](x1)7 R f](xf>} = {a1j7 cee 7afj}7
which, by total symmetry of p, implies (f;(z1), ..., fi(z¢)) € p .

3) If there are k1 # ko such that xy,,zx, ¢ {a1,...,a}, then fi(zy,) =
fi(zry) = auj, and thus (fj(z1),..., fi(z¢)) € p, since p is totally re-
flexive.
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Hence, f1,..., fn € Polp.
Let f" € (Polp U {f})is be defined by

f/:f(fla"'7fn)'

Then for ¢ = 1,...,¢ we obtain

flai) = f(fila), ..., fala) = flan, ..., anm) = b

Since (aq,...,as) € p and (f’(al),...,f’(ag)) = (b1,...,by) & p, we deduce
that f' ¢ Polp. O

Property (7i) of Lemma holds for every nontrivial equivalence relation
and for every central relation. However, there are some (-regular relations,
e.g., when they correspond to an equality relation, for which we cannot choose
distinct elements ay, ..., ay € Ej such that (aq,...,a) is in the relation.

Lemma 6.4.6 Let p € Ef be an (-reqular relation such that

p={(z1,...,x0) : {(z1,...,20)} < -1}

Then for every IS operation f ¢ wPol p there ezist an operation f' € (Pol pU
{fPis which is not in Pol p.

Proof. For n-ary IS operation f ¢ wPol p there exists a matrix

aiy ... QAip

M=1 ... ... ... |ep
Ay ... Qyp

for which it holds

f(an, P 7a1n) b1
f(M) = =1 ... | € po.
f(agl, e ,agn) bg

We choose (cy, ..., ¢), (di,...,ds) € psuch that the pairs (c1,dy),. .., (¢, dp)
are all distinct and define operations fi,..., f, € O,(f) as

r=c¢ and y = d;

e ={ o

ay;, otherwise
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for each j € {1,...,n}.

Proof that fi,..., f, € Pol p is analogue to the proof in Lemma [6.4.5] while
here we consider pairs of elements instead of single elements.

Then for ' = f(f1,..., fn) € (PolpU{f})s we have
fleidi) = f(fileids), ..., fulci di))
:f(a“,...,am):bi, Z:L,n

Given that (c1,...,¢0), (d1,....do) € p and (f'(c1,dr),. .., f'(ce,de)) = (bn,
..., by) & p, we conclude that f' ¢ Pol p. O

Finally, using Theorem[6.4.2]and Lemmas|[6.4.4H6.4.6] we obtain the analogous
result as in the case of hyperclones.

Corollary 6.4.7 If p is a relation on Ey from one of the following classes:
(R1) a bounded partial order,

(Ry) a nontrivial equivalence relation,

(Rs) a central relation, or

(Rs) an (-regular relation,

then wPol p is a mazimal clone of incompletely specified functions.

Example 6.4.8 From the Corollary[06.4.7] we conclude that the IS clones of
the form wPolp; are mazimal 1S clones on Es, for the following relations
pi,i€{1,2,...,16}

(012001 _ (01212 ~ (0120102
Pro=\ 12122 ) P8 01221 | 73 = | 0191020
oy = (V12L2pr = (0) 0120112
) (01222()) ps = (1) e
3 = == 2 =
012011 ) P9 (2) i ( 0122021 )
oy = 01201 po = (01)
01210 B 001122
pu = (02) 3
[ 01202 pie = FE3\ [ 120201
P5 =\ 01220 p2 = (12) 212010



6.4. MAXIMAL IS CLONES 89

Relations p1, p2, ps are bounded partial orders, p4, ps, ps are nontrivial equiv-
alence relations, p; — p1s are central relations and pig is 3-reqular relation.



Chapter 7

Concluding remarks

7.1 Applications

Concept of nondeterminism has been an important issue in computer science
from its very beginning. Early mentions of nondeterminism appear in the
works of McCarthy [43] and Floyd [25] in 1960s and since then a great number
of theories and formalisms concerning it have been developed, for instance,
denotational models based on power domains, distributed systems, using
concurrency and communication, process languages and algebras, algebraic
specifications. Extensive list of references can be found in [72].

