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Abstract

We present a detailed study on application of factor graphs and the belief propagation

(BP) algorithm to the power system state estimation (SE) problem. We start from

the BP solution for the linear DC model, for which we provide a detailed convergence

analysis. Using BP-based DC model we propose a fast real-time state estimator for

the power system SE. The proposed estimator is easy to distribute and parallelize,

thus alleviating computational limitations and allowing for processing measurements

in real time. The presented algorithm may run as a continuous process, with each

new measurement being seamlessly processed by the distributed state estimator. In

contrast to the matrix-based SE methods, the BP approach is robust to ill-conditioned

scenarios caused by significant differences between measurement variances, thus

resulting in a solution that eliminates observability analysis. Using the DC model, we

numerically demonstrate the performance of the state estimator in a realistic real-time

system model with asynchronous measurements. We note that the extension to the

non-linear SE is possible within the same framework.

Using insights from the DC model, we use two different approaches to derive

the BP algorithm for the non-linear model. The first method directly applies BP

methodology, however, providing only approximate BP solution for the non-linear

model. In the second approach, we make a key further step by providing the solution

in which the BP is applied sequentially over the non-linear model, akin to what is

done by the Gauss-Newton method. The resulting iterative Gauss-Newton belief

propagation (GN-BP) algorithm can be interpreted as a distributed Gauss-Newton

method with the same accuracy as the centralized SE, however, introducing a number

of advantages of the BP framework. The thesis provides extensive numerical study



of the GN-BP algorithm, provides details on its convergence behavior, and gives a

number of useful insights for its implementation.

Finally, we define the bad data test based on the BP algorithm for the non-linear

model. The presented model establishes local criteria to detect and identify bad

data measurements. We numerically demonstrate that the BP-based bad data test

significantly improves the bad data detection over the largest normalized residual test.



Sažetak

Glavni rezultati ove teze su dizajn i analiza novih algoritama za rešavanje problema

estimacije stanja baziranih na faktor grafovima i “Belief Propagation” (BP) algoritmu

koji se mogu primeniti kao centralizovani ili distribuirani estimatori stanja u elektroen-

ergetskim sistemima. Na samom početku, definisan je postupak za rešavanje linearnog

(DC) problema korǐsćenjem BP algoritma. Pored samog algoritma data je analiza

konvergencije i predloženo je rešenje za unapredenje konvergencije. Algoritam se može

jednostavno distribuirati i paralelizovati, te je pogodan za estimaciju stanja u realnom

vremenu, pri čemu se informacije mogu prikupljati na asinhroni način, zaobilazeći neke

od postojećih rutina, kao npr. provera observabilnosti sistema. Proširenje algoritma

za nelinearnu estimaciju stanja je moguće unutar datog modela.

Dalje se predlaže algoritam baziran na probabilističkim grafičkim modelima koji je

direktno primenjen na nelinearni problem estimacije stanja, što predstavlja logičan

korak u tranziciji od linearnog ka nelinearnom modelu. Zbog nelinearnosti funkcija,

izrazi za odredenu klasu poruka ne mogu se dobiti u zatvorenoj formi, zbog čega

rezultujući algoritam predstavlja aproksimativno rešenje. Nakon toga se predlaže

distribuirani Gaus-Njutnov metod baziran na probabilističkim grafičkim modelima i

BP algoritmu koji postiže istu tačnost kao i centralizovana verzija Gaus-Njutnovog

metoda za estimaciju stanja, te je dat i novi algoritam za otkrivanje nepouzdanih

merenja (outliers) prilikom merenja električnih veličina. Predstavljeni algoritam

uspostavlja lokalni kriterijum za otkrivanje i identifikaciju nepouzdanih merenja,

a numerički je pokazano da algoritam značajno pobolǰsava detekciju u odnosu na

standardne metode.
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Chapter 1

Introduction

The major topic of the thesis is to provide novel distributed state estimation (SE)

algorithms applicable to electric power systems. In essence, we provide algorithms that

solve systems of linear and non-linear equations with real coefficients and variables.

Consequently, the implications of our results go far beyond SE in electric power

systems and can be applied in different areas, such as for demand response [1] or

water distribution systems [2].

Proposed SE algorithms are suitable to cope with near-real-time and asynchronous

operation requirements, bypassing established routines (e.g., system observability).

They are flexible and easy to distribute across local processors that are located at

different physical locations, and/or in parallel fashion, where local processors run in

parallel at the same physical place. Novel algorithms do not involve direct matrix

inversion, which makes them attractive from the point of computational complexity

and in some special conditions are numerically more stable.

In this chapter, we present the formulation of the problems that we intend to solve

and introduce the basic terms, giving the reader a clearer picture of the problems.

We clearly state assumptions and limitations that we use throughout this thesis and

present main advantages over the current state-of-the-art SE models in electric power

systems. Finally, we note that results presented in the thesis are based on our previous

publications with additional clarifications, and enriched with many useful examples.

1.1 Power System State Estimation

Electric power systems consist of generation, transmission and consumption spread over

wide geographical areas and operated from the control centers by the system operators.

Maintaining normal operation conditions is of the central importance for the power

system operators [3, Ch. 1]. Control centers are traditionally operated in centralized

and independent fashion. However, increase in the system size and complexity, as well
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as external socio-economic factors, lead to deregulation of power systems, resulting in

decentralized structure with distributed control centers. Cooperation in control and

monitoring across distributed control centers is critical for efficient system operation.

Consequently, existing centralized algorithms have to be redefined based on a new

requirements for distributed operation, scalability and computational efficiency [4].

The system monitoring is an essential part of the control centers, providing control

and optimization functionality whose efficiency relies on accurate SE. The centralized

SE assumes that the measurements collected across the system are available at the

control center, where the centralized SE algorithm provides the system state estimate.

Precisely, the centralized SE algorithm typically uses the Gauss-Newton method

to solve the non-linear weighted least-squares (WLS) problem [5], [6]. In contrast,

decentralized SE distributes communication and computational effort across multiple

control centers to provide the system state estimate. There are two main approaches

to distributed SE: i) algorithms which require a global control center to exchange

data with local control centers, and ii) algorithms with local control centers only [7].

Distributed SE algorithms target the same state estimate accuracy as achievable using

the centralized SE algorithms.

Input data for the SE arrive from supervisory control and data acquisition (SCADA)

technology. SCADA provides communication infrastructure to collect legacy measure-

ments (voltage and line current magnitude, power flow and injection measurements)

from measurement devices and transfer them to a central computational unit for

processing and storage. In the last decades, phasor measurement units (PMUs) were

developed that measure voltage and line current phasors and provide highly accurate

measurements with high sampling rates. PMUs were instrumental to the development

of the wide area measurement systems (WAMSs) that should provide real-time moni-

toring and control of electric power systems [8–10]. The WAMS requires significant

investments in deployment of a large number of PMUs across the system, which is

why SCADA systems will remain important technology, particularly at medium and

low voltage levels. However, with the evolution and adoption of PMU technology

and, consequently, with decline in price of PMUs, it is realistic to assume that future

power systems will be fully observable by PMUs [11]. Exploiting PMU inputs by

robust, decentralized and real-time SE solution calls for novel distributed algorithms

and communication infrastructure that would support future WAMS and aims to

detect and counteract power grid disturbances in real-time [12,13].

Monitoring and control capability of the system, besides the SE accuracy, strongly

depends on the periodicity of evaluation of state estimates. Ideally, in the presence of

both legacy and phasor measurements, SE should run at the scanning rate (seconds),

but due to the computational limitations, practical SE algorithms run every few
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minutes or when a significant change occurs [5].

1.1.1 Distributed SE Algorithms

The mainstream distributed SE algorithms exploit matrix decomposition techniques

applied over the Gauss-Newton method. These algorithms usually achieve the same

accuracy as the centralized SE algorithm and work either with global control center

[14–17] or without it [18–21]. Furthermore, SE algorithms based on distributed

optimization [22], and in particular, the alternating direction method of multipliers [23]

became very popular [24–26]. Authors in [9] present the robust decentralized Gauss-

Newton algorithm which provides flexible communication model, but suffers from slight

performance degradation compared to the centralized SE. The work in [27] proposed

a fully distributed SE algorithm for wide-area monitoring which provably converges

to the centralized SE. The paper [28] proposed a new multi-area SE approach with

the central coordinator, where is no requirement to share the topology information

among the sub-areas and from sub-areas to the central coordinator. Recently, in [29],

a new hierarchical multi-area SE method is proposed, where the algorithm converges

close to the centralized SE solution with improved convergence speed. We refer the

reader to [30] for a detailed survey of the distributed multi-area SE. In addition, we

note that most of the distributed SE papers implicitly consider wide-area monitoring

and transmission grid scenario, which is the approach we follow in this thesis.

1.2 Belief Propagation Approach

In this thesis, we solve the SE problem using probabilistic graphical models [31], a

powerful tool for modeling the independence/dependence relationships among the

systems of random variables [32, Ch. 4]. Graphical models are useful since they provide

a framework for studying a wide class of probabilistic models and associated algorithms.

Factor graph represents a graphical model which allows a graph-based representation

of probability density functions using variable and factor nodes connected by edges.

In contrast to directed and undirected graphical models, factor graphs provide the

details of the factorization in more explicit way [33, Ch. 8].

We represent the SE problem using factor graphs and solve it using the belief

propagation (BP) algorithm. Applying the BP algorithm on probabilistic graphical

models without loops, one obtains exact marginal distributions or a mode of the joint

distribution of the system of random variables [31], [33]. The BP algorithm can be

also applied to graphical models with loops (loopy BP) [34], although in that case, the

solution may not converge to the correct marginals/modes of the joint distribution.
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BP is a fully distributed algorithm suitable for accommodation of distributed power

sources and time-varying loads. Moreover, placing the SE into the probabilistic

graphical modelling framework enables not only efficient inference, but also, a rich

collection of tools for learning parameters or structure of the graphical model from

observed data [35,36].

In the standard setup, the goal of the BP algorithm is to efficiently evaluate the

marginals of a system of random variables y = [y1, . . . , yn]T described via the joint

probability density function g(y)1. Assuming that the function g(y) can be factorized

proportionally (∝) to a product of local functions:

g(y) ∝
k∏
i=1

ψi(Vi), (1.1)

where Vi ⊆ {y1, . . . , yn}, the marginalization problem can be efficiently solved using

BP algorithm. The first step is forming a factor graph, which is a bipartite graph that

describes the structure of the factorization (1.1). The factor graph structure comprises

the set of factor nodes F = {f1, . . . , fk}, where each factor node fi represents local

function ψi(Vi), and the set of variable nodes V = {y1, . . . , yn}. The factor node fi
connects to the variable node ys if and only if ys ∈ Vi [37].

The BP algorithm on factor graphs proceeds by passing two types of messages

along the edges of the factor graph:

(i) a variable node ys ∈ V to a factor node fi ∈ F message µys→fi(ys), and

(ii) a factor node fi ∈ F to a variable node ys ∈ V message µfi→ys(ys).

Both variable and factor nodes in a factor graph process the incoming messages

and calculate outgoing messages, where an output message on any edge depends

on incoming messages from all other edges. BP messages represent ”beliefs” about

variable nodes, thus a message that arrives or departs a certain variable node is a

function (distribution) of the random variable corresponding to the variable node.

We are employing a loopy BP since the corresponding factor graph usually contains

cycles. Loopy BP is an iterative algorithm, and requires a message-passing schedule.

Typically, the scheduling where messages from variable to factor nodes, and messages

from factor nodes to variable nodes, are updated in parallel in respective half-iterations,

is known as synchronous scheduling. Synchronous scheduling updates all messages in

a given iteration using the output of the previous iteration as an input [38].

1With a slight abuse of notation, here we use y to define a general system of random variables,
hereinafter we use different symbols to describe those. However, throughout the thesis, we use V to
describe the set of nodes.
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1.2.1 Belief Propagation SE Algorithms

The work in [39,40] provides the first demonstration of BP applied to the SE problem.

Although this work is elaborate in terms of using, e.g., environmental correlation via

historical data, it applies BP to a linear approximation of the non-linear functions [41].

The non-linear model is recently addressed in [42], where tree-reweighted BP is applied

using preprocessed weights obtained by randomly sampling the space of spanning

trees. The work in [43] investigates Gaussian BP convergence for the DC model.

Although the above results provide initial insights on using BP for distributed SE,

the BP-based solution for non-linear SE model and the corresponding performance

and convergence analysis is still missing. This thesis intends to fill this gap.

