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ABSTRACT 

Health issues are recently included into the mobile crowdsensing concept, in applications 

both at personal and at community level. The transmission of increased amount of recorded 

signals is a subject to bandwidth and energy constraints. As a part of computing vs. 

energy/bandwidth trade-off, crowdsensing applications propose a local analysis, performed in a 

wearable device. Such an analysis implies computationally efficient, blind and unaided 

processing, while most of the sophisticated analytical tools, including approximate entropy, have 

pronounced complexity and require active pre-processing to obtain stationary, noise- and 

artifacts - free data. 

A key component of this thesis is an explanation of a robust binarized modification of 

approximate entropy that ensures a speedy, energy efficient and blind implementation. Method is 

tested using the signals from laboratory animals exposed to stress. Same signals have already 

been used for entropy study, so a standard to which proposed method can be compared to exists, 

while the physiological aspects of this experiment are well documented. Stress is a major adverse 

factor in healthy population, and healthy population is the most likely consumer of self-

monitoring devices and corwdsensing applications.  

The proposed (X)BinEn method descends from cross-approximate entropy ((X)ApEn). It 

operates over binary differentially encoded data series, split into the streams of m-sized binary 

vectors. The alternations included to (X)BinEn are as follows: the vectors are binary, the distance 

is measured by Hamming distance and template matching (finding the similar vectors) is 

performed over the vector sets (cardinality 2
m
) instead of over the individual vectors (cardinality 

N). The realization of (X)BinEn can be cross-BinEn and auto-BinEn.  

Binary differential encoding is insensitive both to non-stationarities and to a reasonable 

amount of artifacts, so a blind analysis without the pre-processing is sufficient. It is also an 

extremely coarse procedure, where signal space is reduced to a simple binary decision whether 

the next sample increases or decreases in respect to the current one, while the absolute value of 

signal change is lost. Applying both (X)ApEn and (X)BinEn to the same signal sets and 

comparing the results, it was shown that the information located in binary direction of signal 

changes is sufficient for (X)BinEn estimation. Loss of information stored within the signal 

amplitude reflects in decreased (X)BinEn sensitivity, i.e. in inability to capture a small amount of 

changes, but it also has a positive effect of filtering out unwanted binary bias and parameter 

instability.  

The complexity of (X)BinEn procedure is linear, it operates with 2
m
 histograms and pre-

processing is not necessary. Considering (X)ApEn, the complexity is quadratic, it operates with 

N real vectors and pre-processing includes trend and artifacts removal and stationarity check.  

It was proven that a special case of auto-BinEn is equivalent to Shannon unconditional 

binary entropy. It was also shown that binary conditional entropy is embedded into the auto-

BinEn procedure and its appending as a complementary option would be at no processing cost. It 

enables a dynamic observation of complexity changes related to inter-samples dependency, in 

respect to the complexity of the same signal but with assumed statistically independency. 

(X)BinEn, however, is not a substitute for (X)ApEn, nor for any of its follow-ups. It is 

intended for a quick, robust and blind local analysis in unprofessional wearable devices where 

(X)ApEn-like procedures cannot be applied due to their quadratic computational complexity and 

requirements for semi-automatic pre-processing.  

 



 

 

SAŽETAK 

Koncept mobilnog ‘crowdsensing’-a uključuje i merenje fizioloških parametara, za 

individualnu primenu al i za opštu statistiku. Mobilno praćenje svih (ne samo zdravstvenih) 

parametara podrazumeva prenos velike količine podataka, odnosno zauzeće propusnog opsega i 

utrošak energije. Aplikacije koje koriste ove usluge su prešle na lokalnu analitiku, rukovodeći se 

zaključkom da se obradom na licu mesta postižu uštede. Podrazumeva se da obrada na licu mesta 

može da se radi automatski, da troši malo procesorskog vremena i ne zahteva predobradu 

snimljenih parametara. Na nesreću, analitičke metode koje se koriste u obradi biomedicinskih 

podataka (a jedna od njih je aproksimativna entropija) zahtevaju stacionarne signale, bez šuma i 

artefakata a dodatno imaju visoku kompleksnost.  

Ova teza je posvećena binarizovanoj modifikaciji aproksimativne entropije. Modifikacija 

omogućava brzu, energetski efikasnu i automatsku primenu. Testovi su sprovedeni na 

laboratorijskim pacovima u stresnim uslovima, za koje referentne vrednosti već postoje. Stres je 

izabran namerno, jer zdrava ljudska populacija na koju su i uređaji za samostalno permanentno 

merenje i crowdsensing aplikacije usmereni, po pravilu nema drugih zdravstvenih problema sem 

stresa.  

(X)BinEn je nastao razradom postojećeg postupka unakrsne entropije ((X)ApEn). 

Definisan je nad binarnim diferencijalno kodovanim vremenskim nizovima, razdeljenim u 

binarne vektore dužine m. Za procenu razmaka između vektora koristi se Hemingovo rastojanje, 

a sličnost vektora se ne procenjuje između svakog vektora pojedinačno, već između skupova 

vektora.  
 Binarno diferencijalno kodovanje nije osetljivo na nestacionarnosti in a artefakte (u 

razumnim količinama). Dozvoljava automatsku analizu bez predobrade. Međutim, to je veoma grubo 

kodovanje koje svodi proctor podataka na jednostavnu binarnu odluku da li naredni odmerak raste ili 

opada u odnosu na prethodni. Poredeći rezultate (X)ApEn i (X)BinEn analize istih signala, pokazalo 

se da je informacija zaostala nakon binarnog diferencijalnog kodovanja dovoljna da registruje 

(relativne) promene entropije. Neizbežan gubitak informacije (zbog binarizacije) očitava se i 

smanjenju (X)BinEn osetljivosti, tj. u nesposobnosti da registruje sitne promene. Međutim, 

binarizacija ima i pozitivne efekte, upravo smanjena osetljivost ‘filtrira’ nepoželjno forsiranje 

nula i sprečava nestabilnost rezultata pri promeni parametara.  

Kompleksnost (X)BinEn procedure je linearna, dok je kompleksnost (X)ApEn procedure 

kvadratna.  

Za poseban skup parametara, auto-BinEn je ekvivalentna Šenonovoj entropiji.  

(X)BinEn, nije zamena ni za (X)ApEn, ni za i jedan od njenoh sledbenika. Njena primena 

je u uređajima za samo-očitavanje vitalnih parametara, gde bi bilo korisno primeniti (X)ApEn i 

slične procedure, ali to njihova visoka kompleksnost i potreba za vizualnim podešavanjem 

parametara sprečava.  

 

 

 



 

 

1. Introduction 

Approximate entropy (ApEn) is among the most exploited nonlinear techniques to 

quantify the complexity of a time series. The introductory ApEn contributions have 

reached an amazing number of almost 4000 citations.  The fascinating increase of ApEn 

quotation rate started to be graphically highlighted in scientific publications. The role of 

ApEn as a supporting tool for biomedical data analysis has been approved by thousands 

of pre-clinical and clinical studies: e.g. for neural signals – in sleep, in Alzheimer’s 

disease and in epileptic seizures – but more prominently, it was used for long and short 

cardiovascular signals of various pathologies.  

In spite of vast and firmly established implementation, the activities on ApEn 

improvement have never ceased, splitting the research efforts into the two lines. The first 

line is devoted to the variations of entropy estimation tools, like SampEn, CApEn , 

KNNCE, FuzzyEn, MultiScaleEn, ApEn based on wave mode and also to the algorithms 

for speeding up he estimation process. The other research line is dedicated to the problem 

of parameter choice that influence the value of ApEn estimates and may induce biased 

and inconsistent results. These contributions are predominantly devoted to the threshold 

selection problems and to the temporal lags and scaling. 

 The aim of this thesis is to analyze Binarized approximate entropy which is 

proposed for novel applications, in a surrounding when a constant monitoring of 

physiological parameters become a way of life, and not only during the sporting 

activities.  



 

The Thesis is organized as follows: Chapter 2 gives a brief but necessary 

introduction to cardiovascular signals and the corresponding derived time series. Chapter 

3 introduces various forms of Entropy as a regulatory measure, outlining the roles of 

famous approximate and sample entropies (ApEn and SampEn). It also explains the 

known problems of entropy estimates. Without the pretension to present all of countless 

entropy improvements, Chapter 4 discusses the major ones, Fuzzy, Multiscale and 

Conditional entropy and briefly, in Chapter 5, introduces a concept of Joint Symbolic 

Dynamic and the entropies defined within it.  

The Chapter 6 is a core of this thesis, as it discusses the concept of Binarized 

entropy in crowdsensing and individual environment, and compares it to the classical 

entropy measures. The concept is tested using artificial data, as well as pulse interval and 

systolic blood pressure signals recorded from the laboratory rats.  

The thesis is a segment of broader study that considers entropy and cardiovascular 

signals, under the shield of TR32040 research project. A brief recap of the previous 

contributions are included within the Chapters 2 and 3.  

 

2. Cardiovascular signals and systems 

Homeostasis is a term that usually appears in a description of a certain system, 

regardless of whether the system is opened or closed. The term comes from the phrase 

milieu interieur that was generated in 1865 by Claude Bernard, and it was used in a 

connection to a living organism. Today, homeostasis can be thought of as the element in 

the organ system which regulates its inside, trying to keep the system in balance at all 

times.  

When it comes to the system regulation, a lot of changes in balance, and a lot of 

regulation mechanisms are necessary in order to facilitate homeostasis. Based on the 

given life system parameter, an organism can be a regulator, whose job is to keep the 

parameter stable despite the variations in the environment, or a conformer, whose job is 

to let the environment determine the parameter. What is good when it comes to the 



 

homeostasis is that it enables an organism to work effectively in a variety of different 

environmental conditions. Some of the functions that are controlled by homeostasis are 

blood pressure, heart rate, breathing and temperature. 

There are at least three separate elements present in each homeostatic 

mechanisms. The first element is called sensory receptor, and its function is to monitor 

and react to any kind of changes in the environment. When a change in the environment 

does occur, the receptor sends the information to the control center (integrators) that 

determines the range at which a variable is kept. Integrators can be seen as control points 

that collect the information from one or more sensory receptors, and extract the correct 

response from the effectors. Control centers are usually found in the brain for most of the 

homeostatic mechanisms. When it comes to muscles and glands, brain is the control 

center that excites them. Once the effectors pick up a signal they influence a change that 

corrects the deviation that has occurred through enhancing the deviation with positive 

feedback, or through depressing the deviation with negative feedback. 

The purpose of a positive feedback mechanism is to accelerate or enhance the 

output that has occurred as a result of an already activated stimulus i.e., they are created 

in order to push levels out of normal ranges. In order to do this, there is a series of events 

that initiates a cascading process which enlarges the effect of the stimulus. However, in 

spite of the advantages, this process is not used by the body very often because the 

acceleration might become uncontrollable. Positive feedback mechanisms are present 

during the childbirth, when they release oxytocin which intensifies contractions. On the 

other hand, negative feedback mechanisms are responsible for the reduction of the output 

or activity of an organ or system to its regular scope of functioning. They occur within 

systems such as blood pressure regulation.  

The disturbance of homeostasis is called homeostatic imbalance, and it can lead to 

a disease. The decrease of the function of control systems results in destabilization of the 

internal environment, which is why a system becomes more susceptible to illnesses. The 

decrease of the function of control systems can also be connected to aging, and physical 

changes that are usually associated with aging are in return connected to homeostatic 

imbalance. In some (the most severe) cases, homeostatic imbalance leads to death. 



 

Patients who suffer a heart failure belong to this group because their negative feedback 

mechanisms get overwhelmed by the destructive power of positive feedback 

mechanisms. 

 

2.1. Central and peripheral nervous system 

The nervous system is an important organ that consists of a network of neurons. 

The neurons receive, integrate, and transmit the information that coordinates all the 

actions and body functions. The nervous system is divided into the central nervous 

system (CNS), and peripheral nervous system (PNS). The CNS consists of the brain, 

spinal cord, and retina, whereas the PNS consists of sensory neurons, ganglia, and nerves 

that connect them to each other and to the CNS. The complex neural pathways are 

responsible for the connections between neural regions, and they allow normal 

functioning, and information integration and transfer. The enteric nervous system, one of 

the PNS’s subsystems, is one of the few that can function independently, and it controls 

the gastrointestinal system.  

The main function of the peripheral nervous system is to connect the central 

nervous system to the limbs and organs. It is exposed to all kinds of toxins and 

mechanical injuries due to the fact that it is not protected by bone or blood-brain barrier 

like the CNS. It is divided into the somatic nervous system and the automatic nervous 

system (ANS). 

The basic unit of the nervous system is neuron. Neurons usually group together 

forming nuclei and ganglia, and sheets called laminae which are found in the grey matter 

or specialized ganglia of the PNS. Neurons transmit information through their axon (a 

thin fiber that conducts neuron’s action potentials to the synaptic junctions, which then 

transmit the effect through neurotransmitters), which leads to the modulation of the 

activity of the organ that receives the synaptic information and manifests as inhibition or 

excitation. Physical stimuli activate the sensory neurons and send a signal to the central 

nervous system informing the system about the overall body condition and the external 

environment; motor neurons are responsible for the connections between the nervous 

system and effector organs, and they are located in the CNS or in peripheral ganglia. The 



 

highest percentage of neurons belongs to the central neurons, which make input and 

output connections only with other neurons. The interactions of all the neurons from the 

neural circuit create an organism’s perception of the world and its surrounding, and 

determine organism’s behavior.  

 

 

Figure 1.1: Graphic representation of the nervous system 

 

The way in which neurons function can be looked at as firing sequences of action 

potentials. The action potentials are always treated as identical stereotyped events in 



 

neural coding studies, despite the fact that they can vary in their duration, amplitude or 

shape. The difference between thin and thick neurons and axons is that thin need less 

metabolic expense to produce and carry action potentials than thick axons, but thick 

axons in return convey impulses faster. A lot of neurons have insulating sheaths of 

myelin around their axons in order to make a balance between the minimal metabolic 

expense and fast conduction. Peripheral nerves usually have the myelin sheath along the 

axon in sections about 1 mm long, punctuated by unsheathed nodes of Ranvier, which has 

a high density of voltage-gate ion channels. The sheath is the part of a neuron that allows 

fast saltatory action potential propagation from one Ranvier node to the next one. When it 

comes to the nerve conduction velocity, it can vary from 45-70 m/s in nerve fibers, 

through 0.2-0.4 m/s in the heart muscle, to 0.013-0.05 m/s in time-delays fibers found 

between atria and ventricles in the heart. 

The information which is transmitted by neurons is assumed under the pattern of 

action potential production. Measuring and characterization of the way stimulus 

attributes
1
 are represented by neuron action potentials or spikes is studied within neural 

coding. There are suppositions that temporal (the exact timing of action potential) and 

also rate coding (the number of action potential produced in time unit) contribute to the 

nervous system’s ability to differentiate between complex objects and produce graceful 

movements. Due to this, even the smallest change in inter-spike-intervals generates 

differences in rate and timing of the neurons output, which can be identified as unwanted 

noise. In the Figure 1.2., you can see the performance of a neuron with low and high 

amount of noise of the input. The data given in the figure come as a result of the neural 

model simulation. 