As we mentioned in Introduction, transition function of a non-deterministic
finite automaton may be viewed as a hyperoperation, since the transition
from a state can be to more than one (or even none) of the next states for
each of the input symbols. Formally, a non-deterministic finite automaton
(NFA) is a quintuple M = (Q, %, 0, qo, F'), where

e () is a nonempty finite set of states;

e Y is a nonempty finite set of input symbols (alphabet);
e §:(Q x Y — P(Q) is a transition function;

e (o € ( is an initial state;

e I C () is a nonempty set of final states.

Although for each non-deterministic finite automaton there exists an equiva-
lent deterministic finite automaton (DFA) which accepts the same language,

90
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they do not have the same behaviour. For example, NFA can use an empty
string transition, while it is not the case for DFA. Moreover, an NFA is easier
to construct and requires less space than DFA, but the time needed to exe-
cute an input string in DFA is less than in NFA.

In Figure we show equivalent NFA and DFA, i.e., they accept the same
language consisting of all stings such that their penultimate symbol is 1.

Figure 7.1: NFA and DFA accepting the same language.

We often come across incompletely specified logic functions in theoretical
computer science and engineering. They are defined as mappings from D
to Ly, with D C E}', k > 2, and the input values for which the output
values are not specified are referred to as "don’t care” conditions. One of the
main subjects of research is determining an optimal assignment of unspecified
values in order to produce compact representation of such functions.

Example 7.1.1 Let us consider the expression

E=xyzVvy(zVz2)
(we denote conjunction by - instead of N\) with the additional condition that
(z,y,2) €{(0,1,1), (1,0, 0)}. Corresponding incompletely specified Boolean

function f: D — {0,1}, where D = {0,1}3\ {(0,1,1),(1,0,0)}, is given by
the following truth table

{000 0 1 111
yl001 1 0011
/001 01 0 101
flz,y,2) |0 1 0 x x 1 1 1
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We can say that on D expression E is equivalent to
E' =zyzViy(zViIz)ViIyzV ryz.

The minterms Tyz and xyz are called “don’t care” conditions, since they do
not have influence on the value of the expression on D.

If we are looking for a minimal disjunctive normal form of the given expres-
sion using Karnaugh maps, "don’t care” conditions, represented by X, can be
considered either 0 or 1, whatever leads to more minimal solution. (Therefore
we may assume the existence of all possible input values, while the output va-
lues for some of them are unspecified.) Karnaugh map corresponding to the
function f is presented in Figure [7.3. Thus the minimal DNF of E', and

yZ
TN 00 01 11 10

0| 0 i1 ] xio0

1fx |11

101

Figure 7.2: Karnaugh map of the function f.

equivalently of E on D, is x V z.

Incompletely specified operations have found a wide range of applications in
computer science, for example in the study of process algebras [3], decision
diagrams [406, [76, [69] and switching theory [63] [64].

Certainly the most recent application of clone theory concerns computational
complexity of constraint satisfaction problems. Constraint satisfaction prob-
lems cover a wide range of both theoretical (satisfiability, coloring, Traveling
salesman problem, N-queens problem) and real-life combinatorial problems
(scheduling, automated planning, vehicle routing, hardware configuration,
networks, bioinformatics) (see [62]).

Given a set of variables, a finite domain and the set of constraints (relations),
the objective of the constraint satisfaction problem (CSP) is to determine
whether we can assign values from the domain to the variables such that all
constraints are satisfied. And we are wondering how complex is this decision.
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The general CSP is known to be NP-complete and it is significant to find
restrictions that are tractable (decidable in polynomial time).

Considering the fact that the CSPs are defined using relations, we can ob-
serve that, by applying the Galois connection (Pol, Inv) between operations
and relations, it is possible to correlate CSPs to clones. This was first re-
alised by Jeavons et al. [31, 32], which marked the beginning of the algebraic
approach for studying the computational complexity of CSPs rather than
just using combinatorial methods. Moreover, Jeavons et al. showed that the
complexity of a CSP in many cases depends on a fact that certain functions
are contained or not in the corresponding clone.

The most fundamental problem in the area was the famous Dichotomy Con-
jecture formulated by Feder and Vardi [24].

Conjecture 7.1.2 For each finite constraint language I', the problem CSP(T)
s in P or is NP-complete.