1.2.2 Belief Propagation Based DC SE Algorithm

In general, the DC SE model is obtained by linearisation of the non-linear model, and

the model ignores the reactive powers and transmission losses and takes into account

only the active powers. Our methodology is to start with the simplest linear DC SE

model and use insights obtained therein to derive the BP solution for the non-linear

SE model; we refer to the corresponding method as the DC-BP. As a side-goal of this

part, we aimed at thorough and detailed presentation of applying BP on the simple

DC SE problem in order to make the powerful BP algorithm more accessible and

more popular within the power-engineering community [44].

Using the DC-BP algorithm, we demonstrate capability of the BP algorithm. More

precisely, we propose a fast real-time state estimator based on the BP algorithm. In

other words, unlike the usual scenario where measurements are transmitted directly

to the control center, in the BP framework, measurements are locally collected and

processed by local modules (at substations, generators or load units) that exchange

BP messages with neighboring local modules. Furthermore, even in the scenario where

measurements are transmitted to the centralized control entity, the BP solution is

advantageous over the classical centralized solutions in that it can be easily distributed

and parallelized for high performance. We note that the extension to the non-linear

SE is possible within the same framework.

Finally, this thesis provides a novel and detailed convergence analysis of the BP-DC

algorithm and points to extension of this analysis for the proposed BP-based non-linear

SE algorithm, and an improved algorithm that applies synchronous scheduling with

randomized damping.
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1.2.3 Belief Propagation Based Non-Linear SE Algorithms

The non-linear SE model is defined using the measurement functions that precisely

follow the physical laws that connect the measured variables and the state variables.

In the process of deriving non-liner algorithms, we provide a step-by-step guide for

application of BP algorithm to the SE problem, giving this part of the thesis strong

tutorial flavor.

Using insights from the linear BP-based DC SE model, we derive the native BP

solution for the non-linear SE model. Unfortunately, as closed-form expressions for

certain classes of BP messages cannot be obtained, that lead us to propose the AC-BP

algorithm as an approximate BP solution for the non-linear SE model. However,

we include the resulting AC-BP method for methodological reasons, although it is

outperformed by the subsequent Gauss-Newton BP (GN-BP) method.

Finally, as a main contribution, we make a key further step where we change the

perspective of our BP approach and, instead of applying the BP directly onto the

non-linear SE model, we present the solution where the BP is applied sequentially

over the non-linear model, akin to what is done by the Gauss-Newton method. The

resulting GN-BP represents a BP counterpart of the Gauss-Newton method achieving

the same accuracy, however, preserving a number of advantages brought in by the BP

framework.

1.3 Contributions

Some of the contributions have already been mentioned throughout previous discussion,

however, as the main contribution, we adopt different methodology to derive efficient

BP-based non-linear SE method, and propose the GN-BP algorithm. The GN-BP is

the first BP-based solution for the non-linear SE model achieving exactly the same

accuracy as the centralized SE via Gauss-Newton method.

In general, solving the SE problems using factor graphs and BP algorithm intro-

duce a number of advantages over the current state-of-the-art in power systems SE

algorithms:

• In comparison with the distributed SE algorithms that exploit matrix decomposition,

the BP-based SE algorithms are robust to ill-conditioned scenarios caused by

significant differences between measurement variances, thus allowing inclusion of

arbitrary number of pseudo-measurements without impact to the solution within

the observable islands.

• Due to the sparsity of the underlying factor graph, the algorithms has optimal
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computational complexity (linear per iteration), making it particularly suitable for

solving large-scale systems.

• BP-based algorithms can be easily designed to provide asynchronous operation and

integrated as part of the real-time systems where newly arriving measurements are

processed as soon as they are received.

• Algorithms can easily integrate new measurements: the arrival of a measurement at

the control center will define a new factor node which will be seamlessly integrated

in the graph as part of the time continuous process.

• In the multi-area scenario, BP-based algorithms can be implemented over the

non-overlapping multi-area SE scenario without the central coordinator, where

algorithms neither requires exchanging measurements nor local network topology

among the neighboring areas.

• BP-based algorithms are flexible and easy to distribute and parallelize. Thus, even

if implemented in the framework of centralized SE, it can be flexibly matched to

distributed computation resources (e.g., parallel processing on graphical-processing

units).

• The BP approach allows to define the novel bad data test that significantly improves

the bad data detection.

Finally, even if electric power systems observable only by PMUs [11, 45, 46] are

beyond the thesis scope, we note that the BP can be applied to this problem. Then,

in the multi-area scenario, areas exchange only “beliefs” about specific state variables,

where algorithm ensures data privacy in the distributed architecture. Furthermore, the

BP framework allows integration of legacy and phasor measurements in fifth-generation

(5G) communication infrastructure, as we demonstrate in [12,47].

1.4 Assumptions

In this thesis, we provide BP-based algorithms using following assumptions:

• the network topology and parameters are known without errors,

• power system operates in the steady state under balanced condition,

• phase shifting transformers are neglected,

• the SE model is described with an overdetermined system of equations,

• legacy and phasor measurements are uncorrelated,
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• measurement errors follow a zero-mean Gaussian distribution,

• complex bus voltages are observed state variables.

1.5 Summary

In the thesis, we solve power system SE problems using factor graphs and BP algorithm.

We proposed three BP-based algorithms:

(i) DC-BP to solve linear DC SE model,

(ii) AC-BP that provides an approximate solution of the non-linear SE model,

(iii) GN-BP that is the first BP-based solution for the non-linear SE model achieving

exactly the same solution as the Gauss-Newton method.

Presented architectures directly exploit system sparsity, can be flexibly paralellized

(in the extreme case, the algorithm can be implemented as a fully distributed) and

results in substantially lower computational complexity compared to traditional SE

solutions.



Chapter 2

Power System State Estimation

In this chapter, we review the state-of-the-art SE models in electric power systems.

The power system represents a dynamic system, where power generation and power

demand is changing values depending on various factors. The SE is used for describing

the present state of the power system, unlike the power flow analysis which is used

for defining load profiles, generator capabilities, voltage specification, contingency

analysis, and planning.

SCADA, WAMS

Measurements

Network 
Topology Processors

Observability Analysis
SE Algorithm 

Bad Data Analysis

Emergency

SE

Corrective Control Security Analysis

Normal

Preventive Control Economic Control

Alert Secure

Control and Automatic Action

SCADA, WAMS

EMS

Figure 2.1: EMS configuration and SE routines.

The SE is a part of the energy management systems (EMS) and typically includes

network topology processors, observability analysis, SE algorithm and bad data

analysis, as shown in Figure 2.1. Data for the SE arrives from SCADA and WAMS

technology. SCADA provides legacy measurements with low sampling rates insufficient

to capture system dynamics in real-time and provides a snapshot SE with order of
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seconds and minutes latency. In contrast, WAMS provides data from PMUs with

high sampling rates (10 ms− 20 ms) enabling the real-time system monitoring.

In a usual scenario, the SE model is described with the system of non-linear equa-

tions, where bus voltage magnitudes and bus voltage angles, transformer magnitudes

of turns ratio and transformer angles of turns ratio as state variables x. The core of

the SE is the SE algorithm that provides an estimate of the system state x based on

the network topology and available measurements. SE is performed on a bus/branch

model and used to reconstruct the state of the system. Conventional SE algorithms

are centralized and typically use the Gauss-Newton method to solve the non-linear

WLS problem [5,6]. Besides the non-linear SE model, the DC model is obtained by

linearization of the non-linear model, and it provides an approximate solution. The

DC state estimate is obtained through non-iterative procedure by solving the linear

WLS problem.

2.1 Measurement Model

The SE algorithm estimates the values of the state variables based on the knowledge of

network topology and parameters, and measured values obtained from measurement

devices spread across the power system. The knowledge of the network topology

and parameters is provided by the network topology processor in the form of the

bus/branch model, where branches of the grid are usually described using the two-port

π-model [3, Ch. 1,2]. The bus/branch model can be represented using a graph G =

(H, E), where the set of nodes H = {1, . . . , N} represents the set of buses, while the

set of edges E ⊆ H ×H represents the set of branches of the power network.

As an input, the SE requires a set of measurements M of different electrical

quantities spread across the power network. Using the bus/branch model and available

measurements, the observability analysis defines observable and unobservable parts of

the network, subsequently defining the additional set of pseudo-measurements needed

to determine the solution [3, Ch. 4]. Finally, the measurement model can be described

as the system of equations [6]:

z = h(x) + u, (2.1)

where x = [x1, . . . , xn]T is the vector of the state variables, h(x) = [h1(x), . . . , hk(x)]T

is the vector of measurement functions, z = [z1, . . . , zk]T is the vector of measurement

values, and u = [u1, . . . , uk]T is the vector of uncorrelated measurement errors. The

SE problem in transmission grids is commonly an overdetermined system of equations

(k > n) [48, Sec. 2.1].
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Each measurement Mi ∈ M is associated with measured value zi, measurement

error ui, and measurement function hi(x). Under the assumption that measurement

errors ui follow a zero-mean Gaussian distribution, the probability density function

associated with the i -th measurement is proportional to:

N (zi|x, vi) ∝ exp

{
[zi − hi(x)]2

2vi

}
, (2.2)

where vi is the measurement variance defined by the measurement error ui, and the

measurement function hi(x) connects the vector of state variables x to the value of

the i -th measurement.

The SE in electric power systems deals with the problem of determining state

variables x according to the noisy observed data z and a prior knowledge:

p(x|z) =
p(z|x)p(x)

p(z)
. (2.3)

Assuming that the prior probability distribution p(x) is uniform, and given that p(z)

does not depend on x, the maximum a posteriori (MAP) solution of (2.3) reduces to

the maximum likelihood solution, as given below [32]:

x̂ = arg max
x

p(x|z) = arg max
x

p(z|x) = arg max
x
L(z|x). (2.4)

Maximum Likelihood Estimator

One can find the solution (2.4) via maximization of the likelihood function L(z|x),

which is defined via likelihoods of k independent measurements:

x̂ = arg max
x
L(z|x) = arg max

x

k∏
i=1

N (zi|x, vi). (2.5)

It can be shown that the solution of the MAP problem can be obtained by solving

the following optimization problem, known as the WLS problem [49, Sec. 9.3]:

x̂ = arg min
x

k∑
i=1

[zi − hi(x)]2

vi
. (2.6)

The state estimate x̂ representing the solution of the optimization problem (2.6)

is known as the WLS estimator, the maximum likelihood and WLS estimator are
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equivalent to the maximum a posteriori (MAP) solution [32, Sec. 8.6].

2.1.1 Measurement Set

The typical set of measurements M is defined according to type of measurement

devices and includes:

(i) Legacy measurements that contain active and reactive power flow and line

current magnitude {MPij , MQij , MIij}, (i, j) ∈ E , respectively; active and

reactive power injection and bus voltage magnitude {MPi , MQi ,MVi}, i ∈ H,

respectively.

(ii) Phasor measurements provide by PMUs contain line current MIij , (i, j) ∈ E
and bus voltage MVi , i ∈ H phasors, where each phasor measurement can be

represented by a pair of measurements, for example, the bus voltage phasor

measurement can be represented over the bus voltage magnitude and angle

measurements MVi = {MVi ,Mθi}, i ∈ H.

Each legacy measurement is described by non-linear measurement function hi(x),

where the state vector x is given in polar coordinates. In contrast, phasor measure-

ments can be described with both non-linear and linear measurement functions hi(x),

where the state vector x can be given in polar or rectangular coordinates. Phasor

measurements integration into the SE defines different models for solving the SE

problem.

2.1.2 The Equivalent Branch Model

To solve SE problem, it is necessary to establish expressions of measurement functions

h(x) related to measurements in the set M. The equivalent π-model for a branch,

shown in Figure 2.2, is sufficient to describe all measurement functions using currents,

voltages and apparent powers. For simplicity, we assume that the model does not

contain phase-shifting transformers.

The series admittance is yij and shunt admittances of the branch are denoted as

ysi = gsi+ jbsi and ysj = gsj+ jbsj . The branch series admittance yij is inversely

proportional to the branch series impedance zij :

yij =
1

zij
=

1

rij + jxij
=

rij
r2
ij + x2

ij

− j
xij

r2
ij + x2

ij

= gij + jbij , (2.7)

where rij is a resistance, xij is a reactance, gij is a conductance and bij is a susceptance

of the branch. In Figure 2.2, {i, j} ∈ H denotes buses, where, in power networks the
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Figure 2.2: The equivalent branch π-model.

bus represents elements such as a generator, load, substation, etc.