 

2.2. Neurocardiology and autonomic nervous system 

Autonomic nervous system (ANS) is divided into sympathetic and 

parasympathetic (vagal). The main function of the ANS is to preserve homeostasis 

through the regulation of vial functions. The sympathetic and parasympathetic 

                                                           
1
 Stimulus attributes are light or sound intensity, or motor actions like direction of an arm or leg movement 



 

subsystems have adverse effect on the organs they control, and the balance between them 

changes in order to achieve the optimal working point depending on the internal and 

external stimuli. The actual effect the two subsystems have on the organs they control is 

not universal, but represents the stimulation of one component which leads to the effects 

that are opposite to those produced by the stimulation of the other component. The 

parasympathetic nervous system (PSNS) is responsible for keeping the body function 

stable, whereas the sympathetic nervous system (SNS) is responsible for dealing with 

stress and it activates fight or fight response.  

In the Figure 1.2., you can see the illustrative examples of the neural behavior 

induced by different levels of noise at the input. Fig.1.2.a, for example, shows 

convergence of signals onto a single neuron. The noise levels scale in proportion to the 

number of signals or to its square root, if the noise of signal is perfectly correlated or not, 

respectively. Fig.1.2.b shows the signal propagation through a series of neurons. In this 

case, noise levels increase in proportion to the square root of the number of successive 

neurons. Fig.1.2.c. shows that the network loops result in the build-up of correlated noise. 

 

 

Figure 1.2: The neural network induced by different levels of noise  

The SNS is the system that stimulates organs’ functioning in most of the organs 

such as heart. When there is an increase in sympathetic outflow, it influences the increase 



 

in average heart rate, bronchodilation, pupillary dilation, decreased muscle fatigue, 

elevated blood glucose, etc. The sympathetic nervous system can react in stress induce 

Figure 1.2: Variability in neuronal firingd situations with global or localized effect. 

Contrary to this, the PSNS constrains organs’ functioning, which is why the increased 

parasympathetic stimulation leads to a decrease of the average heart rate and stroke 

volume, systemic vasodilatation, constriction of the pupils, and increased secretion in the 

digestive tract.  

  

Figure 1.3: Heart innervation 

 

The primary place in brain that regulates sympathetic and parasympathetic 

outflow to the heart and blood vessels is called medulla, and it is found in the brainstem 

above the spinal cord. All the autonomic influences that are directed to heart start here. 

What receives sensory input from different systemic and central receptors such as 

baroreceptors and chemoreceptors is the nucleus tractus solitaries, or NTS, but medulla 

also gets information from other parts of the brain such as hypothalamus. The 

hypothalamus and higher centers are very important for the stimulation of cardiovascular 



 

responses to emotion and stress, because they modify the activity of medullary centers. 

The heart itself is stimulated by vagal and sympathetic fibers (Figure 1.3). The right 

vagus nerve stimulates the sino-atrial (SA) node, and the left vagus nerve stimulates the 

atrio-ventricular (AV) node. Nevertheless, the overlaps in the anatomical distribution 

may sometimes be great. Atrial muscle is also stimulated by vagal efferent, unlike the 

ventricular myocardium which is rarely stimulated by vagal efferent. On the other hand, 

the sympathetic efferent nerves are present in the atria (especially in the SA node), 

ventricles, and the conduction system of the heart. Heart’s reaction time to sympathetic 

stimulation takes a few seconds and can be considered slow, contrary to the almost 

instantaneous reaction time to the parasympathetic modulation.  

Cardiovascular oscillations can be seen as a window into cardiovascular 

regulation and underlying regulatory mechanism, but other factors such as vasculature’s 

response, CNS and reflex pathways with arterial baroreflex also influence cardiovascular 

variabilities (CVV) and frequency bands. Since non-autonomic and nonbaroreflex 

pathways have an important effect on cardiovascular variabilities, it can be difficult to 

correlate the changes in the strength of certain oscillation to the change in autonomic 

control. CVV indicate the neural cardiovascular modulation dynamics, more than average 

autonomic tone, which is why a simple assessment of CVV parameters will not give a 

specific measure of the average circulation tone. Nevertheless, the CVV analysis can 

indicate the features of overall CV regulation, which is measured through adequate 

approach to the complex interactions between the mechanisms that are involved.  

 

2.3. Cardiovascular oscillations and variability 

The cardiovascular system is important for every living organism due to its 

function of removing the waste materials produced in the cell’s working cycle, and 

delivering the necessary supplies, thus enabling the maintenance of the vital functions. In 

order to do this, the cardiovascular system consists of highly specialized subsystems 

which interact with each other, and compete for resources in situations such as the 

maintenance of the cerebral circulation during a serious hemorrhage. Each of these 

subsystems has a local regulatory mechanism, but they have to interact with humoral 



 

factors and reflex neural commands, in order to enable the efficient blood delivery. The 

reflex neural commands occur as result of a change in some of the controlled variables, 

like blood pressure. The rhythm of the regulatory mechanisms is visible in beat-to-beat 

recordings, and they produce constant adjustments of cardiovascular variables. These 

constant variations are called cardiovascular variability (CVV) or cardiovascular 

oscillations, and they appear in a range from very slow rhythms, to those that are faster 

than the heart rate.  

There are a lot of cardiovascular parameters, but only some of them are easily 

measured noninvasively or inexpensively. Parameters such as ECG and BP are measured 

during the standard clinical practice, and they show the short-term variables of heart rate 

and blood pressure. What is important when it comes to the ECG and BP measuring is 

that HRV and BPV can be easily derived. The mentioned parameters can be determined 

using almost any of the available ECG and PB monitoring devices, which is why they are 

used in every research and clinical study. However, in spite of being easily attainable the 

two parameters are very complex, and the interpretation and analysis of their values 

should be done carefully. 

Instantaneous heart rate is usually described as reciprocal of the period between 

two successive heart beats (RR interval, Figure 1.3), and in order to obtain a proper 

identification of HR, the suggested ECG resolution is at least 4ms, sometimes reduced to 

1ms. In certain cases, such as good parameterization of ECG waveform, or measurement 

of the patterns in ECG that reflect the atria activities (P wave) and ventricular 

repolarization (T wave), it is necessary to do more accurate measurements. R peak is 

most often used to represent the fiducial point of HR extraction, which is why the 

produced time series is referred to as RR-series. The RR series is the duration of 

 

Figure 1.3: ECG (upper line) and the corresponding blood pressure (BP) waveforms (lower 

line). Distance between the ECG peaks (R peaks) are RR intervals. Local maxima and 

minima in BP signal correspond to systolic and diastolic BP (SBP and DBP). Note a delay 

of R peak in respect to the corresponding SBP peak. 



 

successive heart beats and its reciprocal time series. The formula HR=60/RP[s] represents 

the series of instantaneous heart rate per minute – [bpm]. The heart rate is measured in 

beats. The linear quantification of heart rate variability can depend on the choice of the 

observed signal, which comes as a result of nonlinear relationship between HR and RR 

signals.  

When it comes to the BP monitoring, it can be done in a number of ways –

through invasive methods, by the use of intra-arterial catheter, or through noninvasive  

techniques that are based on the Penaz principle which says that “a force exerted by a 

body can be determined by measuring an opposing force that prevents physical 

disruption’’. BP devices that are used to measure the time series noninvasively are those 

such as Finapres (FINger arterial PRESsure). They were first used in 1980s, and they 

were the first devices that allowed reliable noninvasive measurements of beat-to-beat 

blood pressure signal. Along with the wide-spread use of the finger cuffs, many studies 

dealing with the accuracy and precision of this kind of measurements started to appear. 

These studies have proved that the use of finger cuffs is limited, due to the fact that even 

the slightest changes in finger cuff’s positioning and tightness can result in wide 

variations in readings in the same patient. Because of this, finger cuffs are typically not 

used as an absolute assessment of blood pressure levels, but they can give a reliable 

assessment of beat-to-beat BP variability, which is why they are routinely used for 

monitoring BP regulation during the standard reflex tests in cardiovascular laboratories. 

There are three elements that are often extracted from the BP waveform such as 

systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure 

(MBP). The SBP represents the maximum BP value during each beat; the DBP represents 

the minimal BP during each beat; whereas the MBP represents the mean pressure 

between two diastolic time instants. Since the regulation mechanisms of SBP and DBP 

are somewhat different, they allow a more detailed BP parameterization. In those cases 

when it is not possible to get anything but the BP, the BP value should be used for 

estimating the intervals between the consecutive hear beats. This kind of estimation is 

done through the determination of the intervals between consecutive maxima of the BP 

wave and resulting time series, which is known as pulse interval series (PI). 



 

The variations in the heart beat that appear during the resting conditions are, in 

fact, the adjustments of the beat-to-beat control mechanisms. Efferent sympathetic and 

vagal activities that go to the sinus node are regulated by central and peripheral 

oscillators, which produce rhythmic fluctuations in efferent neural discharge. This 

discharge manifests itself in short-term and long-term oscillations in the heart period. The 

careful analysis of the oscillations can give some information regarding the state and 

function of the central oscillators, sympathetic and vagal efferent activity, humoral 

factors, and the sinus node. 

The analysis of the frequency at which the HRV and BPV oscillations appear 

serves to show that HRV’s and BPV’s periodic oscillation tends to combine into several 

frequency bands. There are two frequency bands present in the heart rate and blood 

pressure in humans and animals. Frequency band for the upper respiration is between 

0.15 Hz to 0.4 Hz, and it is transmitted through the parasympathetic autonomic branch. 

The other frequency band is slower, with the range from 0.05 Hz to 0.15 Hz, and it 

encompasses the dominant 0.1 Hz component in humans. The frequency content can be 

described as specious dependent because the body’s position and size determine the 

respiration and heart rate. As a result of this, the slow component in dogs is 0.14-0.3 Hz, 

and 0.4 Hz in rabbits and rats. The slow component is also called as ‘Mayer waves” 

despite the fact that Mayer had actually observed much slower oscillations. In 1951, 

Gayton and Harris introduced the term vasomotor waves to describe these slow 

oscillations, unrelated to respiration. It is still questionable where these waves exactly 

come from, but it is clear that they are connected to the synchronous oscillations of 

efferent sympathetic nervous activity. 

In addition to these two dominant frequency bands, there are even slower 

frequency bands present in humans – very low frequencies (VLF) with the range from 

0.0003 Hz to 0.05 Hz, and ultra low frequencies (ULF), but they are not studied much. 

The VLF usually reflect thermoregulatory cycles and plasma renin activity, however, it 

still has not been studied enough, and it is not advisable to interpret its values when they 

are taken from recordings shorter than five minutes. On the other hand, the ULF include 

circadian rhythms that reflect determinants like changes in activity, posture, breathing, 

autonomic outflow, state of personal arousal and a number of behavioral variables. 



 

However, despite the possible clinical applications, slower rhythms have not been 

described fully, and it is still unknown where they originate and what their physiological 

correlates are.  
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Figure 1.4: ECG and BP waveforms coupled by renal 

sympathetic neuronal activity. 

 



 

 

 

 

3. Entropy as a regulatory measure 

3.1.Estimating entropy from a time series 

  There are partly random chains of symbols, such as s1, s2, s3…. that can come up 

in almost all sciences. These chains are drawn from a finite alphabet (like spins in one-

dimensional magnets, written texts, DNA sequences, geological records of orientation of 

the magnetic field of the earth, bits of storage and transmission of digital data), and here 

we will talk only about them. However, it should be noted that our conclusions can also 

be applied to countable alphabets, too.  The most important thing when it comes to these 

finite alphabets is the degree to which the sequences can be ‘compressed’ without the loss 

of important information, which was first noticed by Shannon (1949) in a connection to a 

probabilistic context. Shannon (1949) was the one who managed to prove that entropy (or 

average information content) h represents the relevant quantity, and that it corresponds to 

the thermodynamic entropy of the spin degrees of freedom in the case of magnets. If we 

are talking about complex and long range correlations, the estimation of the entropy can 

be very demanding. In order to do the estimations well, it is necessary to fully understand 

the correlations for optimal compression and entropy estimation, since the h estimates 

will also be the measure of the degree to which the structure of the sequence is 

understood.  

  We would also like to see how this applies to chaotic dynamical systems. To do 

this, we start with the time series xt, t-1, …..,N,  where time is discretized, but where xt  is 

continuous. For reducing this to the case mentioned above, it is necessary to discretize xt 

by defining a partition    in the phase space where all elements have diameter of    The 

time series are represented with the s1, s2 . . . , st, . . . , Here,     , which means that xt 

is in the  -th element of   , which causes ‘symbolic dynamics’. This kind of entropy 

converges to a finite non-zero value hKS (metric entropy) for    , in those cases when 

the system that generates the time series is chaotic (Kolmogorov , 1958, 1959; Sinai, 



 

1959). All of this makes the measuring of the entropy of a symbolic dynamics extremely 

important if we want to see whether a system is chaotic or not. What is more,  

Kolmogorov (1958, 1959) and Sinai (1959) claim that it is not even necessary to take the 

    limit, due to the fact that there are ‘generating’ partitions (eventually infinite, but 

countable) whose entropy is hKS. However, in most cases, generating partitions are not 

known for chaotic systems. The exceptions to this rule are 1 – d maps where all the 

partitions into monotonic laps are generating. In the case of Henon map (x,y)→(1.4 – x2 + 

0.3y,x), there is no strict construction of a generating partition, in spite of the fact that 

there are strong indications of a heuristic argument based on homoclinic tangencies that 

leads to a correct result. 

  Estimating an entropy can be very demanding, even in those cases when there are 

no problems in finding a good partition. The difficulties always arise when there are 

strong long range correlations, but they in turn help us get higher compression rates, due 

to the fact that they reduce the uncertainty of yet unseen symbols. However, finding those 

correlations, and taking them into account can turn out to be difficult due to the 

exponential increase of the number of different blocks ("words") of symbols with the 

block length.  

  This problem can be somewhat overcome in the case of natural languages through 

the use of subjective modes, which work because of the fact that humans know the 

structure of their own language well enough to have an opportunity the guess most of the 

information that is given on single missing letters.  In the past few years, algorithms that 

are based on this idea have been improved a lot, but they are still not reliable, or fast, and 

they are still dependent to natural languages. 

  The most truthful and objective method that can be used is comprised of counting 

the frequencies of all blocks up to a certain length and estimating the probabilities from 

them. Given an alphabet with d symbols, for example, it most often breaks down when 

     (in which case n represents the block length), which gives       for written 

English. It is clear that there significantly longer correlations in this type of cases 

(orthographic, syntactic, semantic) that cannot possibly be taken into account in this way, 

and which further lead to the overestimation of h in case that sufficient case is used. In 



 

case that we do not use a lot of care, it is possible to get underestimations, as you will see 

below. 

  New and enhanced methods that into account that what one wants to know is in a 

connection to those long blocks, which have high probability. Because of this, the 

correlations are to be regarded selectively, depending on how important they are. 

Methods based on Lempel-Ziv coding are the best known methods that work in this way. 