Schaefer in [65] determined all constraint languages I over a two-element
domain for which CSP(I") is in P, and Bulatov in [II] did the same for a
three-element domain. Since then a number of partial results have been
obtained (see [2] for references) until in 2017 Bulatov in [12] and Zhuk in [77]
independently proved the general CSP Dichotomy Conjecture. Using signifi-
cantly different algorithms they both showed that for a constraint language
I" containing all unary relations, CSP(I") is in P iff there exists a weak near-
unanimity operation which preserves I'.

Let us mention that aside from total clones, partial clones have also been used
in study of complexity of constraint satisfaction problems [66], 44 33, [19].
Hence we may anticipate that certain results in this area could be achieved
with the help of incompletely specified clones and hyperclones.
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7.2 Open problems

There is a number of open problems regarding the lattices of incompletely
specified clones and hyperclones that naturally arise from the results pre-
sented in this thesis.

In Section we presented the result from [20] about the cardinality of
intervals

()= {D C P, : D is partial clone such that DN Oy = C’}.

There are only 10 total clones on Ey whose intervals of this form are finite,
and the remaining ones are of continuum cardinality. On a two-element set
lattices of IS clones and hyperclones are isomorphic, and it would also be
interesting to study, similarly as in the case of partial clones, the sets of all
hyperclones whose total part is some total clone on FE,: whether they are
intervals and can we describe their position in the lattice £%, what is their
cardinality, etc.

Natural way to start this investigation would be to consider maximal clones.
For partial clones, it is proved in [ that if C' € {Ty, T, S, M }, interval Z(C')
consists of 6 elements, and Z(L) has cardinality continuum. Useful fact is
that by adding all nowhere defined partial operations to an arbitrary partial
clone we again obtain a partial clone. Unfortunately, we do not have the
same convenience for hyperclones. Namely, if we add to some hyperclone all
hyperoperations mapping everything to Es, the resulting set in general is not
the hyperclone, as illustrated by the next example.

Example 7.2.1 Using hyperoperations from the set Os U (cg,)n we can ge-
nerate a hyperoperation not in this set, as demonstrated in Figure [7.5,

flo 1 o | e | f(91, 92)
0]{0} {1} 0]{0,1}] {1} 0 {1}
1{1} {1} 11{0,1} | {0} 1| {0,1}

Y

Figure 7.3: The composition of the hyperoperations from Oy U (cg, ).

Although it seams that the lattice of IS clones could easily be embedded into
the lattice of hyperclones, the mapping n : Iy — Hj, defined by n(f) = f*,
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where

* _ {f(xl,,SCn)} ,f(xl,...,xn)eE
f(l‘1,...,:)§n)—{ Ek ’f(q;h”"xn):kk

is not homomorphism because it is not compatible with composition, as it is
shown in the following example.

Example 7.2.2 Let f be a binary and g1, g unary IS operations on Es such
that f(0,2) = f(2,2) =2, f(1,2) =1, g1(1) = 3 and g2(1) = 2. Than we
have

(f(91,92))<1) = f+ (91(1),92(1)) = f+(3>2)
= f(0,2) 1 f(1,2) 1 f(2,2)=2M 1M 2=3,

hence (f(g1,92)) (1) = {0,1,2}. On the other hand

(f*(g1,95)) (1) = (f)* (97(1), 95(1)) = (f)*({0,1,2}),{2})
= [(0,2)Uf(1,2)Uf(2,2) = {2} U {1} U {2} = {1,2}.

Thus (f(g1,92))" # f* (91, 93)-

Consequently, it makes sense to investigate IS clones on their own, for we
cannot simply transfer all results from hyperclones.

Since it is proved (in [I7] and [41]) that the sets of the form hPolp, i.e.,
the sets of hyperoperations that weakly preserve relation p, are maximal
hyperclones whenever p is from one of the Rosenberg’s classes (R;), (Ry), (R5)
and (Rg), it is natural to ask if the same holds for relations from classes (R2)
and (R3). On a two-element set it is not difficult to show that it holds

Mg:hpoz(o 1) and M, = hPol

10

o o oo
——_ o o
_ o = O
O = = O
— o O -
o, O
OO = =
— = =

(M} and M} are maximal hyperclones from Theorem [5.3.1)), which gives us
hope that it might be the case.