Using Kirchoff’s laws, the complex current at buses i and j are:

Iij = yij(Vi − Vj) + ysiVi = (yij + ysi)Vi − yijVj (2.8a)

Iji = −yij(Vi − Vj) + ysjVj = (yij + ysj)Vj − yijVi. (2.8b)

From (2.8) the complex currents at the bus are proportional to admittances incident

to the bus (i.e. the sum of admittances) and the admittance between buses. These

equations refer to the Node-Voltage method, and we apply (2.8a) to derive SE models

(i.e., measurement functions). Further, complex bus voltages can be written:

Vi = Vie
jθi = Vi cos θi + jVi sin θi (2.9a)

Vj = Vje
jθj = Vj cos θj + jVj sin θj , (2.9b)

where Vi and Vj are bus voltage magnitudes, and θi and θj are bus voltage angles at

buses i and j. The apparent power Sij from bus i to bus j is equal to:

Sij = ViI
∗
ij = Pij + jQij , (2.10)

where Pij and Qij represent active and reactive power flow from bus i to bus j.

Further, the injection complex current into the bus i ∈ H can be obtained by

observing a set of buses Hi \ i = {k, . . . ,K} ⊂ H connected to the bus i, illustrated

in Figure 2.3. Using Kirchoff’s law and (2.8a), the injection complex current Ii into

the bus i is defined:

Ii = Iik + ...+ IiK =
∑

j∈Hi\i

[
(yij + ysi)Vi − yijVj

]
. (2.11)
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Figure 2.3: The set of buses Hi \ i = {k, . . . ,K} ⊂ H connected to the bus i.

In general, for the electric power system with H = {1, . . . , N} buses, the injection

complex current Ii for each bus i ∈ H can be computed using:

Ii =

N∑
j=1

[
(yij + ysi)Vi − yijVj

]
. (2.12)

Further, the expanded form is:

Y11V1 + Y12V2 + Y13V3 + · · ·+ Y1NVN = I1

Y21V1 + Y22V2 + Y23V3 + · · ·+ Y2NVN = I2

...

YN1V1 + YN2V2 + YN3V3 + · · ·+ YNNVN = IN .

(2.13)

Above system of equations can be written in the the matrix form:

YVVV = III, (2.14)

where the elements of the bus or nodal admittance matrix Y, when the bus is incident

to the branch, can be formed as:

Yij = Gij + jBij =


∑

j∈Hi\i
(yij + ysi), if i = j (diagonal element)

−yij , if i 6= j (non− diagonal element).
(2.15)

When the branch is not incident (or adjacent) to the bus the corresponding element

in the nodal admittance matrix Y is equal to zero. The nodal admittance matrix Y

is a sparse matrix (i.e., a small number of elements are non-zeros) for a real power
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systems. Note that, if bus i contains shunt element (capacitor or reactor), positive or

negative susceptance value will be added to the diagonal element i = j of the matrix

Y. Although it is often assumed that the matrix Y is symmetrical, it is not a general

case, for example, in the presence of phase shifting transformers the matrix Y is not

symmetrical [50, Sec. 9.6].

The apparent power injection Si into the bus i is a function of the complex voltage

Vi at the bus and the conjugate value of the injection complex current Ii into the bus

i:

Si = ViI
∗
i = Pi + jQi, (2.16)

where Pi and Qi represent active power and reactive power injection into bus i.

According to (2.13), (2.15) and (2.16) apparent injection power Si into the bus i is:

Si = Vi
∑
j∈Hi

Y ∗ijV
∗
j , (2.17)

where Hi is the set of buses adjacent to the bus i, including the bus i. Using (2.9),

apparent injection power Si is defined:

Si = Vi
∑
j∈Hi

Vje
jθij (Gij − jBij). (2.18)

2.1.3 State Variables

In typical scenario, the SE model takes complex bus voltages and transformer turns

ratio as state variables x. Without loss of generality, in the rest of the thesis, for the

SE model we observe complex bus voltages Vi, i ∈ H as state variables:

Vi = Vie
jθi = <(Vi) + j=(Vi), (2.19)

where <(Vi) and =(Vi) represent the real and imaginary components of the complex

bus voltage Vi, respectively.

Thus, the vector of state variables x can be given in polar coordinates x ≡ [θ,V]T,

where we observe bus voltage angles and magnitudes as state variables respectively:

θ = [θ1, . . . , θN ]

V = [V1, . . . , VN ].
(2.20)

One voltage angle from the vector θ corresponds to the slack or reference bus where

the voltage angle has a given value. Consequently, the SE operates with n = 2N − 1
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state variables1. The conventional SE model in the presence of legacy measurements

usually implies above approach.

Furthermore, the vector of state variables x can be given in rectangular coordinates

x ≡ [Vre,Vim]T, where we can observe real and imaginary components of bus voltages

as state variables:
Vre =

[
<(V1), . . . ,<(VN )

]
Vim =

[
=(V1), . . . ,=(VN )

]
.

(2.21)

One of the elements from the vector Vim corresponds to the slack bus. This way

of assignment is frequently used for phasor measurements, whereupon measurement

functions hi(x) become linear. However, same as before, the number of state variables

is n = 2N − 1.

2.2 State Estimation Models

Power system SE models can be defined in several ways by using different criteria,

such as type of measurements or according to state variables and measurements

representation, as well as whether the system is linear or non-linear and how to

interpret the obtained state estimator.

Figure 2.4 shows SE models described with measurement functions that precisely

follow the physical laws. In general, the model where only legacy measurements exist

is described with non-linear measurement functions, where state variables are given

in the polar coordinate system x ≡ [θ,V]T, and it defines the conventional SE model,

described in Section 2.4.

The simultaneous SE model represents the expansion of the conventional SE model

with phasor measurements. State variables are given in the polar coordinate system

x ≡ [θ,V]T, while phasor measurements can be given in the polar or rectangular

coordinates. Phasor measurements in polar coordinate system enable straightforward

inclusion in the conventional SE model (see Subsection 2.5.1), whereas it is necessary to

convert measurement variances for the case of phasor measurements in the rectangular

coordinate system (see Subsection 2.5.2) [51].

Hybrid SE models [52–56] use advantages of linear functions related to phasor

measurements, where state variables are given in the rectangular coordinate system

x ≡ [Vre,Vim]T. Finally, to provide a state estimator only with PMUs, the system

needs to be observable by PMUs only, which is currently difficult to achieve. However,

1For convenience, BP-based SE algorithms take state variables defined with (2.20) as probabilistic
variable nodes, where each state variable defines a variable node (i.e., the number of state variables
is n = 2N).
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Figure 2.4: SE models described with measurement functions that precisely follow
the physical laws.

with the evolution and adoption of PMU technology and, consequently, decline in

the price of PMUs, it is realistic to assume that future power systems will be fully

observable by PMUs, where the SE model becomes linear [11], as will be described in

Section 2.6.

Figure 2.5 shows SE models related to the SE accuracy and solving methods. In

the presence of legacy measurements where measurement functions follow the physical

laws, the SE model represents the non-convex problem and the Gauss-Newon provides

a solution, described in Section 2.3.

The approximate solution is related with the DC SE model, obtained by linearisation

of the non-linear model. The DC model ignores the reactive powers and transmission

losses and takes into account only the active powers. Therefore, the DC SE takes

only bus voltage angles as state variables, see Section 2.7.

Electric power systems observable by PMUs results with linear SE model where

measurement functions follow the physical laws, thus obtained solution represent the

optimal or exact state estimator. This model is beyond the thesis scope.
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Figure 2.5: Different SE models related to the SE accuracy and solving methods.

2.3 The Gauss-Newton Method

In the presence of both, legacy and phasor measurements, the system (2.1) in general

represents the system of non-linear equations. The Gauss-Newton method is typically

used to solve the non-linear SE model defined using measurement functions h(x) that

precisely follow the physical laws that connect the measured variables and the state

variables.

Gauss-Newton Method

Based on the available set of measurements M, the WLS estimator x̂, i.e., the

solution of the WLS problem (2.6), can be found using the Gauss-Newton method:[
J(x(ν))TR−1J(x(ν))

]
∆x(ν) = J(x(ν))TR−1r(x(ν)) (2.22a)

x(ν+1) = x(ν) + ∆x(ν), (2.22b)

where ν = {0, 1, 2, . . . } is the iteration index, ∆x ∈ Rn is the vector of increments of

the state variables, J(x) ∈ Rkxn is the Jacobian matrix of measurement functions h(x)

at x = x(ν), R ∈ Rkxk is a measurement error covariance matrix, and r(x) = z−h(x)

is the vector of residuals [48, Ch. 10]. Note that, assumption that measurement

errors are uncorrelated leads to the diagonal covariance matrix R that corresponds to

measurement variances.

The non-linear SE represents non-convex problem arising from the non-linear

measurement functions [57]. Due the fact that the values of state variables usually
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fluctuate in narrow boundaries, the non-linear SE model represents the mildly non-

linear problem, where solutions are in a reasonable-sized neighborhood which enables

the use of the Gauss-Newton method. The Gauss-Newton method can produce different

rates of convergence, which can be anywhere from linear to quadratic [58, Sec. 9.2].

The convergence rate in regards to power system SE depends of the topology and

measurements, and if parameters are consistent (e.g., free bad data measurement set),

the method shows near quadratic convergence rate [48, Sec. 11.2].

2.4 Legacy Measurments

In the following, we provide expressions for measurement functions h(x) and corre-

sponding Jacobian elements of the matrix J(x) related to legacy measurements, where

state variables (i.e., unknown variables) are given in polar coordinates x ≡ [θ,V]T.

To recall, legacy measurements contain active and reactive power flow and line current

magnitude {MPij , MQij , MIij}, (i, j) ∈ E , respectively; active and reactive power

injection and bus voltage magnitude {MPi , MQi ,MVi}, i ∈ H, respectively.

The active and reactive power flow at the branch (i, j) ∈ E that connects buses

i and j can be obtained using (2.8a), (2.9) and (2.10). It is easy to show that the

apparent power Sij equals:

Sij = V 2
i (gij + gsi)− jV 2

i (bij + bsi)− ViVjejθij (gij − jbij), (2.23)

where θij = θi − θj is the bus voltage angle difference between bus voltage angles

at buses i and j. The apparent power Sij consists of the active Pij and reactive

Qij power flow (2.10). Hence, the real and imaginary components of the complex

expression (2.23) define the active and reactive power flow measurement functions

Pij , hPij (·) and Qij , hQij (·).

Active and Reactive Power Flow Measurement Functions

Thus, measurements {MPij , MQij} ∈ M, (i, j) ∈ E are associated with measure-

ment functions:

hPij (·) = V 2
i (gij + gsi)− ViVj(gij cos θij + bij sin θij) (2.24a)

hQij (·) = −V 2
i (bij + bsi)− ViVj(gij sin θij − bij cos θij). (2.24b)

Jacobian expressions corresponding to the measurement function hPij (·) are defined:
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∂hPij (·)
∂θi

= ViVj(gij sin θij − bij cos θij) (2.25a)

∂hPij (·)
∂θj

= −ViVj(gij sin θij − bij cos θij) (2.25b)

∂hPij (·)
∂Vi

= −Vj(gij cos θij + bij sin θij) + 2Vi(gij + gsi) (2.25c)

∂hPij (·)
∂Vj

= −Vi(gij cos θij + bij sin θij). (2.25d)

Further, Jacobian expressions corresponding to the measurement function hQij (·) are:

∂hQij (·)
∂θi

= −ViVj(gij cos θij + bij sin θij) (2.26a)

∂hQij (·)
∂θj

= ViVj(gij cos θij + bij sin θij) (2.26b)

∂hQij (·)
∂Vi

= −Vj(gij sin θij − bij cos θij)− 2Vi(bij + bsi) (2.26c)

∂hQij (·)
∂Vj

= −Vi(gij sin θij − bij cos θij). (2.26d)

The line current magnitude at the branch (i, j) ∈ E that connects buses i and j

can be obtained using (2.10):

Iij =

√
P 2
ij +Q2

ij

Vi
. (2.27)

Using (2.24) and (2.27), the expression that defines the line current magnitude

measurement function Iij , hIij (·) can be obtained.

Line Current Magnitude Measurement Function

Hence, measurement MIij ∈M, (i, j) ∈ E is associated with measurement function:

hIij (·) = [AcV
2
i +BcV

2
j − 2ViVj(Cc cos θij −Dc sin θij)]

1/2, (2.28)



2.4. Legacy Measurments 47

where coefficients are as follows:

Ac = (gij + gsi)
2 + (bij + bsi)

2; Bc = g2
ij + b2ij

Cc = gij(gij + gsi) + bij(bij + bsi); Dc = gijbsi − bijgsi.