In them, them string is coded only by breaking it into non-overlapping "words", and the 

code length used for specifying the string of words is an upper bound for Nh. The most 

efficient way of doing this is by preparing a "dictionary" of words in the form of a prefix 

tree. The prefix tree is actually a rooted tree where every single relevant word is attached 

to a leaf in a way that branch that is common to any two leaves corresponds only to their 

longest common prefix. In other words, word y is a prefix of another word x only if the x 

word can be obtained by concatenating one or more letters to y. Grassberger (1989) and 

Sheilds et all (1992) have also studied an estimator of h that is based on similar ideas and 

uses similar trees, but, unlike here, does not give upper bounds. 

  The last type of method that will be mentioned here is related to a method for 

earning maximal long time profit in a game where one has d different options at any time 

step. Because of this, these methods are usually referred to as "gambling" methods. The 

capital is placed on option i, then multiplied by d, in the case that the last option is 

actually realized, but the money placed on all the other options is lost. The optimal 

strategy of this method consists in sharing the total capital K1 at time t among all options 

a according to their probability p(a). The expected gain in this method depends on the 

entropy - a factor d|e
h
 per time step. 

  At this moment, it would be necessary to take a step back in order to show that 

what has been mentioned above is not just a superficial coincidence, but a real efficient 

algorithm that can be used for the estimation of h. As it can be found in the literature, 

Shannon theory is entirely based on probabilistic concepts and deals only with average 

code lengths. Modern literature on information theory is, on the other hand, mostly 

concerned with individual sequences and the estimation of their shortest codes. The that 

main flaw of Shannon theory seems to be the fact that it does not take into account the 



 

information that is needed for the description of the probability distribution itself. 

However, this is completely irrelevant in Shannon theory whose main purpose is the 

transmission of very long sequences with moderately complex constrains, because the 

description of the distribution is significantly shorter than the description of the actual 

string. However, this claim is not correct. 

  Kolmogorov, Chaitin and others have been led by their desire to completely 

exclude probabilistic ides from the equation, which is how they came to algorithmic 

information theory. Based on the same ideas, but a more practical point of view was 

given by Rissanen himself. His theory is called minimum description length (MDL) 

principle, and he states that: "a 'good' encoding of a string should be one which 

minimizes the total code length" (Rissanen, J., 1994). This theory corresponds to Occan's 

razor - a good theory is a short theory, when it is applied to a string which itself is a 

description of some physical phenomenon. 

  Rissanen applied the MDL principle to entropy estimation and coding, and termed 

the resulting method - context algorithm. His point of view will later be discussed in 

more details. At this point, it is just worth mentioning that there is no need to be as 

profound as Chaitin and Rissanen, and that it is actually possible to merge these with 

probabilistic ideas. Bell et all (1990) offer the best example of this. In fact, this type of 

algorithms is implemented in most modern text compression routines.  

 

3.2. Block entropies 

  Here, we will look at the one-sided infinite sequences         where    

           . In the majority of examples, we plan to deal with d=2, but everything is 

also true for d>2 with only small modifications. It is assumed that these are realizations 

of a stochastic process s1, s2,. . . with probabilities 

                                                    (3.1) 

These probabilities are often considered as stationary, in which case we can put the index t 

on pt(s1, . . . ,sn) and define block entropies,  

                                         (3.2) 



 

These entropies measure the average amount of information contained in a word of length n. 

The different entropies, 

                                                   (3.3) 

  Provide us with some new information about the n-th symbol in case that the 

preceding (n -1) symbols are known. Here,                 represnts the conditional 

probability for sn being sn, conditioned on the previous symbols s1¸ . . . ,sn-1. The Shannon 

entropy is  

                    (3.4) 

  In case that all correlations and constrains are taken into account, the equation 

measures the average amount of information per symbol. The approach to the limit is 

monotonic, that is all hn are upper bounds on h.  

  The first step of calculating h from a finite sequence of length N is usually the 

estimation of all word probabilities p(s1, . . . , sn) up to some fixed n through the standard 

likelihood estimate,  

            
      

 
         (3.5) 

  In this equation ns1. . . sn represents the number of occurrences of the word s1, . . . 

,sn. Technically speaking, the denominator should only be N – n + 1, but this difference is 

trivial. From the equations above, it is further possible to calculate     by including them 

into the equation                                    .  In the end, the estimator 

   can be calculated by computing hn and extrapolating, or as               . 

  In practice, a lot of difficulties can arise if N is not very large and the limit in the 

fourth equation is not reached fast. These difficulties usually appear due to the fact that, 

in those cases when it is necessary to determine p(s1, . . . ,sn) correctly, the number of 

different possible words of length n exponentially increases along with n, as well as the 

necessary minimum length N of the sample sequence. What this means is that the 

probability estimates             (used for the determination of     estimates), already 

go through strong oscillations for moderate block lengths n. This usually leads to the 

underestimation of    estimates. These calculations can be easily understood by looking 



 

at the expected value of    . Using the Kullback-Leibler (1951) inequality, we come to 

the following calculations: 

         
        

 
   

        

         
     

        

 
                     

  

  
          

 
                              (3.6) 

A systematic underestimation of     will exist as long as there are oscillations.  

Harris (1975) gives us a detailed calculation of the expectation value of     up to second 

order in N: 

 

         
   

  
 

 

          
 

          
                        (3.7) 

  In this particular equation M represents the number of blocks (s1, . . . ,sn) with 

p(s1, . . . ,sn)>0. It is a direct way to correct for the leading         bias in     (the 

second term on the rhs), since the number of different observed words usually turns out to 

be a good predictor for M. Herzel (1988), and Caswell and Yorke (1986) also use 

       correction term.  1/N
2
 includes unknown probabilities p(s1, . . . ,sn), and it can 

never be calculated accurately. In this term, it is not sufficient to replace the probabilities 

by            .  

  Grassberger (1988) tried to make an alternative approach where only observables 

appear in the correction terms. He assumed that each          is  a random variable in 

itself, and that it should follow a Poisson distribution in case              . This 

further leads to an asymptotic series in which higher order terms can be used only for 

increasingly large N. Modified Grassberger’s equation, based on what has just been 

mentioned,  is: 

     
  

 
            

 

  

    
  

    
  

        (3.8) 

  In this equation, index j counts the blocks (s1, . . . ,sn) for which         >0, and 

     represents the  logarithmic derivative of the gamma function. As it can be seen, the 

leading        correction is the same as in the equation 2.7. 



 

  What we wanted to do next is to apply the calculations from the equation 2.8 and 

the native estimate based on the equations 2.3 and 2.5 to the Henon map with standard 

parameters                     
 . In order to convert this equation into a bit 

sequence, we used a binary partition like Grassberger and Kantz (1985). We then 

compared the results to the Lzapunov exponent, which is determined by iterating the 

dynamics. (Thanks to Pesin’s identity (Ruelle, 1981), we knew that the positive 

Lyapunov exponent of the Henon map corresponds to the entropy.) As it can be seen in 

Figure 2.1 (below), the convergence of the truncated entropy                is much 

faster than the more conservative estimate      . When it comes to long block lengths n, 

the underestimation is very significant for small data sets, even in those cases when 

equation 2.8 is used. 

 

Figure 3.1: The convergence of entropy                

Source: T. Schu¨rmann and P. Grassberger: Entropy estimation 

 



 

  In those cases where non-zero frequencies          are    in average, that is, in 

those cases where    , it can be useful to use corrections made to the native block 

entropy estimators given in the equation 2.8. Other estimators that are supposed to work 

for     have been proposed by Ebeling et al (1992, 1993, 1994). In these papers 

authors make explicit assumptions regarding p(s1, . . . ,sn) that are insufficiently big to be 

estimated through their occurrences. However, despite the fact that these assumptions are 

motivated by the McMillan theorem, we do not believe that this method is reliable 

enough, given the fact that there are no means of checking the assumptions, and the 

results actually depend on the checkup. Kantz and Schumann (1996) propose a similar, 

but safer approach. They have found that it is possible to get surprisingly robust results 

by simply neglecting the information in the small         .  

  The neglect of the information needed to determine the probability of distribution 

is related to the fact that     underestimates Hn. However, this relationship is not that 

straightforward. In those cases where the distribution is simply given in the form of the 

integers          , the necessary code length can be calculated as     log N, where we 

consider all          as    Including all these into the total information will give us a 

safe upper bound for Hn. However, this bound will not work well in a broader sense, due 

to the fact that we did not make any kind of effort to encode the probability distribution 

efficiency. For this reason, we will not talk about this particular subject anymore. Instead 

of that, we will focus on the alternative methods that can also give us upper bounds for h, 

because they can give us all the information needed for unique coding’s.  

  In the end, we just like to mention that it is also possible to replace the likelihood 

estimator    by some other estimator. One of those other possible estimators is Laplace’s 

successor rule:  

            
          

    
         (3.9) 

  By including this calculation into the equation 2.2 will always give us a bigger 

estimate of Hn than the likelihood estimate, equation 2.5. On the other hand, it is not 

always closer to the correct value, especially in those cases when the true probabilities 

are far from the equipartition.  Similary to equation 2.5, the equation 2.9 also gives a 



 

biased estimator of Hn, (        ). Because of this, it seems that the best calculation 

consists of using the equation 2.3 with                replaced by the Laplace 

estimator, but keeping the likelihood estimator for p(s1, . . . ,sn): 

                
           

           
        (3.10) 

  However, this equation is also not biased, and it does not give upper and lower 

bounds on hn. 

  In those cases when we have a good prior estimate for the (distribution of) p(s1, . . 

. ,sn), it is possible to use the Bayesian estimate of hn developed in Wolpert and Wolf 

(1995). Nevertheless, this equation can also lead to systematic errors in either direction if 

bad prior estimates are used.   

 

3.3.Approximate and Sample entropy 

An important and effective approach used for the understanding of biological systems 

is Nonlinear Dynamical Analysis. However, the problem with this approach is that it 

usually requires extensive and almost unobtainable data sets for its calculations. In his 

articles (1991, 1995) Pincus gives us the theory and method for a measure of regularity 

which is closely connected to the Kolmogorov entropy. In this theory, he talks about the 

rate of appearance of new information, and how it can be used on typically short and 

noisy time series of clinical data. A branch of statistics called approximate entropy 

(ApEn) is based on the works of Grassberger and Procaccia (1983), and Eckmann and 

Ruelle (1985), and it has been used in clinical cardiovascular studies for certain 

calculations. 

The approximant entropy deals with time series for similar epochs where more 

frequent and more similar epochs cause lower ApEn values. According to this method, if 

we have the N  points, the family of statistics (M, r, N) is almost equal to the negative 

average natural logarithm of the conditional probability that two sequences with similar 

m points remain in the same relation to each other, within a tolerance r, at the next point. 

This means that low ApEn value denotes a high degree of regularity. What is important 

here is that, thanks to the work of Eckmann and Ruelle, the algorithm counts each 



 

sequence as matching itself, avoiding the occurrence if ln (0) in the calculations. This fact 

raised many debates regarding the bias of the ApEn, and the practice shows that the bias 

certainly causes problems because it leads to the omission of two important properties in 

the ApEn – it makes the approximate entropy highly dependent on the record length and 

lower that it is expected for short records, and it lacks relative consistency. What this 

means is that if ApEn of one data set is higher than another, it ought to stay higher for 

every condition tested, but this does not happen. The lack of this kind of consistency is 

greatly important because the approximant entropy is meant to be used as a relative 

measure for the comparison of two data sets. 

In order to scale down the bias, a new branch of statistics called sample entropy 

(SampEn) has been devised. It is based on the theories and approaches of Grassberger 

abd his co-workers, and in contrast to approximant entropy SampEn does not count self-

matches. SamEn (m, r, N) represents the negative natural algorithm of the conditional 

probability that two sequences with similar m points remain in the same relation to each 

other at the next point, where self-matches are not included in the calculation of the 

probability. This means that lower SampEn value points to the more self-similarity in 

time series. The sample entropy algorithm is also simpler than the approximant entropy 

algorithm, and it requires 50% less time to do the calculations. SampEn is an algorithm 

independent of record length, and is mostly consistent in those circumstance where ApEn 

lacks consistency.  

In recent years, a new technique for the analysis of two related time series has been 

introduced. The cross-ApEn technique is used for measuring the degree of asynchrony, 

and the only difference between the ApEn and cross-Ap-En is the fact that cross-ApEn 

compares sequences from one series with those of the second, which is how it avoids the 

appearance of bias that comes as a result of self-matches. But, it creates a different kind 

of problem, since it requires that each template generates a defined, nonzero probability. 

This means that each template needs either to find minimum one match for m + 1 points, 

or a probability is assigned to it based on the “correction” strategy. The problem with this 

is that conclusions about relative synchrony of pairs of time series depend on the 

unguided selection of analysis schemes. In contrast to this, cross-SampEn is defined as 



 

long as one template finds a match, and it stays more or less consistent in those 

conditions where cross-ApEn lacks the required consistency.  

Compared to the ApEn, SampEn statistics have reduced bias, and they have been 

devised specifically for the reason of eliminating the bias caused by self-matching. The 

SampEn is used for time series data that are sampled from a continuous process, which is 

how it got its name. In addition to reducing the bias, the SampEn algorithm can also be 

applied to sample statistics for the evaluation of results, in the way explained below. 

The two most important differences between the ApEn and SampEn are the facts that 

SampEn does not count self-matches, nor a template-wise approach during the estimation 

of conditional probabilities (it only needs one template to find a match of legth m + 1). 

When it comes to the discounting of self-matches, it was based on the fact that entropy 

assumed as a measure of the rate of information production, what makes the data 

comparison pointless. In addition to this, Grassberger and his co-workers also dismiss the 

self-matches in their later work.  

Grassberger and Procaccia defined the average of   
     as            

       
         

   . The difference between   
     and       is in the fact that       

represents the average of the natural logarithms of the   
    , whereas Grassberger and 

Procaccia suggest approximating the Kolmogorov entropy of a process that can be seen a 

time series by                       
       

       . They also count the self-

matches and 
       

               
  

         
      

     
   . 

However, when limits are counted in this way, they become inadequate for the 

analysis of finite time series with noise. In order to resolve this issue, two alterations have 

been adapted. The first step was to follow limits’ later practice in calculating correlation 

integrals, without the use of self-matches the computation of      , and then to consider 

only the first N – m vectors of length m, making sure that for               and 

        were defined.  



 

In this work, the   
     was defined as           times the number of vectors 

      within the tolerance r of      , where j ranges from 1 to    , and     in order 

to eliminate the self-matches. After that, the   
     was defined as       

          
       

   , and   
     was defined as           times the number of 

vectors         within r of        , where j can have a range from 1 to        , 

and set                 
       

         . In this case   
     represents the 

probability that two sequences will match for m points, and   
     represents the 

probability that two sequences will match for m + 1 points. This leads to the definition of 

the parameter SampEn(m, r) as =                         , which is estimated by 

the statistic                                . In those case where parameter r 

and the length m of the template vector are clear, B = {[(N – m – 1)(N – m)]/2}B
m
(r) and 

A = {[(N – m – 1)(N – m)}/2}A
m
(r), where B represents the total number of template 

matches of length m and A represents the total number of forward matches of length m + 

1. It should also be mentioned that A/B =[A
m
(r)]/B

m
(r)], which means that SampEn(m, r, 

N) can be expressed as –ln (A/B). 