For every Rosenberg’s relation p the set hPol p is a maximal hyperclone if for
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each hyperoperation f not in hPol p there exists an operation f’ not in Pol p
which is generated by f and some operations from Pol p (Theorem .
This sufficient condition is used to prove the theorems concerning classes
(R1), (R4), (R5) and (Rg), in a way that the operation f’ is effectively con-
structed. What makes this construction pretty much straightforward in the
case of nontrivial equivalence relations, central relations and regular rela-
tions, especially the proof that all the auxiliary operations are in Pol p, is
the fact that all these relations are both totally reflexive and totally sym-
metric. On the other hand, bounded partial orders are just reflexive, and the
absence of symmetry results in more complicated definition of the auxiliary
operation gbp’ . and hence quite cumbersome proof of the fact that it preserves
a given order relation p.

Nevertheless, in general, permutational relations and affine relations are nei-
ther totally reflexive nor totally symmetric (with the exception of permuta-
tional relations corresponding to permutations on Ej with k/2 transpositions,
which are symmetric). This inconvenience still poses an insurmountable ob-
stacle if we try to use the same technique as in the solved cases. It seams
that this problem requires a different approach.

As we saw in Section [6.4] proofs that wPol p is a maximal IS clone if p is
from one of the classes (Ry), (R4), (R5) and (Rg) are much simpler than in
the case of hyperclones. Although we are still missing total reflexivity and
total symmetry for permutational and affine relations, their weak extension
is now equal to their full extension, which should be a great asset in over-
coming existing difficulties.

After completing previous tasks, another challenging problem would be to
describe all maximal hyperclones and maximal IS clones on a three-element
set, or even work towards the general completeness criteria for lattices £}
and L35
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Osaj Obpazay uuHu cacmasHu 0eo OOKMOpPCKe oucepmayuje, O0OHOCHO
O00KMOPCKO2 YMEeMHU4K0o2 npojekma Koju ce opanu Ha Ynusepzumemy y Hosom
Caoy. Illonywen Obpaszay yxopuuumu uza mexcma OOKmMopcKe oucepmayuje,
0OHOCHO OOKMOPCKO2 YMEMHUUKO2 NPOjeKmd.

[Lman TpeTMaHa nojaraka

Ha3us npojexra/mcrpaxnBama

Clones of Nondeterministic Operations / KiioHOBH HeJeTEpMHHHUCTHYKUX OIEpaIli]ja

Ha3uB HHCTUTYIHje/MHCTUTYIHja y OKBHPY KOjHX ce CIIPOBOIH HCTPAKMBAH>€

dakynreT TEXHUYKUX Hayka, YHuBep3utetr y HoBom Cany

Ha3uB nporpamMa y OKBHpPY KOI ce peajin3yje HCTPaKMBambe

MaremMaTHKa y TEXHHUIHU (JOKTOPCKE CTYH]je)

1. Onuc nogaraxka

1.1 Bpcra ctyaumje

Yxpamxo onucamu mun cmyouje y oxeupy xoje ce nodayu npuxkynsajy

JloxTopcka aucepraumja

1.2 Bpcre nogaraka
a) KBAaHTHTAaTUBHH

0) KBATUTATHBHH

1.3. Haune npukymbama nogaraka
a) aHKeTe, YIUTHULH, TECTOBU
6) KIIMHUYKE MIPOLEHE, MEAULIMHCKU 3alIUCH, EJIEKTPOHCKU 3PAaBCTBEHU 3aIIUCU

B) TEHOTHUIIOBU: HABECTU BPCTY

F) AIMHUHUCTPATUBHU IOAAN: HABECTU BPCTY

Il) y30pHH TKUBA: HABECTU BPCTY

) cammiy, hororpaduje: HaBECTH BPCTY

€) TeKCT: AKTyellHa IUTepaTypa y 00JIacTH HCTPaKHBAHA

K) Mara, HaBeCTH BPCTY

3) OCTaJ0: OIMHUCATH

HarpoHasHu opTail OTBOpeHe Hayke — OPen.ac.rs



1.3 ®opmart nogaTaka, ynoTpedspeHe cKkaje, KOMHYHHA [To1aTaka
1.3.1 Ynorpebsbenu copTBep U hopMar TaToTeKe:

a) Excel ¢hajn, naroreka

b) SPSS ajn, naroreka

c¢) PDF ¢ajn, natorexa

d) Tekcr dajn, naroreka

e) JPG ¢ajn, natoreka

f) Ocraino, naroreka

1.3.2. Bpoj 3anuca (ko KBaHTUTATUBHUX 10O/IaTaKa)

a) O6poj Bapujabiun

0) Opoj Mepema (MCIMTaHUKA, POIIEHA, CHUIMAaKa U CII.)