Jacobian expressions corresponding to the line current magnitude measurement

function hIij (·) are:

∂hIij (·)
∂θi

=
ViVj(Dc cos θij + Cc sin θij)

hIij (·)
(2.29a)

∂hIij (·)
∂θj

= −
ViVj(Dc cos θij + Cc sin θij)

hIij (·)
(2.29b)

∂hIij (·)
∂Vi

=
Vj(Dc sin θij − Cc cos θij) +AcVi

hIij (·)
(2.29c)

∂hIij (·)
∂Vj

=
Vi(Dc sin θij − Cc cos θij) +BcVj

hIij (·)
. (2.29d)

Note that, in deregulation environment current magnitude measurements can be

found in significant numbers, especially in distribution grids. The use of line current

magnitude measurements can lead to various problems (e.g., the “flat start” will

cause undefined Jacobian elements), which in turn may seriously deteriorate the

performance of the state estimators [3, Sec. 9.3].

The active and reactive power injection into the bus i ∈ H can be obtained using

(2.16) and (2.18), where the real and imaginary components determine the active and

reactive power injection measurement functions Pi , hPi(·) and Qi , hQi(·).

Active and Reactive Power Injection Measurement Functions

Thus, measurements {MPi , MQi} ∈ M, i ∈ H are associated with measurement

functions:

hPi(·) = Vi
∑
j∈Hi

Vj(Gij cos θij +Bij sin θij) (2.30a)

hQi(·) = Vi
∑
j∈Hi

Vj(Gij sin θij −Bij cos θij). (2.30b)

Jacobian expressions corresponding to the measurement function hPi(·) are defined:
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∂hPi(·)
∂θi

= Vi
∑

j∈Hi\i
Vj(−Gij sin θij +Bij cos θij) (2.31a)

∂hPi(·)
∂θj

= ViVj(Gij sin θij −Bij cos θij) (2.31b)

∂hPi(·)
∂Vi

=
∑

j∈Hi\i
Vj(Gij cos θij +Bij sin θij) + 2ViGii (2.31c)

∂hPi(·)
∂Vj

= Vi(Gij cos θij +Bij sin θij), (2.31d)

whereHi\i is the set of buses adjacent to the bus i. Furthermore, Jacobian expressions

corresponding to the measurement function hQi(·) are:

∂hQi(·)
∂θi

= Vi
∑

j∈Hi\i
Vj(Gij cos θij +Bij sin θij) (2.32a)

∂hQi(·)
∂θj

= ViVj(−Gij cos θij −Bij sin θij) (2.32b)

∂hQi(·)
∂Vi

=
∑

j∈Hi\i
Vj(Gijsniθij −Bij cos θij)− 2ViBii (2.32c)

∂hQi(·)
∂Vj

= Vi(Gij sin θij −Bij cos θij). (2.32d)

The bus voltage magnitude on the bus i ∈ H simply defines corresponding mea-

surement function Vi , hVi(·).

Bus Voltage Magnitude Measurement Function

Hence, measurement MVi ∈ M, i ∈ H is associated with measurement function:

hVi(·) = Vi. (2.33)

Jacobian expressions corresponding to the measurement function hVi(·) are defined:
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∂hVi(·)
∂θi

= 0;
∂hVi(·)
∂θj

= 0 (2.34a)

∂hVi(·)
∂Vi

= 1;
∂hVi(·)
∂Vj

= 0. (2.34b)

2.4.1 The Conventional SE Model

The conventional SE model implies the state vector in polar coordinates x ≡ [θ,V]T,

where the vector of measurement functions h(x) and corresponding Jacobian elements

of the matrix J(x) are expressed in the same coordinate system. If we denote with Nle

the number of legacy measurements, the vector of measurement values zle ∈ RNle , the

vector of measurement functions hle(x) ∈ RNle and corresponding Jacobian matrix

Jle(x) ∈ RNle×n are:

zle =



zPij

zQij

zIij

zPi

zQi

zVi


; hle(x) =



hPij
(x)

hQij
(x)

hIij(x)

hPi(x)

hQi
(x)

hVi(x)


; Jle(x) =



JPijθ(x) JPijV(x)

JQijθ(x) JQijV(x)

JIijθ(x) JIijV(x)

JPiθ(x) JPiV(x)

JQiθ(x) JQiV(x)

JViθ(x) JViV(x)


. (2.35)

Due to assumption of uncorrelated measurement errors (i.e., usual assumption for

legacy measurements), the measurement error covariance matrix Rle ∈ RNle×Nle has

the diagonal structure:

Rle = diag(RPij ,RQij ,RIij ,RPi ,RQi ,RVi), (2.36)

and each covariance sub-matrix of Rle is the diagonal matrix that contains measure-

ment variances.

The solution of the described SE model can be found using Gauss-Newton method,

where z ≡ zle, h(x) ≡ hle(x), J(x) ≡ Jle(x) and R ≡ Rle. In Appendix A, we

provide a step-by-step illustrative example to describe the SE model where legacy

measurements are involved.
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2.5 Phasor Measurements with Polar State Vector

Integration of phasor measurements in the established model with legacy measurements

can be done using different approaches. To recall, phasor measurements contain line

current MIij , (i, j) ∈ E and bus voltage MVi , i ∈ H phasors. More precisely, phasor

measurement provided by PMU is formed by a magnitude, equal to the root mean

square value of the signal, and phase angle [59, Sec. 5.6], where measurement errors

are also related with magnitude and angle of the phasor. Thus, the PMU outputs

phasor measurement in polar coordinates. In addition, PMU outputs can be observed

in the rectangular coordinates with real and imaginary parts of the bus voltage and

line current phasors, but in that case, the two measurements may be affected by

correlated measurement errors. [59, Sec. 7.3]. Note that throughout this section the

vector of state variables is given in polar coordinates x ≡ [θ,V]T.

2.5.1 Measurements in Polar Coordinates

In the majority of PMUs, the voltage and current phasors in polar coordinate system

are regarded as “direct” measurements (i.e., output from the PMU). This represen-

tation delivers the more accurate state estimates in comparison to the rectangular

measurement representation, but it requires larger computing time [60]. This represen-

tation is called simultaneous SE formulation, where measurements provided by PMUs

are handled in the same manner as legacy measurements [51]. Measurement errors

are uncorrelated, with measurement variances that correspond to each components of

the phasor measurements (i.e., magnitude and angle).

The bus voltage phasor on the bus i ∈ H in the polar coordinate system is described:

Vi = Vie
jθi , (2.37)

and due the fact that the state vector is given in the polar coordinate system

x ≡ [θ,V]T, measurement functions are defined as Vi , hVi(·), θi , hθi(·).

Bus Voltage Phasor Measurement Functions

Measurement MVi = {MVi , Mθi} ⊆ M, i ∈ H is associated with measurement

functions:

hVi(·) = Vi (2.38a)

hθi(·) = θi. (2.38b)
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Jacobian expressions corresponding to the measurement function hVi(·) are defined:

∂hVi(·)
∂θi

= 0;
∂hVi(·)
∂θj

= 0 (2.39a)

∂hVi(·)
∂Vi

= 1;
∂hVi(·)
∂Vj

= 0, (2.39b)

while Jacobian expressions corresponding to the measurement function hθi(·) are:

∂hθi(·)
∂θi

= 1;
∂hθi(·)
∂θj

= 0 (2.40a)

∂hθi(·)
∂Vi

= 0;
∂hθi(·)
∂Vj

= 0. (2.40b)

The line current phasor at the branch (i, j) ∈ E that connects buses i and j in

polar coordinates is defined as:

Iij = Iije
jφij , (2.41)

where Iij and φij are magnitude and angle of the line current phasor, respectively.

The line current phasor measurement directly measures magnitude and angle of the

phasor. It is easy to obtain magnitude and angle equations of the line current phasor

using (2.8a), where the vector of state variables is given in the polar coordinate system

x ≡ [θ,V]T. Thus, the line current phasor measurement MIij = {MIij , Mφij} ⊆
M, (i, j) ∈ E is associated with magnitude Iij , hIij (·) and angle φij , hφij (·)
measurement functions.

Magnitude of Line Current Phasor Measurement Function

To recall, measurement MIij ∈ M, (i, j) ∈ E is associated with measurement

function:

hIij (·) = [AcV
2
i +BcV

2
j − 2ViVj(Cc cos θij −Dc sin θij)]

1/2, (2.42)

where coefficients are as follows:

Ac = (gij + gsi)
2 + (bij + bsi)

2; Bc = g2
ij + b2ij

Cc = gij(gij + gsi) + bij(bij + bsi); Dc = gijbsi − bijgsi.
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Jacobian expressions corresponding to the measurement function hIij (·) are given

in (2.29).

Angle of Line Current Phasor Measurement Function

Furthermore, measurement Mφij ∈ M, (i, j) ∈ E is associated with measurement

function:

hφij (·) = arctan

[
(Aa sin θi +Ba cos θi)Vi − (Ca sin θj +Da cos θj)Vj

(Aa cos θi −Ba sin θi)Vi − (Ca cos θj −Da sin θj)Vj

]
, (2.43)

where coefficients are as follows:

Aa = gij + gsi; Ba = bij + bsi

Ca = gij ; Da = bij .

Jacobian expressions corresponding to the measurement function hφij (·) are:

∂hφij (·)
∂θi

=
AcV

2
i + (Dc sin θij − Cc cos θij)ViVj

hIij (·)
(2.44a)

∂hφij (·)
∂θj

=
BcV

2
j + (Dc sin θij − Cc cos θij)ViVj

hIij (·)
(2.44b)

∂hφij (·)
∂Vi

= −Vj(Cc sin θij +Dc cos θij)

hIij (·)
(2.44c)

∂hφij (·)
∂Vj

=
Vi(Cc sin θij +Dc cos θij)

hIij (·)
. (2.44d)

To summarize, presented measurement model associated with line current phasor

measurements is non-linear. However, if we denote with Nph the number of phasor mea-

surements, the vector of measurement values zph ∈ R2Nph , the vector of measurement

functions hph(x) ∈ R2Nph and corresponding Jacobian matrix Jph(x) ∈ R(2Nph)×n

are:

zph =


zVi

zθi

zIij

zφij

 ; hph(x) =


hVi

(x)

hθi(x)

hIij(x)

hφi(x)

 ; Jph(x) =


JViθ(x) JViV(x)

Jθiθ(x) JθiV(x)

JIijθ(x) JIijV(x)

Jφijθ(x) JφijV(x)

 . (2.45)
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When phasor measurements are given in polar coordinate system, measurement

errors are uncorrelated and assume zero-mean Gaussian distribution whose covariance

matrix Rph ∈ R(2Nph)×(2Nph) has the diagonal structure:

Rph = diag(RVi
,Rθi

,RIij ,Rφij
), (2.46)

where each covariance sub-matrix of Rph is the diagonal matrix that contains mea-

surement variances.

The solution of the SE model with legacy and phasor measurements can be found

using Gauss-Newton method, where:

z ≡
[

zle

zph

]
; h(x) ≡

[
hle(x)

hph(x)

]
; J(x) ≡

[
Jle(x)

Jph(x)

]
R ≡

[
Rle 0

0 Rph

]
. (2.47)

In Appendix A, we provide a step-by-step illustrative example to describe the SE

model with legacy and phasor measurements.

2.5.2 Measurements in Rectangular Coordinates

The bus voltage and line current phasors in rectangular coordinate system are regarded

as “indirect” measurements obtained from measurements in polar coordinates [60].

Thus, measurements contain the real and imaginary parts of the line current phasor

measurement and the real and imaginary parts of the bus voltage phasor measurement.

As before, the vector of state variables is given in polar coordinates x ≡ [θ,V]T.

The bus voltage phasor on the bus i ∈ H in the rectangular coordinate system is

given:

Vi = <(Vi) + j=(Vi). (2.48)

The state vector is given in polar coordinate system x ≡ [θ,V]T, hence using

(2.9a), one can obtain the real and imaginary components that define corresponding

measurement functions <(Vi) , h<(Vi)(·) and =(Vi) , h=(Vi)(·), respectively.

Bus Voltage Phasor Measurement Functions

Measurement MVi = {M<(Vi), M=(Vi)} ⊆ M, i ∈ H is associated with measure-

ment functions:

h<(Vi)(·) = Vi cos θi (2.49a)

h=(Vi)(·) = Vi sin θi. (2.49b)
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Jacobians expressions corresponding to the measurement function h<(Vi)(·) are

defined:

∂h<(Vi)(·)
∂θi

= −Vi sin θi;
∂h<(Vi)(·)

∂θj
= 0 (2.50a)

∂h<(Vi)(·)
∂Vi

= cos θi;
∂h<(Vi)(·)

∂Vj
= 0, (2.50b)

while Jacobians expressions corresponding to the measurement function h=(Vi)(·) are:

∂h=(Vi)(·)
∂θi

= Vi cos θi;
∂h=(Vi)(·)

∂θj
= 0 (2.51a)

∂h=(Vi)(·)
∂Vi

= sin θi;
∂h=(Iij)(·)

∂Vj
= 0. (2.51b)

In contrast to measurements represented in the polar coordinates, measurement

functions and corresponding Jacobian elements are non-linear functions, which makes

the polar coordinate system preferable.