The A/B quantity is the conditional probability that two sequences within a single 

tolerance r for m points remain within r of each other at the next point. Contrary to the 

ApEn(m, r, N) which uses a template-wise way for the calculation of probabilities, 

SampEn(m, r, N) calculates the negative logarithm of a probability associated the time 

series as a whole. The only time when Samp(m, r, N) is not defined, is when B = 0, in 

which case the regularity could not be identified, or when A = 0 that corresponds to a 

conditional probability of 0 and an infinite value of SampEn(m, r, N).        

           represents the lower nonzero conditional probability that the algorithm 

can report. This means that the upper bound  of the statistic SampEn(m, r, N) is ln (N –m) 

+ ln (N – m – 1) – ln, almost doubling ln (N – m) , the dynamic range of ApEn(m, r, N). 

Approximate and sample entropy have been thoroughly explained overall in the work 

(1-3), and will be only summarized here. When it comes to the time series         

     , the length vector (m) and a distance between any two vectors   
   

 and   
   

 are 

determined in the next way: 

  
   

                                                         (3.11) 



 

     
   
   

   
                                     

 (3.12) 

The formula for calculating the probability   
     of whether a vector   

   
 is 

within the distance r from the template   
   

 is: 

  
     

  
    

        
         (3.13) 

In this formula,   
     represents a number of vectors whose distance is lower 

than the predetermined threshold value r, and where I{.} represents an indicator function: 

  
             

           
      

   
                               (3.14) 

After this, the same procedure is done again in order to calculate the vector of the 

length m+1, and the approximate entropy (ApEn) is defined as: 

              
 

        
      

         
    

 

    
      

           
     (3.15) 

The difference between the approximate and sample entropy is in the fact that, in 

order to avoid the logarithm of zero, the ApEn allows self-matches (j=i in Eq. (3.14)) 

which causes the bias in estimates, whereas the SampEn prevents the bias. The bias is 

prevented thanks to a) the exclusion of self-matches from the   
    , b) ecquilazation of 

the number of sliding window comparison for template length vectors m and m + 1, and 

c) the place substitution of summation and logarith in Eq (3.15): 

                       
           

              
           

      (3.16) 

 

3.4. Approximate entropy as a measure of system complexity 

Shaw (1981) was the one who managed to see the measure of the rate of 

information generation of a chaotic system as an important parameter. Later on, inspired 

by the K-S entropy, Grassberger and Procaccia (1983) came up with the formula which 

was used as a way of calculating rate from time series data. The formula was first altered 

by Takens (1983) who included the distance metric in it (as shown in the second 

equation), and then by Eckmann and Ruelle (1985) who used Takens’s formula as the 



 

basis and changed it in the way which allowed a ‘direct’ calculation of the K-S entropy 

for the physically invariant measure, which is supposed to be underlying the data 

distribution. Nowadays, these formulas are used with time-series data as ‘standard’ 

entropy measures. The Eckmann-Ruelle (E-R) entropy formula is given below. 

This kind of formula and its variations can be very important for the classification 

of low-dimensional chaotic system. However, the formula is usually not applicable in 

other contexts because of the statistical flaws mentioned in the Introduction. In order to 

use the E-R entropy formula with experimental data, it is necessary to make an 

approximation of equation 3.17, and to establish a meaningful range of “r” (vector 

comparison distance). The reason for this is the fact that E-R entropy is infinity for a 

process with superimposed noise of a magnitude. The changes in the formula results in 

the loss of deterministic system, as well as its inability to differentiate some processes 

that appear to differ in complexity, such as the E-R entropy for the MIX process which 

equals infinity (for all p ≠ 0). 

Fix m and r in equation 2.16 and define  

                     
         

         (3.17) 

                                                 

 (3.18) 

Note that 

                                                                         

           , given that                   for                

 (3.19) 

                                       

(3.20) 

                                (3.21) 

Having N data points, we will apply this formula by defining the statistic 

What E-R entropy and ApEn measure is the probability that runs of close patterns 

to stay close on the incremental comparisons. ApEn can be used for the calculation of any 



 

of the time series, chaotic or not. The basis of the ApEn says that if joint probability 

measures (for the constructed m vectors) that describe each of two systems are different, 

their marginal distribution on a fixed partition will probably be different, too.  

In contrast to the ApEn which cannot confirm a chaotic system, a nonzero value used 

for E-R entropy makes sure that a known deterministic system is chaotic. This is the first 

advantage of E-R entropy over the ApEn. In addition to this, the ApEn (m, r) was not 

developed as an approximate value of E-R entropy. In some cases, like when we have a 

large number of points, a low-dimensional attractor, and a large m, the two parameters 

can prove to be almost the same. Nevertheless, it is of essential importance to look at the 

ApEn(m, r) as a part of formulas, and ApEn(m, r, N) as a part of statistics; fixed m and r 

are used for the comparison of the systems. 

 

3.5.Cross entropy of parallel time series 

  Cross-Ap entropy has been only recently introduced as a possible way of 

comparing two different time series in order to assess their degree of asynchrony or 

dissimilarity. The definitions of cross-ApEn and ApEn are, in fact, very similar to each 

other. If we have two time series of N points {u(j): 1 ≤ j ≤ N} and {v(j): 1 ≤ j ≤ N}, from 

the vectors xm(i) = {U(i + k): 0 ≤ k ≤ m – 1} and ym(i) = {v(i + k): 0 ≤ k ≤ m – 1}; and the 

distance between these kinds of vectors is defined as d[xm(i), ym(i)] = max {|u (i + k) – 

v(j + k)|: 0 ≤ k ≤ m – 1}. First, it is necessary to define  as the number of Ym(j) 

within r of xm(i) divided by (N – m + 1), and then define 

 , and cross-ApEn

-- . The given definition almost completely 

coincides with that of the statistic ApEn, except for those templates that are chosen from 

the series u and compared with vectors from v. This means that there is an obvious 

directionality with this analysis, and the series that contributes the templates the template 

series and the series with which they are compared are termed as target series in this 

work, which is why it is possible to refer to cross-ApEn(m, r, N)(target||template).  

 Two things have been noticed here. Firstly, there are no self-matches due to the 

fact that templates cannot be compared with themselves. Because of this,  can 



 

equal 0, and it cannot be guaranteed that cros-ApEn(m, r, N)(v||u) will be defined. 

Secondly, there is the existence of a “direction dependence” of cross-ApEn analysis. In 

order to avoid these possible problems, the cross-SampEn is defined.  

 It should be emphasized that cross-ApEn is not always defined. As it has already 

been mentioned earlier, there are no self-matching in cross-ApEn, which is why it does 

not suffer from the same bias as ApEn. Nevertheless, there is still the issue of the 

necessity for each template to generate a defined, nonzero conditional probability. In this 

way, each template has to find minimum one match for m + 1 points, or a probability has 

to be assigned to it, and so far, there has not been suggested any solutions for this 

problem. In contrast to this, cross-SampEn needs only one pair of vectors in the two 

series match for m + 1 points. 

 Pincus (Pincus, SM., 1991) talks about the family of MIX(P) stochastic processes 

which allowed a testing ground for cross-ApEn. MIX(P) time series of N points, in which 

the value of P is somewhere between 0 and 1, is usually a sine wave, where N points N X 

P randomly chosen points have been replaced with random noise. We have managed to 

determine cross-ApEn(1, r, 250) for the pair {MIX (Q)||MIX(P)] and its direction 

conjugate [MIX(P)||MIX(Q)] for 16 realizations of each of the six combinations of 

P=0.1, 0.2, 0.3 and Q=0.5, 0.7 over a range of values of r from 0.01 to 1.0. Here, cross-

ApEn(l, r, 250) [MIX(Q)||MIX(P)] was not defined for the 96 pairs for r ≤ 0.16 and was 

defined, and was defined only for r ≥ 0.50. Also, the cross-ApEn (1, r, 250) 

[MIX(P)||MIX(Q)] was not defined for the values of r ≤ 0.32 and was defined only for r 

= 1.0. 

 As a way of expanding the conditions for which cross-ApEn was defined, it was 

necessary to introduce a correction factor into the algorithm; and as a way of avoiding ln 

(0) whenever , or when , they were redefined to be 

positive and nonzero. Their effect on the overall calculation was also reduced through 

their inclusion only in those cases when it was necessary to make sure that cross-ApEN 

was defined. On the other hand, this approach causes the introduction of bias, which can 

be a problem. Due to this, cross-ApEN with two different correction strategies has been 

investigated. The first strategy, called bias 0, proved to be similar to self-matching. 



 

 or  were set to 1. In this way, if a template did not match any 

other, it was assigned a conditional probability of 1, just like the original description of 

ApEn. However, in cases when 0, but , they were redefined 

 so that the probability assigned would be the lowest possible, 

nonzero probability given the nonzero value of . 

 The other approach, called bias max, is also concerned with the modification of 

 and  functions whose value would otherwise have been 0. In 

these modifications  was redefined to be 1, and  was redefined 

to be (N – m +1)
-1

, like for bias 0. 

 The one discrepancy between these two strategies is that bias max assigns to a 

template a probability of (N – m)
-1  

, which represents the lowest nonzero probability that 

is allowed by the length of time series,  without causing any matches. This means that the 

bias 0 sets the bias toward a cross-ApEn value of 0 in cases when there are no matches. 

Contrary to this, bias max sets bias toward the highest observable value of cross-ApEn. 

 Unlike the cross-SampEn, cross-ApEn is direction dependent. The logarithms 

inside the summation do not generally allow  to be equal to . Due to 

this, cross-ApEn(m, r,N)(v||u) and its direction conjugate cross-ApEn(m, r, N)(u||v) are 

not equal in most of the cases. 

 In an attempt to define cros-SampEn,  was set as (N – m)
-1

 times the 

number of vectors ym(j) within r of xm(i), where j goes from 1 to N – m. The definition is 

then . Similarly to this,  was set as as 

(N – m)
-1

 times the number of vectors ym + 1 (j) within r of xm + 1 (i), where j goes from 1 to 

N – m. The definition of this would then be  

In the end, cros-SampEn was set. 

Looking at the direction dependence in the previous definition, it can easily be observed 

that  represents the number of vectors from v within r of the ith 

template of the series u; and looking at all the templates together, it can be seen that 

 counts just the number of pairs of vectors from the two series 

that match within r. The number of overall pairs I not dependant on the series, nor the 



 

target. As it can be seen, the last summation equals , which leads to 

the conclusion that  is also direction independent, making cross-SampEn(m, r, 

N)(v||u) equal to cross-SampEn(m, r, N)(u||v). It has also been observed that cross-

SampEn can be defined if , but cross-SampEn requires that one pair of 

vectors in the two series match for m + 1 points. 

 

3.6.Inconsistency of entropy estimations 

3.6.1 Flip-flop effects  

There are two sources for unstable results in entropy estimates: the threshold r and 

time series length N (Boskovic 2011).  

An initial preference for the threshold values were rMAX and rTHEOR. The first 

one is a threshold value for which ApEn reaches its maximum and it is obtained 

separately for each time series (for a range of thresholds a series of ApEn were generated, 

called a “threshold profile”; the maximal entropy value of a threshold profile corresponds 

to the threshold rMAX). The second one is a theoretical estimate of the threshold value 

for maximal value of ApEn, calculated according to the formulae from literature:  

 /1000)/ sd/sd0.23  (-0.02    :2 4
^

2

^

1THEOR Nrm  ,     (3.22) 

 /1000)/ sd/sd0.43  (-0.06   :3 4
^

2

^

1THEOR Nrm  .     (3.23) 

The terms 
^

1sd  and 
^

2sd  in Eqs. (3.22) and (3.23) can be regarded as a short and a 

long term variability of a (bounded) signal. The first one is an estimate of standard 

deviation of differential series x(i)-x(i-τ), while 
^

2sd is an estimate of standard deviation 

of bounded PI time series. The formulae (7, 8) are derived for human time series, but the 

accordance between theoretical and empirical values is excellent for signals taken from 

rats as well.  

There is no explicit constraints regarding the signal stationarity within the entropy 

estimate definitions and this subject has seldom been addressed. Applications especially 



 

in neurological signal analysis note that stationarity is not a prerequisite. Others 

implicitly disagree, performing the first difference as a standard method to stationarize 

time series. Pincus et al. state that ApEn is insensitive to artifacts (outliers).  

An implicit statement that a time series need to be stationary arises from the 

normalized threshold r definition: to ensure unbiased distance measure dm( )(i

mX , )( j

mX ), a 

normalized threshold is specified for each signal separately as a fixed portion of the 

standard deviation estimated from the signal. A time average estimates of the statistical 

moments are meaningful for the stationary signals only [4], so signals for an entropy 

analysis need to be at least wide sense stationary. 

Entropy estimates are sensitive to time series lengths. To check the influence of 

this experimental environment, the signal length N was gradually shortened from N=6000 

to N=1000, remaining within the recommended limits (N = 10
m

 to 20
m

). Unexpectedly, a 

change in the experimental outcome occurred. If N=3000, maximal entropy values 

ApEn(rTHEOR) for STRESS exceeded the ones in BASELINE conditions; if N=6000, 

the results were just opposite,  Pincus et al in indeed warned that two processes may 

exchange the complexity measure if different parameter choice is applied (flip-flop 

effect). It is usually accounted for bias induced by self-matching, which is a dominant but 

not the only factor, since the same effect, in less extent, is noticed in SampEn analysis of 

the same signals. This is not an outcome of a possible animal adaptation to stress. The 

flip-flop effect persisted if the first N=3000 samples were replaced with the last N=3000 

samples, when the rats were supposed to be already adapted (Fig. 3.2).  

   



 

   

 

Figure 3.2. Flip-flop effect: mean ApEn ± SE (standard error) for BHR rats in SHAKER stress 

a) N=3000 > 10
m
 ; maximal ApEn is higher in STRESS, 

a1) m=2, τ=1; a2) m=3, τ=1; a3) m=3, τ=2 

b) N=6000 > 10
m
 ; maximal ApEn is lower in STRESS, b1) m=2, τ 

=1; b2) m=3, τ=1; b3) m=3, τ=2) 

Source: A. Boskovic et al. / Computers in Biology and Medicine 42 (2012) 667–679 

 

If the threshold r is changed so that it exceeds the proposed values rMAX and 

rTHEOR, all the experimental results become consistent, regardless of the record lengths 

(Fig.3.2). An explanation of unstable behavior at ApEn maximums could be given using 

the circular plots that, for a fixed template 
)(i

mX , depicts all the distances d(i,j)=dm( )(i

mX ,

)( j

mX ). The coordinates of circular plots are: 

);2sin(),();2cos(),(
N

jjidy
N

jjidx jj


               (3.24) 

Fig. 3.3 shows circular plot for a randomly chosen rat and template )80(

mX  (Fig. 

3.3a) and for the template that is at the greatest distance from )80(

mX  (Fig. 3.3b). The 

radius of the circle in the centre of the plots is equal to rTHEOR. The zoomed part of 

both plots show that the number of matches )(THEOR iB
r

m  (Eq. (3,3)) is insignificant as 

compared to the total number of points N=6000. It is equal to 14 in Fig. 3.3a and only 

one (self-match) in Fig 3.3b.  