1.3.3. IloHoBIBEHA MEpEHA
a) na
0) He

YKOJIHKO je OATOBOp /1a, OATOBOPUTH Ha cieaeha murama:

a) BPEMEHCKH pa3Mak W3Me]]jy TOHOBJFEHUX Mepa je

0) BapHjabJie Koje ce BHILE IyTa MEpPe OJHOCE Ce Ha

B) HOBE Bep3uje (ajiioBa Koju caapike MOHOBJbEHA MEPEHha Cy MIMCHOBAHE Kao
Hamnowmene:

a) Jla
6) He

Axo je 002060p He, 0Opaziodxicumu

Ha nu hopmamu u cogpmeep omozyhasajy oemerve u dy20pouny 6aruoHocm nooamaxa?

2.1 Metopooruja 3a NpuKyIJbamke/TeHEPUCabe ToaTaka

a) CKCIICPUMCHT, HABCCTH THIL

2. [Ipukynibame nogaraka

2.1.1. Y okBHpY KOT HCTPKUBAYKOT HAIPTa Cy MOAAIM MPUKYIIJHCHH?

6) KOpCJIalMOHO UCTPAKNBAHLEC, HABCCTHU THUIL

H) aHaJIn3a TCKCTa, HaBECCTU THUII

1) OCTaj0, HABECTH IITa

Haronasnnu nmoprai oTBOpeHe Hayke — Open.ac.rs



HayuHy Oucyuniuny (axo nocmoje).

2.1.2 Hagecmu 6pcme mepHux uHCMpymMeHama uiu cmanoapoe nooamaxa cneyugpuunux 3a oopeheny

2.2 KBanurer nmoparaka v CTaHaapau
2.2.1. Tperman HeaocTajyhux nogaraka
a) [la mu marpura caapxu Hegoctajyhe mogatke? Jla He

AKO je oAroBop 11a, OATOBOPHUTH Ha ciieaeha murama:

a) Konukwu je 6poj Hemoctajyhux momaraka?
0) Jla mu ce KOpUCHUKY MaTpHIIe TIPETopydyje 3aMeHa HepocTajyhux nogaraka? Jla He
B) AKO je 0JroBOp /1a, HABECTH CYTeCcTHj€ 3a TpeTMaH 3aMeHe HeJ0CTajyhux mojaraka

2.2.2. Ha Koju Ha4YMH je KOHTPOJIMCAH KBaJUTET noaaTaka? Onucatu

2.2.3. Ha koju Ha4¥H je u3BpIICHA KOHTPOJIA YHOCA [TojIaTaKa y MaTpuIry?

3.1. TpermaH u yyBame oAaTaKa

3.1.1. llooayu he bumu oenonoganu y

3. Tperman nogaraka u npateha jokyMeHTanuja

3.1.2. URL adpeca

PENno3UMOpUjym.

3.1.3. DOI

3.1.4. Jla u he nooayu bumu y omeoperom npucmyny?

a) Ha
0) Ha, anu nocne embapea xoju he mpajamu 0o
8) He

Axo je 002080p He, Hasecmu pasnoe

Obpasnooicerve

3.1.5. llooayu nehe 6umu oenonosanu y penozumopujym, aiu fie oumu yyeanu.

3.2 Meranojaiy 1 J0KyMEHTaIIMja IoiaTaka

3.2.1. Koju cranmapx 3a meranoaarke he OUTH MpUMEHeH?

Haronasnnu nmoprai oTBOpeHe Hayke — Open.ac.rs



3.2.1. HaBecTu MeTaroaaTke Ha OCHOBY KOJUX CY HOJAIM JCTIOHOBAHH Y PEIIO3UTOPH]YM.

Ako je nompebHo, Hasecmu memoode Koje ce Kopucme 3a npey3umarbe nooamaxd, aHaiumuyKe u
npoyedypanne uHpopmayuje, Uxo80 KOOUparbe, 0emasbHe OnuUce eapujadiu, 3anuca umo.