The line current phasor at the branch (i, j) ∈ E that connects buses i and j in the

rectangular coordinate system is given:

Iij = <(Iij) + j=(Iij). (2.52)

Using (2.8a) and (2.9), where the state vector is given in polar coordinate system

x ≡ [θ,V]T, the real and imaginary components of the line current phasor Iij define

measurement functions <(Iij) , h<(Iij)(·) and =(Iij) , h=(Iij)(·).

Line Current Phasor Measurement Functions

Consequently, measurement MIij = {M<(Iij), M=(Iij)} ⊆ M, (i, j) ∈ E is associ-

ated with measurement functions:

h<(Iij)(·) = Vi(Aa cos θi −Ba sin θi)− Vj(Ca cos θj −Da sin θj) (2.53a)

h=(Iij)(·) = Vi(Aa sin θi +Ba cos θi)− Vj(Ca sin θj +Da cos θj). (2.53b)

Jacobians expressions corresponding to the measurement function h<(Iij)(·) are



2.5. Phasor Measurements with Polar State Vector 55

defined:

∂h<(Iij)(·)
∂θi

= −Vi(Aa sin θi +Ba cos θi) (2.54a)

∂h<(Iij)(·)
∂θj

= Vj(Ca sin θj +Da cos θj) (2.54b)

∂h<(Iij)(·)
∂Vi

= Aa cos θi −Ba sin θi (2.54c)

∂h<(Iij)(·)
∂Vj

= −Ca cos θj +Da sin θj , (2.54d)

while Jacobians expressions corresponding to the measurement function h=(Iij)(·) are:

∂h=(Iij)(·)
∂θi

= Vi(Aa cos θi −Ba sin θi) (2.55a)

∂h=(Iij)(·)
∂θj

= −Vj(Ca cos θj −Da sin θj) (2.55b)

∂h=(Iij)(·)
∂Vi

= Aa sin θi +Ba cos θi (2.55c)

∂h=(Iij)(·)
∂Vj

= −Ca sin θj −Da cos θj . (2.55d)

Same as before, functions associated with line current phasor measurements are

non-linear. In addition, the rectangular representation of the line current phasor

resolves ill-conditioned problems that arise in polar coordinates due to small values

of current magnitudes [51,60]. The main disadvantage of this approach is related to

measurement errors, because measurment errors correspond to polar coordinates (i.e.

magnitude and phase errors), and hence, the covariance matrix must be transformed

from polar to rectangular coordinates [56,61,62]. As a result, measurement errors of a

single PMU are correlated and covariance matrix does not have diagonal form. Despite

that, the measurement error covariance matrix is usually considered as diagonal matrix,

which has the effect on the accuracy of the SE. Note that, combining representation

of measurements in polar and rectangular is possible, for example, the bus voltage

phasor in polar form and the line current phasor in rectangular form is often used [51].

The vector of measurement values zph ∈ R2Nph , the vector of measurement functions
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hph(x) ∈ R2Nph and corresponding Jacobian matrix Jph(x) ∈ R(2Nph)×n are:

zph =


z<(Vi)

z=(Vi)

z<(Iij)

z=(Iij)

 ; hph(x) =


h<(Vi)(x)

h=(Vi)(x)

h<(Iij)(x)

h=(Iij)(x)



Jph(x) =


J<(Vi)θ(x) J<(Vi)V(x)

J=(Vi)θ(x) J=(Vi)V(x)

J<(Iij)θ(x) J<(Iij)V(x)

J=(Iij)θ(x) J=(Iij)V(x)

 .
(2.56)

In case we neglect correlation between the measurements of a single PMU, the

matrix Rph ∈ R(2Nph)×(2Nph) can be observed as the diagonal matrix:

Rph = diag(R<(Vi),R=(Vi),R<(Iij),R=(Iij)), (2.57)

where each covariance sub-matrix of Rph is the diagonal matrix that contains mea-

surement variances. To recall, the solution of the SE model with legacy and phasor

measurements can be found using the Gauss-Newton method, where:

z ≡
[

zle

zph

]
; h(x) ≡

[
hle(x)

hph(x)

]
; J(x) ≡

[
Jle(x)

Jph(x)

]
R ≡

[
Rle 0

0 Rph

]
. (2.58)

2.6 Phasor Measurements with Rectangular State

Vector

For the case when the vector of state variables is given in rectangular coordinates

x ≡ [Vre,Vim]T, and where measurements are also represented in the same coor-

dinates, we obtain linear measurement functions with constant Jacobian elements.

Unfortunately, direct inclusion in the conventional SE model is not possible due to

different coordinate systems, however, this still represents the important advantage of

phasor measurements.

The bus voltage phasor on the bus i ∈ H in the rectangular coordinates is defined

as:

Vi = <(Vi) + j=(Vi). (2.59)

The state vector is given in the rectangular coordinate system x ≡ [Vre,Vim]T and
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the real and imaginary components of (2.59) directly define measurement functions

<(Vi) , h<(Vi)(·) and =(Vi) , h=(Vi)(·).

Bus Voltage Phasor Measurement Functions

Measurement MVi = {M<(Vi), M=(Vi)} ⊆ M, i ∈ H is associated with measure-

ment functions:

h<(Vi)(·) = <(Vi) (2.60a)

h=(Vi)(·) = =(Vi). (2.60b)

Jacobians expressions corresponding to the measurement function h<(Vi)(·) are

defined:

∂h<(Vi)(·)
∂<(Vi)

= 1;
∂h<(Vi)(·)
∂<(Vj)

= 0 (2.61a)

∂h<(Vi)(·)
∂=(Vi)

= 0;
∂h<(Vi)(·)
∂=(Vj)

= 0, (2.61b)

while Jacobians expressions corresponding to the measurement function h=(Vi)(·) are:

∂h=(Vi)(·)
∂<(Vi)

= 0;
∂h=(Vi)(·)
∂<(Vj)

= 0 (2.62a)

∂h=(Vi)(·)
∂=(Vi)

= 1;
∂h=(Vi)(·)
∂=(Vj)

= 0. (2.62b)

The line current phasor at the branch (i, j) ∈ E that connects buses i and j in the

rectangular coordinate system is given:

Iij = <(Iij) + j=(Iij). (2.63)

Using (2.8a) and (2.9), where the state vector is given in the rectangular coordinate

system x ≡ [Vre,Vim]T, the real and imaginary components of the line current phasor

Iij define measurement functions <(Iij) , h<(Iij)(·) and =(Iij) , h=(Iij)(·).
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Line Current Phasor Measurement Functions

Measurements MIij = {M<(Iij), M=(Iij)} ⊆ M, (i, j) ∈ E are associated with

measurement functions:

h<(Iij)(·) = (gij + gsi)<(Vi)− (bij + bsi)=(Vi)− gij<(Vj) + bij=(Vj) (2.64a)

h=(Iij)(·) = (bij + bsi)<(Vi) + (gij + gsi)=(Vi)− bij<(Vj)− gij=(Vj). (2.64b)

Jacobians expressions corresponding to the measurement function h<(Iij)(·) are

defined:

∂h<(Iij)(·)
∂<(Vi)

= gij + gsi;
∂h<(Iij)(·)
∂<(Vj)

= −gij (2.65a)

∂h<(Iij)(·)
∂=(Vi)

= −bij − bsi;
∂h<(Iij)(·)
∂=(Vj)

= bij , (2.65b)

while Jacobians expressions corresponding to the measurement function h=(Iij)(·) are:

∂h=(Iij)(·)
∂<(Vi)

= bij + bsi;
∂h=(Iij)(·)
∂<(Vj)

= −bij (2.66a)

∂h=(Iij)(·)
∂=(Vi)

= gij + gsi;
∂h=(Iij)(·)
∂=(Vj)

= −gij . (2.66b)

To summarize, presented model represents system of linear equations, where

solution can be found by solving the linear WLS problem. As before, measurement

errors by a single PMU are correlated and covariance matrix does not hold diagonal

form.

2.7 The DC State Estimation

The DC model is obtained by linearisation of the non-linear model. In the typical

operating conditions, the difference of bus voltage angles between adjacent buses

(i, j) ∈ E is very small θi − θj ≈ 0, which implies cos θij ≈ 1 and sin θij ≈ θij .

Further, all bus voltage magnitudes are Vi ≈ 1, i ∈ H, and all shunt elements

and branch resistances can be neglected. This implies that the DC model ignores

the reactive powers and transmission losses and takes into account only the active

powers. Therefore, the DC SE takes only bus voltage angles x ≡ θT as state variables.

Consequently, the number of state variables is n = N − 1, where one voltage angle
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represents the slack bus2.

The set of DC model measurements M involves only active power flow MPij ,

(i, j) ∈ E , and active power injection MPi , i ∈ H, from legacy measurments, and

without loss of generality, we can include bus voltage angle Mθi , i ∈ H, from PMUs.

Linear Weighted Least-Squares Method

The DC state estimate x̂ ≡ θ̂T, which is a solution to the WLS problem (2.6), is

obtained through the non-iterative procedure by solving the system of linear equations:(
HTR−1H

)
x̂ = HTR−1z, (2.67)

where H ∈ RkxN is the Jacobian matrix of measurement functions.

According to the set of measurements M, vector and matrices are the following

block structure:

z =

zPij

zPi

zθi

 ; H =

HPij

HPi

Hθi

 ; R =

RPij 0 0

0 RPi
0

0 0 Rθi

 . (2.68)

Note that, each sub-matrix of R is the diagonal measurement error covariance matrix

that contains measurement variances. In the following, we provide expressions for

elements of H.

Active Power Flow Measurement Function (DC Model)

The active power flow at the branch (i, j) ∈ E that connects buses i and j can be

obtained using (2.24a):

hPij (·) = −bij(θi − θj). (2.69)

Jacobian HPij of the function hPij (·) associated with measurement MPij , (i, j) ∈ E
is defined as matrix with corresponding elements:

∂hPij (·)
∂θi

= −bij ;
∂hPij (·)
∂θj

= bij . (2.70)

2Similar to the non-linear SE, the BP approach uses complete set of state variables.
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Active Power Injection Measurement Function (DC Model)

The active power injection into bus i ∈ H can be obtained using (2.30a):

hPi(·) = −
∑

j∈Hi\i
bij(θi − θj), (2.71)

where Hi \ i is the set of buses adjacent to the bus i.

Jacobian HPi
of the function hPi(·) associated with measurement MPi , i ∈ H is

defined as matrix with corresponding elements:

∂hPi(·)
∂θi

= −
∑

j∈Hi\i
bij ;

∂hPi(·)
∂θj

=
∑

j∈Hi\i
bij . (2.72)

Bus Voltage Angle Measurement Function (DC Model)

The bus voltage angle on the bus i ∈ H is described with function:

hθi(·) = θi. (2.73)

Jacobian Hθi
of the function hθi(·) associated with measurement Mθi , i ∈ H is

defined as matrix with corresponding elements:

∂hθi(·)
∂θi

= 1;
∂hθi(·)
∂θj

= 0. (2.74)

2.8 Summary

The solution for the non-linear and DC SE model can be found by solving the

optimization problem (2.5). The solution of the non-linear SE model reduces to

solving the iterative Gauss-Newton method, while the DC SE solution can be obtained

through the non-iterative procedure by solving WLS problem. The DC SE provides an

approximate solution, where all bus voltage magnitudes are set to one. The presented

models assume uncorrelated measurement errors that define diagonal measurement

error covariance matrices.

In the SE problem, each measurement function hi(x) depends on a limited (typically

small) subset of state variables x. Hence, the likelihood function L(z|x) can be

factorized into factors (2.5) affecting small subsets of state variables. This fact



2.8. Summary 61

motivates solving the SE problem scalably and efficiently using probabilistic graphical

models. The solution involves defining the factor graph corresponding to (2.5), and

deriving expressions for BP messages exchanged over the factor graph.





Chapter 3

Belief Propagation based DC State
Estimation

For completeness of exposition, we present the solution of the DC SE problem using

the BP algorithm; we refer to the corresponding method as the DC-BP. Furthermore,

we propose a fast real-time DC state estimator and provide an in-depth convergence

analysis of the DC-BP algorithm, including the additional method to improve its

convergence. The material in this section sets the stage for the main contribution of

this thesis - the BP-based Gauss-Newton method for the non-linear SE model.