 

ZOOM

a)

Z
O

O
M

b)

 

Figure 3.3: Distance circular plots of a) randomly chosen template no. 80 of rat 1, BHR 

SHAKER; b) template at greatest distance from template 80; The diameter of central 

circle is equal to rTHEOR 

Source: A. Boskovic et al. / Computers in Biology and Medicine 42 (2012) 667–679 

 

It might be suspected that a slightest change of )(THEOR iB
r

m , e.g. induced by noise, 

would considerably alter the entropy estimate. To verify this assumption, a set of 

experiments is made: each number )(iB
r

m
 in Eq. (3.3) is randomly altered, gradually 

increasing r: 

)1(,...,1,)()(  mNiziBiB r

mz

r

m          (3.25) 

where  1,0,1z  is an uniform random variable with the constraint that z

r

m iB )(  

can be neither zero nor negative. Then a new, experimental, ApEnEXPER is evaluated 

and its relative difference in respect to the initial ApEn is expressed as: 

[%]100EXPER
EXPER 




ApEn

ApEnApEn
DIFF                     (3.26) 



 

This difference, averaged over all experimental animals, is presented in Fig. 3.4, 

together with the median value of all the rTHEOR estimated over all the experimental 

data. It can be clearly seen that ApEn estimates are sensitive to minor changes of )(iB
r

m
 

for lower values of the threshold level. However, if the threshold level increases, the 

estimates become stable and insensitive to the noise.  
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Figure 3.4. Relative difference of the experimental ApEnEXPER in respect to the original 

ApEn. Gray segments show the theoretical threshold range. 

Source: A. Boskovic et al. / Computers in Biology and Medicine 42 (2012) 667–679 

So the threshold values obtained by the automatic selection cannot be applied 

straightforwardly, since the estimated entropy values are not stable and lead to incorrect 

physiological interpretation. However, these formulae are excellent guidelines. From Fig. 

3.4 it is clear that, for the threshold level that is a double of median of the theoretically 

evaluated rTHEOR of all the experiments in the data set, the induced noise caused the 

entropy distortion of less than 1%, which is quite a reasonable stability.  

For this reason, we propose the following correction to automatic threshold 

evaluation. The threshold level is evaluated for each time series separately, according to 

Eqs. (3.22) and (3.23). Then a median of the obtained results (125 threshold values in our 

case) is found. The double value of the evaluated median is a normalized threshold value 

that ensures stable estimates.  



 

This method yields the normalized threshold values as (rounded) r=0.3 for m=2 

and r=0.5 for m=3, regardless of τ and N.  
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Figure. 3.5. Absolute values of ApEn and SampEn for a sample size N=4000; results are given as 

mean+SE, the statistical significance was assessed using repeated measures ANOVA test at 

levels p<0.05 (*), p<0.01 (**) 

Source: A. Boskovic et al. / Computers in Biology and Medicine 42 (2012) 667–679 

 

3.6.2. Effects of auto correlation and cross correlation  

It should be said that in those situations where these measures are applied, the 

autocorrelation of the time series data tend to deteriorate quickly, thus minimizing the 

effect of long range linear correlations on the computations. 

When it comes to the signals with long range linear correlations, the 

autocorrelation function deteriorates slowly and represents a good method for quantifying 

the linear stochastic predictability in time series. What unity time delay can do when it is 

used in the calculation of Approximate and Sample Entropy is to mask the ability of the 

algorithms to quantify the complexity in the time series the come as a consequence of 

non-linear influences. In order to get higher values of complexity for respiratory time 

series, Chen and his colleagues (Chen et al, 2005) lowered the sample size by factors 2, 4, 

and 8, which lead to the adjustment of the time delay parameter in the computation. The 

method of down-sampling leads to the reduction of linear correlation between 

consecutive samples, and to the increase of Approximate Entropy values. In addition to 

this, the down-sampling influences the reduction of the frequency content in the signal, 

which further eliminates important features in the data. The calculation of Approximate 

and Sample Entropy measures as a function of the delay   would supposedly provide new 

information and insight into the analysis. 

The lack of probability can come as a consequence of numerous different sources, 

such as stochastic and nonlinear deterministic sources. The investigation of the role 

which time delay parameter ( ) of Approximate and Sample Entropy can have is done in 

an attempt to see how these measures can be used as a way of making meaningful 

comparisons across data sets. Autocorrelation or the PSD can be used for the comparison 

of predictability obtained from linear stochastic sources across data sets. For this reason, 



 

the use of non-unity time delay influences the reduction of the effects of autocorrelation, 

which allows that comparisons between data sets to be made based on the influence of 

nonlinearity on the predictability of the data. The first thing that was done in the study 

was to see the effects of autocorrelation of a time series, regarding the computation of the 

Approximate and Sample Entropy measures. 

In the past, the effects of autocorrelation have been researched in a connection to 

other nonlinear time series analysis techniques, like correlation dimension. Within this 

kind of research, it was discovered that long range correlation property of a signal adds a 

shoulder to the logarithmic plot of the correlation integral, which causes inaccurate and 

spurious dimension estimation (Theiler, 1990). In order to solve this problem, the Theiler 

window was introduced as a part of the calculation of the correlation integral (Theiler, 

1986). A lot of research has been dedicated to the effects which long range correlation 

has on the computation of correlation dimension, and a number of techniques like false 

nearest neighbors, used for picking an appropriate embedding dimension, and the first 

minimum or zero crossing of the autocorrelation function, or mutual information used for 

the selection of an appropriate delay, have been used. Nevertheless, there are still many 

ongoing debates when it comes to the linear stochastic versus nonlinear deterministic 

features that contribute to the complexity of a signal measured by correlation dimension. 

As an attempt to solve these debates, surrogate data methods have been purposed in order 

to us a statistical framework within which similar can be studied thoroughly.  

Time delay is used as way of reducing the effects of linear and nonlinear 

correlations in a signal, and here are two ways in which it can be determined; it is 

possible to use either a delay that corresponds to the first minimum or zero crossing of 

the autocorrelation function, or the mutual information. In those cases when surrogate 

data analysis is used as a way of establishing statistical significance of the computational 

results, a time delay based on the first minimum or zero crossing should be used. This is 

done when original and surrogate data sets have the same autocorrelation function.  
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3. Approximate entropy improvements 

3.1. Fuzzy Entropy approximate entropy for chaotic and natural complexity 

When it comes to the physical world, it is often hard to determine if an input 

pattern completely belongs to a class, due to the fact that boundaries between classes can 

be very ambiguous. Zadeh was the one who came up with the concept of “fuzzy set” in 

order to characterize input-output relations in an environment of imprecision. The theory 

he proposes gives us a mechanism with which we can measure the degree to which a 

pattern belongs to a given class. What Zadeh actually did was to use the “membership 

degree” as a part of a fuzzy function uc(x), where each point x is connected to a real 

number in the range [0,1]. The closer the uc(x) value to the unity is, the higher the 

membership grade of x in the set C is. In order to calculate a fuzzy measurement of the 

similarity between   
  and   

  based on their shapes, the fuzzy membership function 

     
     is used in fApEn. This new similarity index causes the softening of the hard 

boundary of the Heaviside function, as well as the approach of the points that become 

more similar. Based on all this, it can be said that the definition of the fuzziness 

approximate entropy states that for the same time series T, the vector sequence takes a 

form similar to that of the definition of ApEN: 



 

  
                                                      

But   
  is still generalized by removing a baseline       

 

 
          

   , and the 

distance    
  between the two vectors   

  and   
  is defined as  

   
      

    
                                                         

              

When r is known, the similarity degree    
  between   

  and   
  can be calculated by a fuzzy 

membership function    
       

     

The function   
  is calculated with   

     
 

     
    

      
        and     

      
 

     
      

          
    functions.  

In addition to this, it is also possible to define the measure fApEn(m, r) of the time series as 

                                 from the vector sequence    
     and the 

function          

In the end, the finite datasets of the fApEn is estimated from the statistic    

                            

Many functions like Gaussian, Sigmund, bell shape function, or any other 

membership function which has the desired properties can be used as a description of the 

two vectors’ similarities in practice. The two necessary properties are 1) continuity, 

which prevents the similarity from changing too fast, and 2) convex, which sets the self-

similarity as the maximum. The authors of the present study have used the Gaussian 

function      
              

     as the fuzzy membership function for the fApEn 

calculations. The vector dimension m was set to 2, in order to calculate fApEn, as well as 

ApEn. 

 

3.2.Multiscale Entropy  

It has been found that traditional single-scale entropy estimates usually influence 

lower entropy in time series of physiologic data like inter-beat (RR) interval series 



 

compared to the surrogate series which are formed through the shuffling of the original 

physiologic data. The reason for this is the fact that shuffled data display more 

irregularity and thus are less predictable than the original series, which tend to have 

correlations at many time scales. The very process used for the generation of surrogate 

data destroys the correlations and degrades the information content of the original signal. 

It should also be mentioned that greater entropy is not a characteristic of greater 

complexity. On the other hand, a different method – MSE, tells us that the original time 

series are more complex compared to the surrogate time series, by showing us the 

dependence of entropy measures on scale.  

There are two operations within the MSE method: 

1. First of all, time series go through the process of “coarse-graining”. Here, multiple 

coarse-grained time series are created for each given time series. This is done through the 

averaging of data points within non-overlapping windows of increasing length,  , as it is 

shown in the picture below. 

 

Figure 4.1: The coarse-graining procedure for scales two and three (Costa, M. et all, 2002) 

 

 The equation used for the calculation of each element of coarse-grained time series   
   

 is: 

  
   

       

  

          

 



 

In this equation,   is the scale factor and         , and the length of the 

series is   .The first scale of the in the coarse-grained time series is the same as the 

original series, which is why it is not shown here. 

2. The second process in the MSE method is concerned with the calculation of the 

SampEn. After SampEn has been calculated for each coarse-grained time series, it is than 

plotted as a function of the scale factor. Sample Entropy represents the regulatory 

statistic, and it looks for patterns in time series. Its job is also to determine a certain 

pattern’s level of predictability/regularity.  

 

3.3.Conditional entropy  

It has been proven that it is possible to find different levels of synchronization 

between the RR interval and respiration, between coupled oscillators describing biped 

animals, between cardiac-related discharges of sympathetic nerves with different spinal 

inputs. Due to this, quantification of the degree of synchronization, such as the coupling 

strength, between two signals should be thought of as one of the most important goals. 

The usual method used for the quantification is the coherence function, however, based 

on cross-spectral analysis, it cannot be used when non-linear coupling is present. It has 

been proven that when N:M periodic dynamics is found (with the exception of a 1:1 

coordination), the coherence is low thanks to the fact that the dominant rhythmicity of the 

forcing and spontaneous activities do not have the same frequency nor linear cross-

correlation. What is more, sliding dynamics can lead to uncertain changes in the 

coherence function, based on the amount of phase jitters and changes in the interaction 

scheme.  

Because of this, a new function, the one that measures the degree of uncoupling 

between two signals, has been worked out. It investigates the ability of the conditional 

entropy determined over two signals in order to give the amount of information carried 

by one of the signals in those cases when the samples of the other are known. It has been 

suggested that an estimator of the uncoupling function should calculate reliable estimates 

even on short data segments (around a few hundred samples). This is an extremely 



 

important characteristic since stable coordination in experimental preparations cannot be 

kept without being corrupted by non-stationarities. 

There are two methods of conditional entropy, Cross-conditional entropy and 

Corrected cross-conditional entropy 

A normalised process y = {y(i), i = 1, . . . , N}  is calculated by subtracting the 

mean and dividing by the standard deviation, N – L + 1 patterns yL(i) of length L. From 

this equation, it is possibleyo extract (y(i), y(i – 1), . . . , y(i – L + 1)), and to represent a 

length L pattern yL(i) as the union of a lemgth L- 1 pattern plus one more sample: yL(i) = 

(y(i), yL – 1(i – 1)).  The conditional entropy  

                     
    

    
              

    

    
     (4.1) 

represents the joint probability of the pattern yL-1(i) and p(y(i) / yL-1) probability of 

the sample y(i) given the pattern yL-1(i); it also represents  the amount of information 

carried by the most recent point y(i) of the pattern yL(i)in cases when the previous L – 1 

samples yL-1(i) are know. In the equation 3.1, the log function performs the natural 

logarithm. Since loge is used, CE is determined in nats (natural ogarithm). After the 

Shannon entropy  of length L patterns had been introduced 

                              (4.2) 

havin p(yL) for the joint probability of thepattern yL(i), the CE can be obtain as 

                                  (4.3) 

The equation is used for calculating the information carried bz the new sample 

y(i)given the L – 1 previous onesto the information increment that is connectedto the 

enlargement of the patternlength from L – 1 to L. CE(1) is the same as E(y), that is to the 

entropy of the signal y in cases when we do not have any information about its past. The 

equation 3.3 has a number of computational advantages. First of all, the equation is based 

on a count of the frequency of different patterns of length L – 1, which makes it very 

simple. What is more, a proper and efficient sorting algorithm has the ability to minimase 

the comptational cost in the calculation of CE. Like other entropy rates, CE is usually 

used for measuring the regularity of the signal y, and while increasing L, the CE can: 



 

 1) reache zero in cases when the signal y is periodic (predictable);  

2) remain high when there is an irregular signal like white noise; 

 3) decrease to a value somwhere between the two extremes, based on the abilty 

of past samples to predict the future demands.  

 

4.3.1. Cross-conditional entropy: 

At this point, we will analyse two normalised signals: u={u(i), i = 1, . . ., N} and y = {y(i), i 

=1,…, N}. In these equations a CE of y given a pattern of u is defined as  

                     
    

    
       

    

    
               (4.4) 

in a way that is similar to the definition of CE in the first equation. Again, the CE is the 

amount of information carried by the sample y(i) in cases when the pattern uL-1(i) is 

assigned. To obtain the formulation of CEy/u in terms of an increment in Shannon entropy 

similar to the one in the equation 3.3, it is necessary to introduce a mixed pattern which is 

formed by L-1 samples of u and the present sample of y : (y(i), u(i), . . . , u (i – L + 2)) = 

(y(i), uL-1(i)). After making these changes, the CEy/u becomes  

                                     (4.5) 

This means that the practical computation of CEy/u is actually the mixture of 

sorting and counting and u patterns. In this equation CEy/u(1) is equal to E(y). In other 

words, it is equal to the entropy of y in cases when we do not have any information about 

u. As L is slowly increased, the CEy/u can: 1) reach a zero if a sufficient number of 

samples of u allows one to completely predict they; 2) remain steady in cases when u and 

y are independent processes; 3) decrease towards a value somewhere between the two 

extremes, in cases when the knowledge of u is useful for partial estimation of y. 