3.3 Crpareruja u cTaHAapAx 3a YyBamke MoJaTaKa

3.3.1. Jlo xor mepuoza he momanu OWTH 9yBaHH y PENO3UTOPHjyMY?

3.3.2. lla mu he momaru Outn AenonoBanu oA mudpom? la He

3.3.3. la 1 he mmdpa Outn goctynHa oapelheHoM kpyry uctpakusaua? [la He

3.3.4. Jla i1 ce momany MoOpajy YKJIOHHTH U3 OTBOPEHOT IPUCTYIIA MIOCIe H3BECHOT BpeMeHa?
Jla He

O06paznoxuTa

4. Be30eHOCT MOJATAKA M 3aIUTHTA NOBEP/LUBUX HH(pOpManHja

Ogaj onesbak MOPA OuTH Moy mheH ako BalllM MOJAY YKIJbYUY]y JIMYHE MMOJATKE KOjU CE€ OJIHOCE Ha
YUECHHUKE Y UCTPAXKHUBAKY. 3a Ipyra UCTpaKuBama Tpeda Takol)e pa3MOTPUTH 3aIITHTY U CUTYPHOCT
ro/1aTaka.

4.1 dopmanHu cTaHAapAx 32 CUTYPHOCT WH(pOpMaIiyja/moaaraka

HcTpaknBaun Koju CIPOBOJIE HCIIUTHBAKA C JbYANMA MOPajy Ja ce MPUAPKaBajy 3aKOHA O 3aIUTHTH
nonaraka o ymunoctH (https://www.paragraf.rs/propisi/zakon o zastiti podataka o licnosti.html) u
oxrosapajyher HHCTUTYLIMOHAIHOT KOJIEKCa O aKaJeMCKOM UHTETPUTETY.

4.1.2. Jla mu je uctpaxkuBame 0j00peHo of cTpane eTruke komucuje? Jla He

Ako je onrosop [la, HaBecTH JaTyM U Ha3UB €THUYKE KOMHUCH]€ KOja je 0100pHiIa HCTPAXKUBAE

4.1.2. la v nofauy ykJjby4yjy JUYHE NOJATKe yyecHUKa y ucrpaxusamwy? la He

AKO je 0JIrOBOp J1a, HABEIUTE Ha KOjH HAUYWH CTE OCUTYPaJIM MOBEPJHHBOCT M CUTYPHOCT MH(pOpManyja
BE3aHMX 3a MCIIUTaHUKE:

a) Ioxaru HICY Y OTBOPEHOM TPUCTYITY
0) [Momanu cy aHOHUMU3UPAHU
1) Ocrano, HaBeCTH IITa
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5. JocTynHOCT mogaTaka

5.1. llooayu he bumu

a) jaeno oocmynnu

0) 00CMYNHU CAMO YCKOM Kpyey ucmpasicusaya y oopehenoj Hayuroj ooaacmu
y) 3ameopenu

Axo cy nooayu 0ocmynHu camo YCKOM Kpy2y UCHpadicueayd, Hagecmu noo Kojum Ycioguma Moy od ux
Kopucme:

Axo cy nooayu 0ocmynuu camo YCKOM Kpy2y UCMpaxicuéayd, Haecmu Ha KOju HAYUH MO2y
npUCmynumu nooayuma:

5.4. Hasecmu nuyenyy noo kojom he npukynmenu nooayu bumu apxusuparu.

6. YJiore u oAroBopHOCT

6.1. Hasecmu ume u npesume u mej aopecy 61acHuKa (aymopa) nooamaxa
Jesena Yoauh Opasen, e-mail: j_colic@uns.ac.rs

6.2. Hasecmu ume u npesume u meji aopecy ocobe Koja o0picasa Mampuyy ¢ nooayuma

6.3. Hasecmu ume u npesume u mejn aopecy ocobe xoja omozyhyje npucmyn nodayuma opyeum
ucmpadjcusauuma

Haronasnnu nmoprai oTBOpeHe Hayke — Open.ac.rs
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