The DC SE model is described by the system of linear functions, where each

measurement function hi(x) involved in (2.2) is defined with (2.69), (2.71) and (2.73).

Due to the linearity, messages exchanged within the DC-BP algorithm can be evaluated

in closed form.

3.1 The Factor Graph Construction

For the DC model, the set of variable nodes is defined by the state variables x ≡ θT,

thus V = {θ1, . . . , θN} ≡ {x1, . . . , xN}. The set of factor nodes F = {f1, . . . , fk} is

defined by the set of measurements M, with measurement functions (2.69), (2.71)

and (2.73). Measurements define likelihood functions N (zi|x, vi) that are in turn

equal to local functions ψi(Vi) associated to factor nodes. A factor node fi connects

to a variable node xs ∈ V if and only if the state variable xs is an argument of the

corresponding measurement function hi(x).

Example 3.1.1 (Constructing factor graph). In this toy example, using a simple 3-

bus model presented in Figure 3.1(a), we demonstrate the conversion from a bus/branch

model with a given measurement configuration into the corresponding factor graph for

the DC model.

The variable nodes represent state variables, i.e., V = {θ1, θ2, θ3} ≡ {x1, x2, x3}.
Factor nodes are defined by corresponding measurements, where in our example,
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Figure 3.1: Transformation of the bus/branch model and measurement configuration
(subfigure a) into the corresponding factor graph for the DC model (subfigure b).

measurements MP12
and MP3

are mapped into factor nodes F = {fP12
, fP3

}. 4

3.2 The Belief Propagation Algorithm

To recall, the BP algorithm efficiently calculates marginal distributions of state

variables by passing two types of messages along the edges of the factor graph: i) a

variable node to a factor node, and ii) a factor node to a variable node messages. The

marginal inference provides marginal probability distributions of each of the state

variables that is used to estimate values of state variables x. Next, we describe the

DC-BP algorithm that is a version of the BP algorithm called Gaussian BP.

3.2.1 Derivation of BP Messages and Marginal Inference

Message from a variable node to a factor node: Consider a part of a factor

graph shown in Figure 3.2 with a group of factor nodes Fs = {fi, fw, ..., fW } ⊆ F
that are neighbours of the variable node xs ∈ V. The message µxs→fi(xs) from the

Wf

wf

.

.

.

if

sx

)sx(sx→wfµ

)sx(sx→Wfµ

)sx(if→sxµ

Figure 3.2: Message µxs→fi(xs) from variable node xs to factor node fi.
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variable node xs to the factor node fi is equal to the product of all incoming factor

node to variable node messages arriving at all the other incident edges:

µxs→fi(xs) =
∏

fa∈Fs\fi
µfa→xs(xs), (3.1)

where Fs \ fi represents the set of factor nodes incident to the variable node xs,

excluding the factor node fi. Note that each message is a function of the variable xs.

Message from a Variable Node to a Factor Node

Let us assume that the incoming messages µfw→xs(xs), . . . , µfW→xs(xs) into

the variable node xs are Gaussian and represented by their mean-variance pairs

(zfw→xs , vfw→xs), . . . , (zfW→xs , vfW→xs). Note that these messages carry beliefs

about the variable node xs provided by its neighbouring factor nodes Fs\fi. According

to (3.1), it can be shown that the message µxs→fi(xs) from the variable node xs to

the factor node fi is proportional to:

µxs→fi(xs) ∝ N (xs|zxs→fi , vxs→fi), (3.2)

with mean zxs→fi and variance vxs→fi obtained as:

zxs→fi =

( ∑
fa∈Fs\fi

zfa→xs
vfa→xs

)
vxs→fi (3.3a)

1

vxs→fi
=

∑
fa∈Fs\fi

1

vfa→xs
. (3.3b)

After the variable node xs receives the messages from all of the neighbouring factor

nodes from the set Fs \ fi, it evaluates the message µxs→fi(xs) according to (3.3) and

sends it to the factor node fi.

Message from a factor node to a variable node: Consider a part of a factor

graph shown in Figure 3.3 that consists of a group of variable nodes Vi = {xs, xl, ..., xL}
⊆ V that are neighbours of the factor node fi ∈ F . The message µfi→xs(xs) from

the factor node fi to the variable node xs is defined as a product of all incoming

variable node to factor node messages arriving at other incident edges, multiplied by

the function ψi(Vi) associated to the factor node fi, and marginalized over all of the
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.

.

.

lx

Lx )Lx(if→Lxµ

)lx(if→lxµ

if
sx

)sx(sx→ifµ

Figure 3.3: Message µfi→xs(xs) from factor node fi to variable node xs.

variables associated with the incoming messages:

µfi→xs(xs) =

∫
xl

· · ·
∫
xL

ψi(Xi)
∏

xb∈Vi\xs

[
µxb→fi(xb) · dxb

]
, (3.4)

where Vi \ xs is the set of variable nodes incident to the factor node fi, excluding the

variable node xs.

Due to linearity of measurement functions hi(·), closed form expressions for these

messages is easy to obtain and follow a Gaussian form:

µfi→xs(xs) ∝ N (xs|zfi→xs , vfi→xs). (3.5)

The message µfi→xs(xs) can be computed only when all other incoming messages

(variable to factor node messages) are known due to synchronous scheduling. Let us

assume that the messages into factor nodes are Gaussian, denoted by:

µxl→fi(xl) ∝ N (xl|zxl→fi , vxl→fi)
...

µxL→fi(xL) ∝ N (xL|zxL→fi , vxL→fi).

(3.6)

The Gaussian function associated with the factor node fi is given by (2.2):

N (zi|xs, xl, . . . , xL, vi) ∝ exp

{
[zi − hi(xs, xl, . . . , xL)]2

2vi

}
. (3.7)

The DC model contains only linear measurement functions which we represent in a

general form as:

hi(xs, xl, . . . , xL) = Cxsxs +
∑

xb∈Xi\xs
Cxbxb, (3.8)
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where Vi \ xs is the set of variable nodes incident to the factor node fi, excluding the

variable node xs.

Message from a Factor Node to a Variable Node

From the expression (3.4), and using (3.6)-(3.8), it can be shown that the message

µfi→xs(xs) from the factor node fi to the variable node xs is represented by the

Gaussian function (3.5), with mean zfi→xs and variance vfi→xs obtained as:

zfi→xs =
1

Cxs

(
zi −

∑
xb∈Vi\xs

Cxbzxb→fi

)
(3.9a)

vfi→xs =
1

C2
xs

(
vi +

∑
xb∈Vi\xs

C2
xb
vxb→fi

)
. (3.9b)

To summarize, after the factor node fi receives the messages from all of the

neighbouring variable nodes from the set Vi \ xs, it evaluates the message µfi→xs(xs)
according to (3.9a) and (3.9b), and sends it to the variable node xs.

Marginal inference: The marginal of the variable node xs, illustrated in Fig-

ure 3.4, is obtained as the product of all incoming messages into the variable node xs:

p(xs) =
∏
fc∈Fs

µfc→xs(xs), (3.10)

where Fs is the set of factor nodes incident to the variable node xs.

Wf

wf

.

.

.
if

sx

)sx(sx→wfµ

)sx(sx→Wfµ

)sx(sx→ifµ

Figure 3.4: Marginal inference of the variable node xs.
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Marginal

According to (3.10), it can be shown that the marginal of the state variable xs is

represented by:

p(xs) ∝ N (xs|x̂s, vxs), (3.11)

with the mean value x̂s and variance vxs :

x̂s =

( ∑
fc∈Fs

zfc→xs
vfc→xs

)
vxs (3.12a)

1

vxs
=
∑
fc∈Fs

1

vfc→xs
. (3.12b)

Finally, the mean-value x̂s is adopted as the estimated value of the state variable

xs.

3.2.2 Iterative DC-BP Algorithm

The SE scenario is in general an instance of loopy BP since the corresponding factor

graph usually contains cycles. Loopy BP is an iterative algorithm, with an iteration

index τ = {0, 1, 2, . . . }, and we use the synchronous scheduling, where all messages

are updated in a given iteration using the output of the previous iteration as an input.

To present the algorithm precisely, we need to introduce different types of factor

nodes. The indirect factor nodes Find ⊂ F correspond to measurements that measure

state variables indirectly. In the DC scenario, this includes active power flow and

power injection measurements. The direct factor nodes Fdir ⊂ F correspond to the

measurements that measure state variables directly. For our choice of state variables

for the DC scenario, an example includes measurements of bus voltage angles.

Besides direct and indirect factor nodes, we define two additional types of singly-

connected factor nodes. The slack factor node corresponds to the slack or reference

bus where the voltage angle has a given value. Finally, the virtual factor node is a

singly-connected factor node used if the variable node is not directly measured, and

takes the value of ”flat start” with variance vi →∞ or a priori given mean value and

variance of state variables.

We refer to direct factor nodes and two additional types of singly-connected factor

nodes as local factor nodes Floc ⊂ F . We note that local factor nodes only send,

but do not receive, and repeatedly transmit the same message to the corresponding
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variable node throughout BP iterations.

Algorithm 1 The DC-BP

1: procedure Initialization τ = 0

2: for each fs ∈ Floc do

3: send µ
(0)
fs→xs to incident xs ∈ V

4: end for

5: for each xs ∈ V do

6: send µ
(0)
xs→fi = µ

(0)
fs→xs , to incident fi ∈ Find

7: end for

8: end procedure

9: procedure Iteration loop τ = 1, 2, . . .

10: while stopping criterion is not met do

11: for each fi ∈ Find do

12: Compute µ
(τ)
fi→xs using (3.9a)*, (3.9b)*

13: end for

14: for each xs ∈ V do

15: Compute µ
(τ)
xs→fi using (3.3)

16: end for

17: end while

18: end procedure

19: procedure Output

20: for each xs ∈ V do

21: Compute x̂s, vxs using (3.12)

22: end for

23: end procedure

*Incoming messages are obtained in previous iteration τ − 1

Example 3.2.1 (Different types of factor nodes). In this example, we consider the

bus/branch model with three measurements illustrated in Figure 3.5(a) that we use to

describe different types of factor nodes.

The indirect factor nodes (orange squares) are defined by corresponding measure-

ments, where in our example, active power flow MP12
and active power injection MP3

measurements are mapped into factor nodes Find = {fP12
, fP3

}. The set of local factor

nodes Floc consists of the set of direct factor node (green square) Fdir = {fθ2} defined

by bus voltage angle measurement Mθ2 , virtual factor node (blue square) and the slack

factor node (yellow square). 4
The presented algorithm is an instance of a loopy Gaussian BP applied over a
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Figure 3.5: Transformation of the bus/branch model and measurement configuration
(subfigure a) into the corresponding factor graph with different types of factor nodes
for the DC model (subfigure b).

linear model defined by linear measurement functions h(x). It is well known that, if

loopy Gaussian BP applied over a linear model converges, it will converge to a fixed

point representing a solution of an equivalent WLS problem (2.67) [63]. Unlike means,

the variances of Gaussian BP messages need not converge to correct values.

The DC-BP algorithm is presented in Algorithm 1. After the initialization (lines

1-8), the main algorithm routine starts which includes BP-based message inference

(lines 9-18). Finally, the marginal inference provides the estimate of the state variables

(lines 19-23). In Appendix B, we presented an illustrative numerical example of the

proposed DC-BP algorithm.

3.2.3 Convergence of DC-BP Algorithm

In this part, we present convergence analysis of DC-BP algorithm with synchronous

scheduling. In the following, it will be useful to consider a subgraph of the factor

graph that contains the set of variable nodes V = {x1, . . . , xN}, the set of indirect

factor nodes Find = {f1, . . . , fm} ⊂ F , and a set of edges B ⊆ V × Find connecting

them. The number of edges in this subgraph is b = |B|. Within the subgraph, we will

consider a factor node fi ∈ Find connected to its neighboring set of variable nodes

Vi = {xq, . . . , xQ} ⊂ V by a set of edges Bi = {bqi , . . . , bQi } ⊂ B, where di = |Vi| is the

degree of fi. Next, we provide results on convergence of both variances and means of

DC-BP messages, respectively.