 

4.3.2. Corrected cross-conditional entropy: 

As it has already been mentioned by some authors (Porta et al, 1998b), in those 

cases when a conditional entropy is determined from a limited amount of samples, it 



 

always decreases to zero when L is increased. This comes as a result of the approximation 

of the conditional probabilities through the conditional sample frequencies. In addition to 

this, the cross-conditional entropy CEy/u gets affected by this bias. In fact, the frequency 

distribution of y(i) with the pattern uL-1(i), can give us an erroneous certainty in cases 

when the conditioning pattern is found only once in the series u, resulting in an 

underestimate of CEy/u. This also occurs when u(i) is predicted by yL-1(i). This induces an 

false decrease in CEy/u. Porta et al (1998b) gave us basis for the corrective term. Due to 

this, corrected CEy/u  and CEy/u  (CCEy/u and CCEu/y) are defined as  

                                           (4.6) 

and  

                                           (4.7) 

In this equation, percy/u and percu/y represent the ratios of mixed patterns found 

only once over the total number of mixed patterns,                           and 

     are the estimates of the                        and     , based on the 

considered limited set data. The function of                  and                  is 

to prevent the decrease to zero of the           and          , respectively. They do this 

by substituting the false certainty produced by a length L pattern that is found only once 

in the data with the maximum uncertainty that can be detected in the set of data 

(quantified by        and      ). In this way, it is possible to get a maximum entropy 

estimate of the cross-conditional entropies. The increase of L, we decrease CCEy/u and 

CCEu/y to a minimum, based on the ability of u to predict y and vice versa. When it 

comes to long patterns (compared to the length of series), the correction pushes CCEy/u 

and CCEu/y to a maximum uncertainty, and during the analysis of independent processes, 

CCEy/u and CCEu/y both remain high and constant at        and      . 
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5.Joint Symbolic Dynamics and Shannon entropy 

Another quite frequently used concept of entropy in especially cardiovascular and 

respiratory time series analysis is a Shannon entropy of Joint symbolic dynamics (JSD) symbols. 

Given the systolic blood pressure (SBP) and pulse interval (PI) time series SBP

n
x  and PI

n
x , n=1,…,N, 

new binary time series are SBP

n
b  and PI

n
b , n=1,…,N-1, are derived, following the rule [8]: 
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Symbols are formed observing the bits of binary stream through a sliding window that 

comprise m bits (window size, closely related to the vector length m in a concept of approximate 

entropy).  

The m bits that form a symbol (or word, as an alternative expression) need not be 

contiguous: the level of their spread (rake factor or factor of decorrelation τ the default is τ =1 for 

contiguous symbol) shows their distribution (Fig. 5.1a). While sliding, the window does not 

necessarily slide bit-by-bit. The number of bits the window “jumps” is called inter symbol 

interval (ISI, Fig 5.1a).  



 

The temporal spread of signal templates has been already introduced in estimates at signal 

level. It was shown that downsampling the data (i.e. increased spread) resulted in higher signal 

complexity.  

Symbols from the two time series need not be observed simultaneously. An offset for PI 

symbols, positive or negative, in respect to SBP symbols can be introduced (Fig. 5.1b).  

The requirements of a statistically sufficient representation of word types limit the length of 

the words. In order to determine the number of word types (histogram classes), we used the    

approximation for histogram construction of N observations. It was determined that for the 30-

min recordings (with mean human heart rate of 80bpm) there were no more than 64 different 

word types feasible. If we look at all four different symbol combinations within S (the alphabets 

of PI as well as SBP consist of two elements), it can be seen that words with a maximum length 

of three are realizable (2
3
 * 2

3
 = 64). This means that we can use this approach to map the 

dynamics of PI and SBP within four consecutive heart beats (or three PI), which corresponds to 

a three-dimensional embedding, if we look at it from the perspective of phase space. This 

embedding is more pragmatic and not a faithful reconstruction of the system, however, a number 

of studies could show that a three-dimensional embedding of HRV is good for mapping of the 

short-term dynamics. In addition to this, in order to avoid spurious results, the embedding 

dimension should not exceed log10(N). The mapped short-term fluctuations we are referring to 

here are predominantly influenced by respiratory activity, and they can result in high frequency 

(HF) oscillations in the power spectrum and respiratory sinus arrhythmia.  

First of all, we will look at the dynamics of PI and SBP within the word distribution density 

matrix W. This matrix contains the frequency of each of the 8 x 8 possible combinations of PI 

and SBP patterns: 

   
                         

   
                         

      (5.2) 

Relative frequencies of PI symbols, SBP symbols, PPI(i) and PSBP(i), i=1,…,2
m
, as well as of 

joint symbols PJSD(i,j), i,j=1,…,2
m
, can then be estimated. Consequently, Shannon entropy is 

evaluated as:  
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Figure 5.1. Symbol parameters, A,B{0,1};: a) Window size m, rake factor τ and ISI; b) 

Offset between the time series (e.g. SBP and PI) 

 

Shannon entropy is a limit obtained under the assumption that all the symbols are 

statistically independent. This is not the case in physiological signals, and the reasons are 

twofold. The first one arises from the symbol definition: if the sliding window through which the 

successive symbols are observed overlaps, the result is a Markov source, shown using a state-

diagram of 2
m
 states, where symbol length m=3, ISI=1 and τ=1 (Fig. 5.2). Even if the window 

does not overlap its previous contents (ISI>r·(m-1)), the symbols would still be statistically 

dependent, since the adjacent symbols of biomedical time series exhibit strong correlation.  

The transition probability P(i|j) i,j=1,…,2
m
, must be taken into account and estimated from 

the time series, provided that the data length is sufficient. The entropy of a Markov source is then 

defined as: 
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The transition probabilities Π=[p(i|j)] (Π=[p(kl|ij)]) and the relative frequencies vector PH 

(and PJSD) satisfy the following relations: 
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Shannon entropy is an asymptotic value of Markov entropy, obtained for the statistically 

independent symbols.
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Figure 5.2. State transition diagram for symbols m=3, ISI=1 (sliding bit-by-bit) and τ =1 

(contiguous symbols) 

 

The levels of freedom considering the symbol entropy estimates (window length m, rake 

factor τ, ISI and offset), and the experiment itself including two strains of animals and two types 

of stress offers multiple possibilities for investigation.  
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Fig. 5.3. Markov and Shannon entropy in respect to the offset between the PI and SBP time 

series 

Figure 5.3. presents the measures of SBP-PI coupling in respect to their mutual offset, i.e. 

delay time of PI series in respect to SBP series. It is generally assumed that, in rats, the SBP-PI 

coupling is the strongest for the offset 3 to 5. This is important if, for example, barroreflex 

sensitivity is evaluated using the sequence method. The decrease of entropy, showing increased 

dependence between the series, is clear for wider range of both the positive and the negative 

offsets. Furthe on, the decrease of entropy is almost non-existent in NRM animals, and if the 

animal is exposed to shaker stress, the decrease also diminishes, as if the shaker stress destroys 

the correlation between the SBP and PI series.  
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6.Binarized approximate entropy  

 Continuous monitoring of patient’s vital parameters has long ceased to be a privilege of 

medical doctors. A rapid development of sensors, communications devices and protocols, 

followed by fair channel distribution regulations, increased the availability of monitoring 

equipment and made it accessible to a diversity of users. The permanent self-monitoring - during 

fitness, sport, walk, sleep, work - became a way of life. It has already been recognized as a part 

of the new mobile crowdsensing concept, where subjects, equipped with adequate sensors, share 

and extract information to measure and map various phenomena for personal or common benefit, 

including the ones considering the health. Such a huge amount of signals, recorded at daily basis, 

presents a gold mine of valuable diagnostic and prognostic information awaiting to be explored. 

With a proper legislative permissions, it could become a part of databases available to the 

research society, but also used by health authorities for statistical purposes and further beneficial 

activities.  

The transmission of recorded signals, however, is a subject to bandwidth and energy 

constraints. A part of computing vs. energy/bandwidth trade-off would be a local analysis 

performed in a wearable device. Unfortunately, most of the analytical methods are not 

compatible with such concept: they require stationary and artifact-free signals that an 

unprofessional self-acquisition - i.e. devices loosely attached or displaced and a subject in harsh 

movement - cannot provide. An example is (cross)-approximate entropy (X)ApEn one of the 

most valuable methods in biomedical research. It is widely accepted for assessing the complexity 

of biomedical signals: the complexity change may indicate an increase of adverse occurrences 

prior to alternation of any other parameter. This explains an amazing number of (X)ApEn 

citations in open literature. It also explains the number of (X)ApEn improvements, alternations 

and adjustments to specific applications, to mention just a few ones.  

A reliable (X)ApEn estimate requires artifact-free and stationary signals and its quadratic 



 

computational complexity is not fit for a local analysis concept. We propose a robust 

modification of (cross)-approximate entropy that ensures a speedy, energy efficient and blind 

implementation. It is motivated by a long-known property that infinitely clipped speech signal 

preserves the intelligibility, i.e. property that the majority of information content is carried by 

signal changes. We set a hypothesis that a binary differentially encoded biomedical signals 

preserve sufficient information to allow approximate entropy estimation, in spite of the coding 

coarseness. Differential coding is known to make the signals stationary, whereas the binary 

representation attenuates the effect of artifacts. The binarization also allows a considerable 

reduction of the computational complexity, reducing the cardinality of vector sets required for 

the entropy estimation procedure.  

Binary differentially encoded signals, coupled with discrete unconditional Shannon 

entropy, have already found a vast implementation in joint symbolic dynamic (JSD) studies, 

briefly explained within the Chapter 5.   

The aims of this section is 1) to introduce and explain binary cross-approximate entropy 

(X)BinEn as a method that considerably increases the computational efficiency of entropy 

estimation; 2) to establish a theoretical relationship between (X)BinEn and classical Shannon 

entropy; 3) to prove that (X)BinEn estimates are comparable to (X)ApEn results and also to point 

out the limitations; 4) to explore the (X)BinEn consistency regarding the binary bias and 

regarding the entropy parameters known to cause (X)ApEn instability; 5) to append a dynamic 

complementary measure, based on elements embedded in (X)BinEn procedure.  

 

6.1. Experimental protocol and signal acquisition 

The method is evaluated using the signals from laboratory rats exposed to stress. An 

extensive entropy study has already been performed over these signals, so the standard to which 

(X)BinEn results can be compared already exists (Boskovic 2011). Physiological aspects of these 

signals are elaborated and known (Sarenac 2010). The target group for this method – the mobile 

crowdsensing subjects, or individual subjects with wearable sensors – are most likely to be 

healthy, so stress is the major adverse factor they suffer from.  

Signals for this study are derived from blood pressure waveforms, recorded from the 

outbred male normotensive Wistar rats (NRM), as well as from the Borderline Hypertensive rats 



 

that are F1 offspring of Wistar dames and Spontaneous Hypertensive sires (BHR), each rat 

weighing 330 ± 20 g. A pressure sensor with wireless transmitter (TA11PA-C40, DSI, Transoma 

Medical) was implanted in abdominal aorta under combined ketamine and xylazine anesthesia, 

along with gentamicin, followed by metamizol injections for pain relief. The recording started 10 

days after the surgery, to allow the recovery. The arterial blood pressure (BP) signal was 

digitized at 1000Hz and relayed to a PC equipped with Dataquest A.R.T. 4.0. software for 

analysis of cardiovascular signals. Systolic blood pressure signal (SBP) is defined as a local 

blood pressure waveform maximum and pulse interval (PI) signal is extracted as a time interval 

between the successive points of maximal pressure.  

During the experiments, the animals were exposed to two types of stress: shaker stress, 

with rats positioned on a platform shaking at 200 cycle/min, and restraint stress, with rats placed 

in a Plexiglas restrainer tube (ID 5.5 cm with pores) in the supine position. Prior to any stress 

exposure, baseline signals were recorded (BASE).  

The number of animals per experimental group was 6 or 7, satisfactory according to the 

variability of the parameters in the control group rats (statistical software “Power Sample Size 

Calculation”). All experimental procedures in this study confirmed to European Communities 

Council directive of 24 November 1986 (86/609/ECC) and the School of Medicine, University of 

Belgrade Guidelines on Animal Experimentation. 

Each one of the raw SBP and PI time series is provided with a set of fifty artificial control 

signals that included isodistibutional surrogate time series (randomly permuted raw signal 

samples) and pseudo-random time series with uniform and normal distribution, with the same 

mean and standard deviation as the signal they accompany. It should be noted that pre-

processing, necessary for (X)ApEn but not for the proposed (X)BinEn, includes the visual 

inspection of time series, artifacts removal and slow signal component elimination by a filter 

designed specifically for cardiovascular signals. A stationarity test must also be performed: 

cross-ApEn requires normalized and centralized signals and the estimation of necessary 

statistical parameters needs signals stationary at least in a wide sense.  

The statistical significance of the obtained results was assessed using repeated measures 

ANOVA test, marked with “*” for p<0.05 and “**” for p < 0.01.  



 

 

6.2. XBinEn procedure 

The cross-entropy of binary differentially modulated signal, or (X)BinEn, is a procedure 

that gives a blind entropy estimate without a need to preprocess the signal. It can be applied as an 

auto-BinEn that, in a single time series, estimates a likelihood of an observed pattern to preserve 

the similarities in the next incremental step. It can also be applied for estimating the relationship 

existing between a related pair of time series – cross-entropy (X)BinEn. The latter case is more 

general so it would be used for the procedure explanation. 

While the (X)BinEn follows the basic steps of (X)ApEn [3], it also induces substantial 

modifications that are in accordance with the specific properties of the binary time series.  

The (X)BinEn procedure is applied to two initial time series. The first one is known as a 

“master signal” sxiSX, i=1,…,N. The cross-entropy is estimated in respect to the “signal – 

follower” SY, syjSY, j=1,…,N. The binary differential encoding is performed according to the 

established procedure (also given in the previous section): 
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The new binary master series X and its binary follower Y are then divided into the binary 

vectors of length m. The “master vector” )(i

mX  (obtained from the master binary signal X) is also 

called a “template vector” and the )( j

mY vector obtained from binary signal-follower Y is its 

“vector- follower”: 
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The purpose of the parameter τ (time lag) is to spread (distribute) vector elements, thus 

performing a vector de-correlation. Although the most applications use the contiguous τ=1 

vectors, for the sake of the complete description, the general τ ≥1 form is used. Time lag is a key 

component for adding the dynamic features into the (X)BinEn estimation.  

In a classical (X)ApEn procedure the vectors are real, each one comprising m original real 

signal samples. Each vector is unique so the cardinality of set of different vectors is τm-N- )1( . 



 

The (X)BinEn vectors are binary and thus of limited diversity. The cardinality of set of different 

m-bit vectors is equal to 2
m
. To each binary vector  ],...,,[ )1(

)(
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m xxxX  a decimal 

counterpart k can be associated, evaluated as: 
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Vector histograms )()(

X kN m  and )()(

Y nN m  show the number of occurrences of a particular 

vector within the series X and Y, respectively:  
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Here I{.} denotes an indicator function that is equal to 1 if the condition it indicates is 

fulfilled (the observed sum is equal to k or to n) [24]. Obviously, 
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where “^” denotes an estimate.  

Following the (X)ApEn as a source procedure, the next step would be to quantify a 

difference between each pair of master-follower vectors. In structures defined over the binary 

field, Hamming distance is almost exclusively applied as a distance measure: 
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The sign  in (6) denotes an ex-or logical function, while I{.} denotes an indicator 

function. Both functions are equal to one if    kjki yx , and equal to zero otherwise. The 

distance between binary vectors defined with (6) is a discrete variable that can get one out of 

m+1 values, i.e.  },,1,0{),( )()( md j

m

i

m YX Since the number of different binary vectors of length m is 

equal to 2
m
, the number of different template-follower vector pairs is equal to 2

m
·2

m
. Their 

corresponding Hamming distance can be expressed in a form of 2
m 

·2
m
 matrix denoted H

(m)
. Its 

element )(m

knh  is a Hamming distance between a template vector with a decimal value k and its 

vector-follower with a decimal value n. Equation (6.7) shows an example of a Hamming distance 



 

matrix for m=2; the possible two-bit vectors from Y and from X are written above the matrix, 

and in the right, respectively: 
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 In equation (6.7), k and n denote the decimal values of the corresponding template and 

follower vectors.  