Convergence of the Variances: From equations (3.3b) and (3.9b), we note

that the evolution of the variances is independent of mean values of messages and
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measurements. Let vs ∈ Rb denote a vector of variance values of messages from indirect

factor nodes Find to variable nodes V. Note that this vector can be decomposed as:

v(τ)
s = [v

(τ)
s,1 , . . .v

(τ)
s,m]T, (3.13)

where the i-th element vs,i ∈ Rdi is equal to:

v
(τ)
s,i = [v

(τ)
fi→xq , . . . , v

(τ)
fi→xQ ]. (3.14)

Substituting (3.3b) in (3.9b), the evolution of variances vs is equivalent to the following

iterative equation:

v(τ)
s = f

(
v(τ−1)

s

)
. (3.15)

More precisely, using simple matrix algebra, one can obtain the evolution of the

variances vs in the following matrix form:

v(τ)
s =

[(
C̃−1ΠC̃

)
·
(
D(A)

)−1
+ ΣaC̃

−1
]
i, (3.16)

where

C̃ = CCT (3.17a)

A = ΓΣ−1
s ΓT + L. (3.17b)

Note that in (3.16), the dependance on v
(τ−1)
s is hidden in matrix A, or more precisely,

in matrix Σs. Next, we briefly describe both the matrices and matrix-operators

involved in (3.16).

The operator D(A) ≡ diag(A11, . . . , Abb), where Aii is the i-th diagonal entry of

the matrix A. The unit vector i is of dimension b and is equal to i = [1, . . . , 1]T. The

diagonal matrix Σs is obtained as Σs = diag
(
v

(τ−1)
s

)
∈ Rb×b.

The matrix C = diag
(
C1, . . . ,Cm

)
∈ Rb×b contains diagonal entries of the Jacobian

non-zero elements, where i-th element Ci = [Cxq , . . . , CxQ ] ∈ Rdi . The matrix

Σa = diag
(
Σa,1, · · ·Σa,m

)
∈ Rb×b contains indirect factor node variances, with the

i-th entry Σa,i = [vi, . . . , vi] ∈ Rdi .

The matrix L = diag
(
L1, · · ·Lm

)
∈ Rb×b contains inverse variances from singly-

connected factor nodes to a variable node, if such nodes exist, where the i-th element



72 3. Belief Propagation based DC State Estimation

Li =
[
lxq , · · · lxQ

]
∈ Rdi . For example, lxq equals:

lxq =


1

vfd,q→xq
, if xq is incident to fd,q

0, otherwise.

(3.18)

The matrix Π = diag
(
Π1, . . .Πm

)
∈ Fb×b2 , F2 = {0, 1}, is a block-diagonal matrix

in which the i-th element is a block matrix Πi = 1i− Ii ∈ Fdi×di2 , where the matrix 1i
is di× di block matrix of ones, and Ii is di× di identity matrix. The matrix Γ ∈ Fb×b2

is of the following block structure:

Γ =


01,1 Γ1,2 . . . Γ1,m

Γ2,1 02,2 . . . Γ2,m

...
...

...

Γm,1 Γm,2 . . . 0m,m

 , (3.19)

where 0i,i is a block matrix di× di of zeros, and Γi,j ∈ Fdi×dj2 with the (i, j)-th entry:

Γi,j(i, j) =

1, if both bqi and bqj are incident to xq

0, otherwise.
(3.20)

Note that the following holds: Γj,i = ΓT
i,j .

Theorem 3.2.2. The variances vs from indirect factor nodes to variable nodes always

converge to a unique fixed point limτ→∞ v
(τ)
s = v̂s for any initial point v

(τ=0)
s > 0.

Proof. The theorem can be proved by showing that f
(
vs

)
satisfies the conditions of

the so-called standard function [64], following similar steps as in the proof of Lemma

1 in [65].

Convergence of the Means: Equations (3.3a) and (3.9a) show that the evolution

of the mean values depends on the variance values. Due to Theorem 3.2.2, it is possible

to simplify evaluation of mean values zs from indirect factor nodes Find to variable

nodes V by using the fixed-point values of v̂s. The evolution of means zs becomes a

set of linear equations:

z(τ)
s = z̃−Ωz(τ−1)

s , (3.21)

where

z̃ = C−1za −D ·
(
D(Â)

)−1 · Lzb (3.22a)
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Ω = D ·
(
D(Â)

)−1 · ΓΣ̂−1
s (3.22b)

Â = ΓΣ̂−1
s ΓT + L (3.22c)

D = C−1ΠC. (3.22d)

Note that the vector of means zs ∈ Rb can be decomposed as:

z(τ)
s = [z

(τ)
s,1 , . . . , z

(τ)
s,m]T, (3.23)

where the i-th element zs,i ∈ Rdi is equal to:

z
(τ)
s,i = [z

(τ)
fi→xk , . . . , z

(τ)
fi→xK ]. (3.24)

The vector za =
[
za,1, · · · za,m

]T ∈ Rb contains means of indirect factor nodes,

where za,i = [zi, . . . , zi] ∈ Rdi . The diagonal matrix Σ̂s ∈ Rb×b is obtained as Σ̂s =

limτ→∞Σ
(τ)
s . The vector zb =

[
zb,1, · · · , zb,m

]
∈ Rb contains means from direct and

virtual factor nodes to a variable node, if such nodes exist, where the i-th element

zb,i =
[
zxk , · · · zxK

]
∈ Rdi . For example, the element zxk of zb,i is equal to:

zxk =

zfd,k→xk , if xk is incident to fd,k

0, otherwise.
(3.25)

Theorem 3.2.3. The means zs from indirect factor nodes to variable nodes converge

to a unique fixed point limτ→∞ z
(τ)
s = ẑs:

ẑs =
(
I + Ω

)−1
z̃, (3.26)

for any initial point z
(τ=0)
s if and only if the spectral radius ρ(Ω) < 1.

Proof. The proof steps follow the proof of Theorem 5.2, [64].

Convergence of the DC-BP Algorithm with Synchronous Scheduling

To summarize, the convergence of the DC-BP algorithm depends on the spectral

radius of the matrix:

Ω =
(
C−1ΠC

)
·
[
D(ΓΣ̂−1

s ΓT + L)
]−1 ·

(
ΓΣ̂−1

s

)
. (3.27)

If the spectral radius ρ(Ω) < 1, the DC-BP algorithm will converge and the resulting

vector of mean values will be equal to the solution of the MAP estimator.
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3.2.4 Convergence of DC-BP with Randomized Damping

In this section, we propose an improved DC-BP algorithm that applies synchronous

scheduling with randomized damping. Several previous works reported that damping

the BP messages improves the convergence of BP [65,66]. Here, we propose a different

randomized damping approach, where each mean value message from indirect factor

node to a variable node is damped independently with probability p, otherwise, the

message is calculated as in the standard DC-BP algorithm. The damped message

is evaluated as a linear combination of the message from the previous and the

current iteration, with weights α1 and 1 − α1, respectively. In numerical section,

we demonstrate that the DC-BP with randomized damping dramatically improves

convergence as compared to the standard DC-BP.

In the proposed damping, the equation (3.21) is redefined as:

z
(τ)
d = z(τ)

q + α1z
(τ−1)
w + α2z

(τ)
w , (3.28)

where 0 < α1 < 1 is the weighting coefficient, and α2 = 1 − α1. In the above

expression, z
(τ)
q and z

(τ)
w are obtained as:

z(τ)
q = Qz̃−QΩz(τ−1)

s (3.29a)

z(τ)
w = Wz̃−WΩz(τ−1)

s , (3.29b)

where diagonal matrices Q ∈ Fb×b2 and W ∈ Fb×b2 are defined as Q = diag(1−q1, ..., 1−
qb), qi ∼ Ber(p), and W = diag(q1, ..., qb), respectively, where Ber(p) ∈ {0, 1} is a

Bernoulli random variable with probability p independently sampled for each mean

value message.

Substituting (3.29a) and (3.29b) in (3.28), we obtain:

z
(τ)
d =

(
Q + α2W

)
z̃−

(
QΩ + α2WΩ− α1W

)
z(τ−1)

s . (3.30)

Note that z
(τ−1)
r = Wz

(τ−1)
s . In a more compact form, equation (3.30) can be written

as follows:

z
(τ)
d = z̄− Ω̄z(τ−1)

s , (3.31)

where

z̄ =
(
Q + α2W

)
z̃ (3.32a)

Ω̄ = QΩ + α2WΩ− α1W. (3.32b)
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Theorem 3.2.4. The means zd from indirect factor nodes to variable nodes converge

to a unique fixed point ẑd = limτ→∞ z
(τ)
d for any initial point z

(τ=0)
d if and only if the

spectral radius ρ(Ω̄) < 1. For the resulting fixed point, it holds that ẑd = ẑs.

Proof. To prove theorem it is sufficient to show that equation (3.31) converges to the

fixed point defined in (3.26). We can write:

zr
(τ−1) = Wz̃−WΩz(τ−2)

s . (3.33)

Substituting (3.29a), (3.29b) and (3.33) in (3.28):

z
(τ)
d =

(
Q + α2W + α1W

)
z̃−

(
QΩ + α2WΩ

)
z(τ−1)

s − α1WΩz(τ−2)
s . (3.34)

The fixed point ẑd = limτ→∞ z
(τ)
d is equal to:

ẑd =
(
I + QΩ + α2WΩ + α1WΩ

)−1 ·
(
Q + α2W + α1W

)
z̃. (3.35)

From definitions of Q, W and α2, we have QΩ + α2WΩ + α1RΩ = Ω and Q +

α2W + α1W = I, thus (3.35) becomes:

ẑd =
(
I + Ω

)−1
z̃. (3.36)

This concludes the proof.

Convergence of the DC-BP Algorithm with Randomized Damping

To summarize, the convergence of the DC-BP with randomized damping depends

on the spectral radius of the matrix:

Ω̄ = QΩ + α2WΩ− α1W. (3.37)

If the spectral radius ρ(Ω̄) < 1, the DC-BP algorithm will converge to the same fixed

point obtained by the DC-BP with synchronous scheduling.

3.2.5 Randomized Damping Parameters

The proposed randomized damping scheduling updates of selected factor to variable

node means in every iteration by combining them with their values from the previous

iteration using convergence parameters p and α1:

z
(τ)
fi→xs = (1− qis) · z(τ)

fi→xs + qis ·
(
α1 · z(τ−1)

fi→xs + α2 · z(τ)
fi→xs

)
, (3.38)
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where qis ∼ Ber(p) ∈ {0, 1} is independently sampled with probability p for the mean

from factor node fi to the variable node xs.

The probability p defines a fraction of a factor node to variable node messages

from the current iteration that are combined with the corresponding messages from

the previous iteration. The weighting coefficient α1 defines the ratio that determines

how messages from the current and the previous iteration are combined. For example,

p = 0.2 specifies that 20% of the messages from the current iteration will be combined

with their values in the previous iteration, while 80% of messages are keeping the

values calculated in the current iteration. Furthermore, if α1 = 0.1, then for the 20%

of messages, the new value is obtained as a linear combination of the values calculated

in the current and the previous iteration with coefficients 0.1 and 0.9, respectively.

The randomized damping parameter pairs lead to trade-off between the number of

non-converging simulations and the rate of convergence. In general, for the selection

of p and α1 for which only a small fraction of messages are combined with their values

in the previous iteration, and that is the case for p close to zero or α1 close to one,

we observe a large number of non-converging simulations. This clearly demonstrates

the necessity of using (3.28) to “slow down” the BP progress, thus increasing the

algorithm stability and providing improved convergence.

We expect that, for any selected α1, the BP algorithm will converge faster for

smaller values of p, as lower p leads to a reduced “slow down” effect. However, one

needs to be careful with selection of p in order to avoid the combinations of p and α1

that lead to large number of non-converging outcomes.

3.3 Fast Real-Time DC State Estimation

Monitoring and control capability of the system strongly depends on the SE accuracy

as well as the periodicity of evaluation of state estimates. Ideally, in the presence of

both legacy and phasor measurements, SE should run at the scanning rate (seconds

or sub-second). In the following, we propose a fast real-time state estimator based

on the BP algorithm. As we described, using the BP, it is possible to estimate state

variables in a distributed fashion. In other words, unlike the usual scenario where

measurements are transmitted directly to the control center, in the BP framework,

measurements are locally collected and processed by local modules that exchange BP

messages with neighboring local modules. Furthermore, even in the scenario where

measurements are transmitted to the centralized control entity, the BP solution is

advantageous over the classical centralized solutions in that it can be easily distributed

and parallelized for high performance.
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Compared to the previous section that addresses classical (static) SE problem,

this section is an extension to the real-time model that operates continuously and

accepts asynchronous measurements from different measurement subsystems. More

precisely, we assume presence of both SCADA and WAMS infrastructure. We present

appropriate models for measurement arrival processes and for the process of mea-

surement deterioration (or “aging”) over time. Such measurements are continuously

integrated into the running instances of distributed BP-based modules. For simplicity,

we present the real-time DC-BP, while extension to the non-linear SE model is possible.

Furthermore, the BP-based SE is robust to ill-conditioned systems in which significant

difference arise between measurement variances, thus allowing state estimator that

runs without observability analysis.