For each m, a unique matrix H
(m)

 exists, so it can be calculated just once, stored and 

retrieved when necessary. Note that distance calculation for (X)ApEn requires m real 

subtractions and comparisons per each one of the 
2])1([ τm-N-  master-follower real vector pairs: 
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The next step is estimating a probability )(ˆ rpm

k
 that a vector-follower is within the 

distance r from a particular vector-template )(k

mX , i.e. that a vector-follower “match” the observed 

template. For this estimation it is sufficient to know a vector-follower histogram )()(

Y nN m  and 

Hamming distance matrix ][ )(m

knh . The matrix gives an information which vectors, out of 2
m
 

possible ones, are within the distance r from the template vector )(k

mX , while a sum of their 

histograms gives the number of vectors that satisfy this criterion:  

}.{I )(ˆ}{I )(
)1(

1
}),(Pr{)(ˆ

12

0

)()(

Y

12

0

)()(

Y

)( rhnPrhnN
mN

rdrp

mm

n

m

kn

m

n

m

kn

m

m

k

m

m

k 


 







YX   (6.9) 

The corresponding probabilities in (X)ApEn are evaluated as follows:  
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From the Eqs. (6.7-6.10) the computational reduction achieved by (X)BinEn becomes 

obvious: the number of probabilities (Eq. (6.10)) in (X)ApEn is equal to  )1(mN  (tens of 

thousands) and for each one ))1((  mNm  amplitude subtractions and comparisons (Eq. 

(6.8)) must be done; (X)BinEn, on the other hand, operates with histograms so the number of 

probabilities is equal to 2
m
 (Eq. (6.9)) with distances retrieved from the Hamming distance 

matrix (6.7). 



 

The final step in (X)ApEn-like procedures is forming a summand  that averages 

logarithms of the estimated probabilities over all 2
m
 templates. Each template k within the series 

X occurs )()(

X kN m  times: 
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The complete procedure is than repeated for the vectors of length m+1, yielding the 

estimate: 
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 For (X)ApEn, summand  requires ))1((  mN  logarithms and summations: 
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If a single time series X is observed, than (X)BinEn procedure converts to its auto BinEn 

variant, where the template vector and the follower vector are both from the same signal. 

Formally, it requires the changes in equations (6.6), (6.8) and (6.9) where the notation referring 

Phase (X)ApEn (X)BinEn 

Pre-
processi
ng 

Visual inspection and semi-automatic artifacts 
removal; 

Trend removal;  
Stationarity test; 

None; 

Start Standard deviation (for r): N·(summation, 
subtraction and multiplication); 

Normalization and 
centralization (for cross-
entropy only): 
N·(division, summation 
and subtraction); 

Binary differential encoding: 
N·(subtraction and 
comparison); 

 

Vector 
histogra
m and 
distributi
on 

None; Eq. 6.4: 2·Q·(m summations and 
m multiplications, 
comparison, division); 

Difference Eq. 6.8: m·Q
2 

·(subtraction and comparison); None; for a given m Hamming 
matrix is always the same; 

Probability Eq. 6.10: Q
2 

comparisons; Eq. 6.9: 2
m

·2
m

·(multiplication, 
summation and 
comparison); 

Summand  Eq. 6.13: Q·(logarithm and summation); Eq. 6.11: 2
m 

·(logarithm, 
multiplication and 
summation). 

Table 6.1. Number of operations required for summand  estimation 



 

to the “Y” time series should be replaced with the notations that correspond to the “X” time 

series.  

Table 6.1 summarizes the necessary operations required by (X)BinEn and by (X)ApEn. 

Within this table, the abbreviation Q = N-(m-1)·τ is used. Time series length N (and number of 

vectors Q) are measured in thousands of samples, while the vector length m is typically set to 2 

or 3. The complexity of (X)ApEn is quadratic, while (X)BinEn has a linear complexity 

considering N (and Q). Additional reduction is achieved by substituting the number of different 

real vectors Q by number of different binary vectors 2
m
 within the two last phases in Table 6.1.  

 

6.3. Relation to Shannon entropy 

The core of (X)ApEn is an Eckmann-Ruelle (E-R) entropy of a single time series, for 

which an auto-ApEn is an empiric approximation (thus the name – approximate entropy). E-R 

entropy implies infinite data sets N; infinite vectors m and a threshold r that is equal to zero. 

None of these bounds can be reached in (X)ApEn that is defined over the real-valued data series. 

But, due to the limited cardinality of the (X)BinEn vectors, the distance between the template 

and the corresponding vectors followers, defined by (6.6), is discrete, including zero as a 

possible threshold value. Threshold r equal to zero occurs only if a template vector and a 

follower vector are equal, i.e. when n=k in (6.9). Then the probability )0(ˆ rpm

k
 (6.9) is equal to 

the probability of a particular vector with decimal value k: 
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If, additionally, Y = X (auto-BinEn), )(ˆ )( kP m

Y
 converts to )(ˆ )( kP m

X
 and the expression 

(6.11) becomes: 
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Equation (6.15) states that a zero-threshold summand  and Shannon entropy are closely 

related. Equation (6.15) also states that auto-BinEn corresponds to the difference of Shannon 

entropies estimated for the vectors of incremental lengths (vectors of length m and m+1), as 

follows: 
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The relations (6.15) and (6.16) do not hold for a general (X)BinEn case, as all the 

comprising probabilities must be estimated from the same time series, which is true in auto-

entropy case only (Eqs. (6.9) and (6.11)).  

A known property of discrete Shannon entropy is that the entropy difference is equal to 

the entropy of incremental symbol set, i.e. to the entropy of m=1 vectors : 
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Proof:  Suppose that m-bit symbols (or m-bit vectors) are marked Si, i=0,...,2
m
-1, with the 

corresponding symbol probability P(Si); a bit longer symbols are Vj, j=0,...,2
m+1

-1, with 

the corresponding symbol probability P(Vj); an m=1 vector comprise a single bit bk, k=0,1 

with the corresponding bit probability P(bk). Than, for statistically independent bits and 

symbols, it holds:  
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Q.E.D. 

From Eq. (6.17) it could be concluded that auto-BinEn (6.16) would always remain the 

same if the threshold is equal to zero, but it is true for statistically independent data only. If data 

are dependent, Shannon entropy (6.15) is just an upper bound of the true entropy value.  

 

6.4. Binary bias as a possible source of errors 

The differential encoding defined by (6.1) forces the appearance of binary symbol “0”. It 

is negligible in SBP signals, but it causes 6% of the adjacent PI signal samples to be exactly the 

same (Table 6.2).  



 

 

 

 

 

 

 

 

 

 

Binary bias is a consequence of temporal resolution T=1 ms that, within a physiological 

range of PI signals in rats, allows a limited number of different PI values. This seemingly 

contradicts the sampling theorem that guarantees a perfect waveform reconstruction. The alleged 

paradox is clarified recalling that a strict implementation of the sampling theorem requires a low-

pass filtering that increases temporal resolution, as a simple example in Fig. 6.1 shows. An 

increase of temporal resolution can be done by interpolation, or by associating a random binary 

symbol to each occurrence of equal adjacent samples in (6.1).  

To explore whether the binary bias affects the entropy estimate, (X)BinEn is applied to 

three types of signals. Within the first type PI signals were derived from the original time series; 

within the second type, PI signals were derived from the filtered time series. Within the third 

type, a random correction was done during the binarization procedure (1) and a bit associated to 

the equal successive PI sample got a random binary value. The results are presented in Table 6.3, 

showing that there is no significant differences between the three types of results, so no binary 

bias correction is actually necessary.  

  

Table 6.2. Binary bias - percentage of adjacent 

equivalent samples 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.5. Entropy estimated by (X)BinEn and (X)ApEn 

The source signal for (X)BinEn estimation is a coarsely coded signal with two amplitude 

levels per sample. The source PI and SBP signals for (X)ApEn estimation are derived from the 

  
Fig 6.1. Binary bias eliminated by NF filtering: the maximum 

of the filtered signal (thick red line) is shifted 0.02 ms in 

respect to the position of maximal signal sample provided by 

the acquisition equipment (black vertical lines) 

 

Table 6. 3. Influence of binary bias: (X)BinEn is estimated from the 

time series derived from the original signal, from the NF-filtered 

signal, and from the randomly corrected time series. 

 



 

output of 12-bit A/D convertor with 4096 amplitude levels. The assumption is that binary coding 

preserves a sufficient amount of information, and that the results of (X)BinEn would be 

comparable to (X)ApEn. This assumption follows a speech signal studies, where it was shown 

that binary coding preserves signal information, and that speech remains comprehensible 

although the voice becomes harsh. To prove this assumption, (X)BinEn is estimated from the 

same signals from laboratory rats submitted to stress, for which (X)ApEn results already exist.  

The relative (X)BinEn and (X)ApEn changes induced by stress in respect to baseline 

conditions are presented in Fig. 6.2. While (X)BinEn was applied to the raw signals, prior to 

(X)ApEn analysis signals had to be checked, the artifacts removed, slow-varying trend 

component filtered out, the stationarity test applied and data normalized and centralized.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A formal statistical comparison yielded no significant differences between the (X)BinEn 

and (X)ApEn results. When tested in respect to baseline conditions (thick gray line in Fig. 6.2), 

both methods exhibited a statistically significant relative entropy decrease in normotensive rats 

exposed to restraint stress only. In other cases and estimated by both methods, relative entropy 

change in respect to baseline remained without the significant change. Mutually comparing 

 

Fig. 6.2. (X)ApEn and (X)BinEn for N=5000 and τ = 1; the results are presented 

relative to baseline (horizontal gray line) 



 

relative (X)ApEn and (X)BinEn changes, no statistically significant difference between the 

methods is obtained. A visual inspection shows a slight, but insignificant, increase of (X)ApEn in 

BHR rats exposed to shaker stress, and a slight, but insignificant, decrease of (X)BinEn applied 

to the same signal. This discrepancy is an outcome of parameter instability of (X)ApEn and 

would be addressed to in the next subchapter.  

However, the binary differential coding is coarse, so reduced levels of freedom (number 

of amplitude levels decreased from 4096 to 2) must elicit some consequences. And indeed, the 

major drawback of (X)BinEn can be seen in Fig. 6.3, where the entropy changes (in respect to 

baseline) are estimated for the signals in stress, and for three types of accompanying artificial 

signals with the same mean and standard deviation: isodistributional surrogate data, 

pseudorandom signals with normal distribution and pseudorandom signals with uniform 

distribution. In Fig. 6.3, left panel (a) corresponds to (X)BinEn estimates, and right panel (b) 

corresponds to (X)ApEn estimates.  

At the first glance, both panels are similar in appearance and display similar behavior. 

Only after observing the scale of y-axis a substantial difference can be noticed: the evoked 

(X)BinEn changes correspond to the dynamic range of 15%, while the changes evoked in 

(X)ApEn correspond to the dynamic range of 40%. It follows that (X)BinEn would be insensitive 

to fine signal changes that (X)ApEn would notice, i.e. (X)BinEn is a rough measure. This also 

explains the inability of (X)BinEn to notice the small changes induced by binary bias: signal 

space is reduced to a simple binary decision whether the next sample increases or decreases in 

 
Fig. 6.3. Relative entropy changes in respect to the baseline signal a)(X)BinEn; b) (X)ApEn;,  

In both panels N = 3000. Other parameters are according to the general guidelines - m = 2, r 

= 0.2 and τ = 1; 



 

respect to the current one, but the absolute value of change is lost. So the coarse binary coding 

does preserve the majority of signal information located in binary direction of signal changes. 

This enables (X)BinEn to be comparable to (X)ApEn. However, information stored within an 

amplitude of signal change is lost and cannot be reflected to (X)BinEn estimates, resulting in 

decreased (X)BinEn sensitivity.  

 

6.6. Threshold r and time series length N as possible sources of inconsistency 

Approximate entropy is always implemented as a relative measure, as its absolute value 

is influenced by parameters. It is known, for example, that (X)ApEn increases with the time 

series length, asymptotically reaching a plateau that requires a large number of template-follower 

matching pairs to be reliably achieved. However, parameters can also induce an experimental 

instability. Threshold r is shown to be its dominant source and it was subject to numerous 

studies. It was pointed out that it can even alter experimental outcome and lead to the 

physiologically incorrect conclusions (a flip-flop effect).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.4. (X)BinEn changes induced by SHAKER stress in BHR rats. The experimental 

outcomes are consistent for different thresholds r, vector lengths m; and time series 

lengths; (X)ApEn outcomes are incosistent, increasing in stress for N=3000 and 

decreasing for N = 6000 (gray part of figure). 



 

 

 

 

To test whether the instabilities observed in (X)ApEn remain in (X)BinEn, both methods 

were applied to a set of signals where a flip-flop effect has already been recorded – signals from 

BHR rats exposed to shaker stress. The results are presented in Fig. 6.4. (X)BinEn was tested for 

all possible parameters and the results consistently show that entropy decreases in stress in 

respect to baseline entropy. (X)ApEn estimates (in the gray part of Fig. 6.4) show that the 

experimental outcome depends on parameter choice, and, depending on parameter choice, and 

that entropy in stress may both increase and decrease.  

An influence of time series length N is shown in Fig. 6.5. Contrary to (X)ApEn that 

monotonously increase within the given range of lengths N, the absolute values of (X)BinEn 

estimates does not show any fluctuations, and they are also insensitive to a slow signal 

component (trend) – panels (a) and (b). Panels (c) and (d) show that the relation between the 

BHR and NRM rats remain the same regardless both if estimated by (X)ApEn and (X)BinEn.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Fig. 6.5. Influence of time series length. (X)BinEn(m=2,r=1,τ=1) is not influenced by 

the signal trend (panels a) and b)). Estimated (X)ApEn(m=2,r=0.15, τ =1) values 

are smaller in BHR rats, but without the statistical significance (panel c)); the same 

relation is preserved in (X)BinEn (panel d)). 



 

 

 

 

As already stated, (X)ApEn requires a large number of template-follower vector matching 

pairs, otherwise the probabilities (6.10) are underestimated and sum (6.13) is not reliable. This 

problem is attenuated by binary coding, as template-vectors have at most 2
m+1

 different 

realizations (as compared to ))1((  mN  individual ones in (X)ApEn estimation), 

accomplishing a sufficient number of matching vector pairs for. Furthermore, for discrete vectors 

theoretical guidelines can be used for finding the minimal time series length necessary for 

reliable estimation:  
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     (6.18) 

Here p0 and p1 are probabilities of 0 and 1 respectively and the choice of l distinguishes 

whether the event would appear at least 10 (l=1) or 100 (l=2) times during the experiment. 

Equation (6.18) considers the worst-case, when a template vector consists of m+1 identical and 

the least probable binary symbols so the denominator in (6.18) has the lowest value. 

An additional test of (X)BinEn stability regarding the data length is performed using the 

artificially generated random binary time series with time series length N and probability of zero 

p0 as parameters. The results are presented in Fig. 6.6.  

The left panel (a) shows the estimated (X)BinEn for m=2, r=1 and τ=1, averaged over 

1000 simulation runs and presented as mean ± standard deviation. The right panel (b) shows 

standard deviation (in respect to entropy mean value) with the values for N given by (6.18) 

emphasized. As biomedical signals are under physiological constraints and can neither increase 

nor decrease infinitely, the corresponding binary probability is in the vicinity of 0.5. So the 

reliable (X)BinEn estimation of cardiovascular time series is ensured with N = 500 signal 

samples. 

 



 

 

 

6.7. Components for the dynamic measures 

All (X)ApEn–based methods yield a result expressed as a single number. Such a compact 

outcome is an advantage through which (X)ApEn earned its meritorious status. This 

convenience, however, requires an extensive averaging which conceals the subtle inter-sample 

relationships and makes (X)ApEn a static measure, as was indeed the original intention of the 

authors: “the intuition motivating (X)ApEn” is actually designed to compare the joint and 

marginal distribution functions, therefore not the sample inter-relationships.  

A necessity to include the inter-sample dependence initiated the follow-up studies, widely 

accepted to complement (X)ApEn. The underlying theory is based on conditional entropy. With 

Shannon entropy already known to be equal to (auto)BinEn(r=0), (Chapter 6.3), appending a 

conditional entropy component to a static (auto)BinEn measure is computationally effortless: the 

 

Fig. 6.6. a) Estimated (X)BinEn(N,m=2,r=1) of artificially generated random binary time series 

(1000 runs per point); parameter is probability of binary zero p0; b) standard deviations from 

panel a) expressed in % of mean; squares mark the length for which N=NMIN (Eq. 6.18). 



 

elements for conditional entropy )|()1( XXmH  are already embedded into the equations (6.4) and 

(6.5) as follows: 
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 (6.19) 

In (6.19) )|( kn xxP  denotes a conditional probability.  

A key component for dynamic measures is a decorrelation time lag τ. It induces a 

temporal distance between the observed m=2 vector elements (Fig. 6.7), thus enabling the 

complexity measure related to samples at a specific distance along the time axis.  

The proposed measure is m=1 conditional entropy )|()1( XXmH normalized by BinEn(r=0). 

It shows complexity changes induced by inter-sample relationships at particular time lags, in 

respect to the complexity of the same signal, but with assumed statistically independency. This 

measure has a theoretical background for auto-entropy case only, as it requires all the 

probabilities to be estimated from the same time series.   
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Fig. 6.7. An m=2 vector; its bits (gray) are at the time lag = 4 

 



 

Figure 6.8 presents an application example, a normalized conditional entropy applied to 

signals recorded from stressed subjects. Results for τ = 1 are not presented, as the statistical 

dependence of adjacent samples is a consequence of memory induced by differential coding, and 

therefore incompatible to the other results.  

At baseline conditions, the physiological regulators maintain in the perfect order and 

there is either no difference between the conditional entropy and BinEn (PI signals), or the 

difference is less than 1% (SBP signals). Shaker stress does not affect conditional entropy of PI 

signals, but an entropy decrease in SBP signals indicates that the amplitude of 10 successive 

beats become dependent. The major changes – up to 15% - are observed in restraint stress, one of 

the strongest stress an animal can be exposed to. Increased statistical dependence and lessening 

the effect of regulations affects – in SBP case – 15 adjacent beats. It can be observed, both in PI 

and in SBP, that effects of stress are more indicative in normotensive, than in border-line 

hypertensive rats. The inset in Fig. 6.5a shows the conditional entropy estimated from the 

a) b)

c)
d)

 

Fig. 6.8. Normalized conditional entropy at different time lags: PI signals in shaker (a) and restraint (c) 

stress, and SBP signals in shaker (b) and restraint (d) stress 

 

 



 

isodistributional surrogate data set applied as control for PI signals in shaker stress. The results 

are in a form of flat lines that overlap, as a random permutation of signal samples perfectly 

destroys inter-sample dependency and entropy always yields the same estimate.  

The entropy behavior - decrease in stress and stability at baseline - is in accordance with 

the findings that stress attenuates regulatory mechanisms in rats. In baseline conditions, 

regulations are firm and SBP and PI are constantly adjusted, achieving a dynamic equilibrium. In 

stress, the regulation is loose, signal ramps (successive increase or decrease of signal samples) 

are not interrupted causing the samples to become more dependent. The dependence is not 

bounded to neighboring samples only, it can spread to the samples that are at time lags of ten or 

more 

heart

-

beats

.  
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is presented in Fig. 6.9. reveals the influence of both the delay spans to the joint conditional 

binary entropy. In spite of coding coarseness, the SBP-PI dependences known to exist at time 

lags are noticed, shown by lighter horizontal lines at lags of 2, 4, 5 and 7 [heart-beats]. However, 

a yellow horizontal line is an artifact (due to the differential coding), while the diagonal lines are 

an outcome of statistical dependence caused by overlapping bits of symbols and should be 

considered as artifacts as well. It is an occurrence similar to symbol overlapping in Joint 

Symbolic Dynamics mentioned in Chapter 5.  
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spans (horizontal axis), plotted for various SBP-PI time lags.  

 



 

6.8. References 

[1] Ganti, R.K. Mobile crowdsensing: current state and future challenges, IEEE Communications Magazine, 2011, 

Volume 49, No. 11, pp. 32 – 39 doi: 10.1109/MCOM.2011.6069707  

[2] Chessa, S., Corradi, A., Foschini L., Girolami, M. Empowering Mobile Crowdsensing through Social and Ad 

Hoc Networking IEEE Communications Magazine, 2016, Volume 54, No. 7  pp. 108-114, doi:  

10.1109/MCOM.2016.7509387 

[3] S.M. Pincus, Approximate entropy as a measure of system complexity, Proc Nat. Acad. Sci. USA, 88 (1991) 

2297-2301, 

[4] A.L. Goldberger, S.M. Pincus, Physiological time-series analysis: What does regularity quantify?, Am J 

Physiol(Heart Circ Physiol), 266 (1994) H1643-H1656. 

[5] J.S. Richman, J.R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy, 

Am J Physiol Heart Circ Physiol, 278(6) (2000) H2039-H2049. 

[6] D. E. Lake, J.S. Richman, Sample entropy analysis of neonatal heart rate variability, Am J Physiol Regul Integr 

Comp Physiol, 283 (2002) R789-R797  

[7] M. Costa, A. Goldberger, C-K. Peng: Multiscale entropy analysis of biological signals, Phys. Rev. E, Vol.71(2), 

pp.021906 1-17 1-4, 2005.  

[8] H.B. Xie, J.Y. Guo, Y.P. Zheng: Fuzzy approximate entropy analysis of chaotic and natural complex systems: 

detecting muscle fatigue using electromyography signals, Ann Biomed Eng. Vol,.38(4), pp 1483-96, 2010. 

[9] A. Porta, G. Baselli, F. Lombardi, N. Montano, A. Malliani, S. Cerutti, Conditional entropy approach for the 

evaluation of the coupling strength, Biol. Cybern. 81, 119-129 (1999) 

[10] M. Baumert, V. Baier, S. Truebner, A. Schirdewan, A. Voss: Short- and Long-Term Joint Symbolic Dynamics 

of Heart Rate and Blood Pressure in Dilated Cardiomyopathy, IEEE Transactions on Biomedical Engineering, 

Vol. 52, no. 12, December 2005, pp 2112-2115.  

[11] O. Mohamoud, T. Loncar-Turukalo, N. Japundzic-Zigon, D. Bajic: On Symbol Entropy of Joint Time Series, 

Proceedings of the 7th ESGCO 2012, april 22-15, 2012, Kazimierz Dolny, Poland    

[12] R.B. Govindan, J.D.Wilson, H. Eswaran, C.B. Lowery, H. Preisl, Revisiting sample entropy analysis, Physica 

A, 376 (2007) 158-164 

[13] F. Kaffashi, R.Foglyano, C.G.Wilson, K.Loparo, The effect of time delay on approximate and sample entropy 

calculations, Physica D 237 (2008), 3069-3074; 

[14] X.Chen, I.C.Solomon, K.H.Chon, Comparison of the use of approximate entropy and sample entropy: 

application to neural respiratory signal, in Proc. of the 27th IEEE EMBS Ann. Conf (2005) 4212-4216 

[15] A. Papoulis, Probability, random variables and stochastic processes, McGraw-Holl International Edition, (1984)  

[16] T. Buchner, G. Grzyb, P. Krzesinsky, M. Grzeda: Time frequency analysis of the tilt test recordings discussion, 

NEUROCARD 2010. Abstract book and discussion 

[17] J. Oosting, HAJ Struijker-Boudier, BJA Janssen BJA. 1997. Validation of a continuous baroreceptor reflex 

sensitivity index calculated from spontaneous fluctuations of blood. J Hypertens 15:391-399, 1997. 

[18] D. Bajic, T. Loncar-Turukalo, S. Stojicic, O. Sarenac, T. Bojic, D. Murphy, J. F. R. Paton, N. Japundzic-Zigon: 

Temporal analysis of the spontaneous baroreceptor reflex during mild emotional stress in the rat, STRESS-The 

International Journal On The Biology Of Stress, March 2010; Vol 13, No. 2, pp 142–154 

[19] A. Boskovic, T. Loncar-Turukalo, O. Sarenac, N. Japundzic-Zigon, D. Bajic: Unbiased entropy estimates in 

stress: a parameter study, Computers in Biology and Medicine 42 (2012) 667–679 

[20]  Pincus, S. M. Approximate entropy as a measure of system complexity. Proc. Natl Acad. Sci. U.S.A. 

88:2297−2301, 1991.  

[21]  Pincus, S. M. Approximate entropy (ApEn) as a complexity measure. Chaos 5:110–117, 1995. 

[22]  Pincus, S. M. and B. H. Singer. Randomness and degrees of irregularity. Proc. Natl Acad. Sci. U.S.A. 

93:2083−2088, 1996. 

[23] Yentes, J. M., N. Hunt, K. K. Schmid, J. P. Kaipust, D. Mcgrath, and N. Stergiou. The appropriate use of 

approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 41: 349−365, 2013.  

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Raghu%20K.%20Ganti.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=35
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6069696
http://dx.doi.org/10.1109/MCOM.2011.6069707
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7509365
http://dx.doi.org/10.1109/MCOM.2016.7509387
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Xie%20HB%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Guo%20JY%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Zheng%20YP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed/20099031


 

[24] Richman, J. S., and J. R. Moorman. Physiological time series analysis using approximate entropy and sample 

entropy. Am. J. Physiol. Heart Circ. Physiol. 278:H2039–H2049, 2000. 

[25] Boskovic A., T. Loncar-Turukalo, O. Sarenac, N. Japundzic-Zigon, and D. Bajic. Unbiased entropy estimates in 

stress: a parameter study. Comput. Biol. Med. 42: 667–679, 2012. (Computers in Biology and Medicine- 

proveriti skracenicu casopisa) 

[26] Kaffashi, F., R. Foglyano, C. G. Wilson, and K. A. Lopar. The effect of time delay on approximate and sample 

entropy calculations. Physica D 237:3069–3074, 2008. 

[27]  AL Fawe Interpretation of infinitely clipped speech properties Audio and Electroacoustics, IEEE Transactions 

on  (Volume:14 ,  Issue: 4 ) Pp 178 - 183 ISSN : 0018-9278 Dec 1966  

[28] RW Wolf: Stochastic modeling and theory of queues, Prentice Hall, Englewood Hills, New Jersey, 1989, pp 35-

38 ISBN-13: 978-0138466923 

[29] Sarenac, O., M. Lozic, S. Drakulic, D. Bajic, J. F. Paton, D. Murphy and N. Japundzic-Zigon. Autonomic 

mechanisms underpinning the stress response in borderline hypertensive rats. Exp. Physiol. 96:574-589, 2011. 

(Experimental Physiology-) 

[30] Omer Mohamoud, Tamara Skoric, Nina Japundzic Zigon and Dragana Bajic: Entropy relations in infinitely 

clipped differential time series, 9th conference of the European Study Group on Cardiovascular Oscillations 

ESGCO 2016, Lancaster, UK. 

[31] Omer Mohamoud, Tamara Skoric, Branislav Milovanovic, Nina Japundzic Zigon and Dragana Bajic:  
Binarized Cross-Approximate Entropy in Crowdsensing Environment, accepted for publication in Computers in 

Biology and Medicine (Elsevier, M22, IF 1.509).  

[32] Tatjana Tasic, Sladjana Jovanovic, Omer Mohamoud, Tamara Skoric, Nina Japundzic-Zigon, Dragana Bajic: 

Dependency structures in differentially coded cardiovascular time series, submitted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8337
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8337
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=26057
http://www.ncbi.nlm.nih.gov/pubmed/21421701


 

7. CONCLUSION 

The aim of this contribution was to adjust the approximate entropy estimation to 

applications where no pre-processing and human interaction is possible and where power and 

processor capacities are poor. It is motivated by mobile crowdsensing that recognizes health as a 

part of its platforms and forces local analysis as an engineering compromise to transmit the 

results and not the source data, thus saving the transmission resources. But, a local analysis 

implies blind processing, while approximate entropy, as well as many other sophisticated tools, 

require active pre-processing to obtain stationary, noise-free and artifacts - free data.  

Binary differential encoding is insensitive both to non-stationarities and to a reasonable 

amount of artifacts, but the coding is coarse and reduces the number of amplitude levels per 

sample from 4096 to two. In spite of coding coarseness, amount of information remain sufficient 

to capture entropy changes in different experimental conditions. The conclusion is achieved 

comparing the results of (X)ApEn (where prior to analysis trend and artifacts were removed, 

signals visually inspected and stationarity checked) and (X)BinEn (where the analysis was 

blind).  

The coarseness of data, however, reduces the sensitivity: within the same experiment, 

the range of (X)ApEn and (X)BinEn changes were 40% and 15% respectively. This means that 

smaller amount of signal changes would remain unnoticed and that (X)BinEn is actually a rough 

measure. 

The reduced sensitivity, although undesirable, has a positive effect – it filters out other 

unwanted phenomena. One of them is binary bias, a problem of forcing the binary zeros due to 

the rules of differential coding. A more serious (X)ApEn problem, the instability of experimental 

outcomes, is also attenuated: the reduction of different binary template vectors increases the 

number of matching vectors-followers and ensures the stable probability estimation.  

Another consequence of binarization is a reduced computational complexity: (X)BinEn 

operates with 2
m
 different binary vectors and have a linear complexity, while (X)ApEn operates 

with ~N vectors and has a quadratic complexity. A detailed elaboration is presented in Table 1.  

It was shown that auto-BinEn(r=0) is equivalent to Shannon m=1 entropy. It was also 

shown that the elements of binary conditional m=1 entropy are embedded into the described 

procedure, so its addition as a complementary option is computationally effortless. This feature 



 

enables a dynamic observation of complexity changes related to the inter-samples dependency at 

a particular time lag, in respect to the complexity of the same signal, but with assumed 

statistically independency. 

(X)BinEn is not a substitute for (X)ApEn, nor for any of its follow-ups. It is intended for 

a quick, robust and blind local analysis in wearable devices where (X)ApEn-like procedures 

cannot be applied due to their quadratic computational complexity and requirements for semi-

automatic pre-processing.  
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