To recall, the main SE routines comprise the SE algorithm, network topology

processor, observability analysis and bad data analysis. The core of the SE is the

SE algorithm which provides a state estimate of the system, based on the network

topology and set of measurements M. Using information about switch and circuit

breaker positions the network topology processor generates a bus/branch model of

the power network and assigns real-time measurement devices (legacy and/or PMU

devices) across the bus/branch model [3, Sec. 1.3]. As a result, the graph G =

(H, E) representing the power network is defined. In addition, the set of real-time

measurements Mrt ⊆M is connected to the graph G.

According to the location and the type of real-time measurements the observability

analysis determines observable and unobservable islands. Within the observable

islands, it is possible to obtain unique state estimates from the available set of real-

time measurementsMrt, which is not the case within unobservable parts of the system.

Once observability analysis is done, pseudo-measurements can be added, in order for

the entire system to be observable [3, Sec. 4.6], [5]. The set of pseudo-measurements

Mps ⊂ M represents certain prior knowledge (e.g., historical data) of different

electrical quantities and they are usually assigned high values of variances [3, Sec. 1.3].

As detailed later, we assume that, at a given time, the system measurements are

either real-time or pseudo-measurements, i.e., the sets Mrt and Mps are disjoint

Mrt ∩Mps = ∅ and their union is the set M =Mrt ∪Mps.

To summarize, in this section, we propose a fast and robust BP-based SE algorithm

that can update the state estimate vector x̂ in a time-continuous process. Hence, the

algorithm can handle each new measurement Mi ∈ Mrt as soon as it is delivered

from telemetry to the computational unit. Further, using the DC-BP algorithm, it

is possible to compute the state estimate vector x̂ without resorting to observability

analysis.
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3.3.1 Real-Time SE Using DC-BP

The proposed SE solution is based on the fact that the BP-based algorithm is robust

in terms of handling the ill-conditioned scenarios caused by significant differences

between values of variances (e.g., phasor measurements and pseudo-measurements).

Ideally, pseudo-measurements should not affect the solution within observable islands

(i.e., determined with real-time measurements), therefore the variance of pseudo-

measurements Mi ∈ Mps should be set to vi → ∞. In the conventional SE this

concept is a source of ill-conditioned system. Hence, the values of pseudo-measurement

variances should be defined to prevent ill-conditioned situations and ensure numerical

stability of the SE algorithm (e.g., 1010 − 1015). On the other hand, inability to

define vi → ∞ causes that pseudo-measurements have more or less impact on the

state estimate x̂, and thus the number of pseudo-measurements should be minimized

to produce an observable system.

The BP SE algorithm allows the inclusion of an arbitrary number of pseudo-

measurements with an extremely large values of variances (e.g., 1060), hence the

impact on the observable island is negligible. Consequently, observable islands will

have unique solution according to the real-time measurements, while unobservable

islands will be determined according to both real-time and pseudo-measurements.

Therefore, we propose a model where the network topology processor generates

bus/branch model and assigns all possible measurements that exist in the power

system, setting their variances to suitable values.

Without loss of generality, we demonstrate this procedure by a toy-example, using a

simple bus/branch model shown in Figure 3.6(a) where all the possible measurements

are assigned. The first step is converting the bus/branch model and its measurements

configuration into the corresponding factor graph illustrated in Figure 3.6(b). We
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Figure 3.6: Transformation of the bus/branch model and measurement configuration
(subfigure a) into the corresponding factor graph for the DC model (subfigure b).

assume, for the time being, that all the measurements are pseudo-measurementsM≡
Mps = {Mθ1 , Mθ2 , MP1 , MP2 , MP12} and Mrt = {∅}, noting that the system is
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unobservable. Using equations (3.3), (3.9) and (3.12) the BP algorithm will compute

the state estimate vector x̂ according to the set of factor nodes F defined by the set

of pseudo-measurements M≡ Mps. Hence, the system is defined according to the

prior knowledge in lack of real-time measurements.

Subsequently, in an arbitrary moment, we assume that the computational unit

received a real-time measurement Mrt = {Mθ1}, which determines an observable

island that contains bus 1, while bus 2 remains within unobservable island. The

BP algorithm in continuous process will compute the new value of state estimate θ̂1

according to Mθ1 , with insignificant impact of (high-variance) pseudo-measurements

Mps \ {Mθ1}, while the value of the state estimate θ̂2 will be defined according to

both Mθ1 and Mps \ {Mθ1}.

Assuming that subsequently, the computational unit receives an additional real-

time measurement MP12
, the system will be observable. The state estimate x̂ at that

moment will be computed according to the real-time measurements Mrt = {Mθ1 ,

MP12
}, with negligible influence of pseudo-measurements Mps \ {Mθ1 ,MP12

}.

Based on our extensive numerical analysis on large IEEE test cases, the proposed

algorithm is able to track the state of the system in the continuous process without

need for observability analysis. Note that, due the fact that the values of state

variables usually fluctuate in narrow boundaries, in normal conditions, the continuous

algorithm allows for fast response to new each measurement.

3.4 Numerical Results

In this section, using numerical simulations, we analyze the convergence and evaluate

the performance of the fast real-time DC-BP algorithm. In all simulated models,

we start with a given IEEE test case and apply the power flow analysis to generate

the exact solution. Thus, we apply the DC power flow analysis to calculate voltage

angles and active powers. Further, we corrupt the exact solution by the additive

white Gaussian noise of variance vi and we observe the set of measurements M.

3.4.1 Convergence Analysis

The measurements contain active power flows and power injections, and bus voltage

angles and the set of measurements is selected in such a way that the system is

observable. More precisely, for each scenario, we generate 1000 random measurement

configurations with the number of measurements equal either to double or triple the

size of the number of state variables (i.e., we consider the redundancy to be equal 2

or 3). To evaluate the performance, we convert each of the above randomly generated
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IEEE test cases with a given measurement configuration into the corresponding factor

graph and we run the DC-BP algorithm over the factor graph.
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Figure 3.7: The spectral radius of matrices Ω for synchronous scheduling and Ω̄ for
randomized damping for redundancy equal 2 for IEEE 14-bus (subfigure a) and IEEE
118-bus (subfigure c) test case and for redundancy equal 3 for IEEE 14-bus (subfigure
b) and IEEE 118-bus (subfigure d) test case.

As detailed in Subsection 3.2.3 and Subsection 3.2.4, the DC-BP with synchronous

scheduling with or without randomized damping will converge if ρ(Ω) < 1 and

ρ(Ω̄) < 1, respectively. This condition is verified in our simulations, thus we present

the convergence performance by comparing spectral radii of matrices Ω and Ω̄.

Figure 3.7 shows empirical cumulative density function (CDF) F (ρ) of spectral

radius ρ(Ω) and ρ(Ω̄) for different redundancies for IEEE 14-bus and IEEE 118-

bus test case. For each scenario, the randomized damping case behaves superior in

terms of the spectral radius. As an interesting and somewhat extreme case, for the
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IEEE 118-bus test case, the DC-BP algorithm with synchronous scheduling could

not converge at all, while with randomized damping1, we recorded convergence with

probability above 0.9. As expected, the algorithm with randomized damping performs

better for larger redundancy.

3.4.2 Fast Real-Time DC-BP Algorithm

We evaluate the performance of the proposed algorithm using the IEEE 14-bus test

case with the measurement configuration shown in Figure 3.8. The slack bus is bus 1

where the voltage angle has a given value θ1 = 0, therefore, the variance is v1 → 0

(e.g. we use v1 = 10−60 deg). Throughout this part, the variance of active power

flow and injection pseudo-measurements are vps = 1060 MW, while voltage angle

pseudo-measurements have vps = 1060 deg. Note that the base power for the IEEE

14-bus test case is 100 MVA.
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Active Power Flow Measurement

Active Power Injection Measurement

Voltage Angle Measurement

Figure 3.8: The IEEE 14-bus test case with measurement configuration.

In each test case (described below), the algorithm starts at the time instant t = 0

initialized using the full set of pseudo-measurements M≡Mps generated according

to historical data. Consider an arbitrary measurement Mi ∈M, this measurement is

initialized as pseudo-measurement, i.e., at t = 0, Mi ∈Mps. Let trt denotes the time

instant when the computational unit has received the real-time measured value of Mi

1Note that randomized damping parameters are set to p = 0.6 and α1 = 0.5.
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with the predefined value of variance vrt. We model the “aging” of the information

provided by this measurement by the linear variance increase over time up to the time

instant tps where it becomes equal to vps (Figure 3.9). In other words, we assume

Mi ∈Mps during 0 ≤ t < trt and t ≥ tps, while Mi ∈Mrt during trt ≤ t < tps. After

the transition period t ≥ tps, Mi is observed as pseudo-measurement until the next

real-time measurement is received.

trt tps

vrt

vps

t

v

Figure 3.9: The time-dependent function of variances for real-time measurements.

Test Case 1: In the following, we analyze performance of the proposed algorithm

in the scenario characterized by significant differences between variances and observe

influence of the pseudo-measurements on the state estimate x̂ ≡ θ̂T.

In Table I, we define the (fixed) schedule and type of real-time measurements,

where each real-time measurement is set to vrt = 10−12 MW at trt and we assume

tps → ∞ (i.e., vrt remains at 10−12 MW for t > trt ). The example is designed in

such a way that, upon reception of each real-time measurement, due to its very low

variance one of the states from the estimated state vector θ̂T becomes approximately

equal to the power flow solution.

Time Active power flow MPij Time Active power flow MPij

trt(s) from bus i to bus j trt(s) from bus i to bus j

1 1 2 8 7 9
2 2 3 9 9 10
3 3 4 10 10 11
4 4 5 11 6 12
5 5 6 12 12 13
6 4 7 13 13 14
7 7 8

Table 3.1: Schedule and type of real-time measurements.

Figure 3.10 shows estimated values of voltage angles θ3, θ8 and θ14 for the scenario

defined in Table 3.1. One can note the robustness of the proposed BP SE solution in
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Figure 3.10: Real-Time estimates of voltage angles θ3, θ8 and θ14 where the compu-
tational unit received active power flow real-time measurements every t = 1 s with
variance vrt = 10−12 MW.

a sense that, at any time instant, the extreme difference in variances between already

received real-time measurements and remaining set of pseudo-measurements (that

typically lead to ill-conditioned scenarios), are accurately solved by the BP estimator.

As expected, in our pre-designed example, we clearly note a sequential refinement of

the state estimate, where each new received real-time measurement MPij accurately

defines the corresponding state variable θj . More precisely, starting from the slack

bus that has a known state value, the real-time measurement MP12
specifies the state

value of θ2 at time t = 1 s. The chain of refinements repeats successively until t = 13 s

when the final state variable θ14 is accurately estimated.

Although somewhat trivial, the above example demonstrates that the BP-based SE

algorithm provides a solution according to the real-time measurements, irrespective

of the presence of (all) pseudo-measurements. In addition, Figure 3.10 shows how BP

influence propagates through the network (e.g., upon reception, measurement MP12

affects the distant state variable θ14).

Test Case 2: In order to investigate how fast BP influence propagates through
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the network, we use the same setup given in Test Case 1, and analyse the response of

the system to the received real-time measurement of different variance vrt = {202,

102, 10−2}MW. In particular, we track the convergence of the (iterative message

passing) BP algorithm over time, from the moment the real-time measurement is

received, to the moment when the state estimate reaches a steady state.
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Figure 3.11: Real-Time estimates of voltage angles θ2, θ3 and θ14 where the com-
putational unit received active power flow real-time measurement MP12 at the time
t = 1 s with variances vrt = {202, 102, 10−2}MW.

Figure 3.11 illustrates the influence of the real-time measurement MP12 received at

trs = 1 s, on the state variables θ2, θ3 and θ14. As expected, the received real-time

measurement has almost immediate impact on the state variable θ2, where steady state

occurs within t < 1 ms, even for the high value of measurement variance vrt = 202 MW.

Further, this real-time measurement will influence the entire system through iterative

BP message exchanges. As expected, increasing the distance between the measurement

location and the bus location, more time is needed for the corresponding state variable

to reach the steady state. For example, steady state of the state variable θ14 occurs

within t < 25 ms.

To summarize, the algorithm is able to provide fast response on the received
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real-time measurements and, for the DC SE framework, it is able to support both

WAMS and SCADA technology in terms of the required computational delays.

Test Case 3: In the final scenario, we consider the dynamic scenario in which

the power system changes values of both generations and loads every 100 s. In the

interval between t = 0 and t = 250 s, only active power flow and injection real-time

measurements are available with variances vrt = 102 MW and tps − trt = 103 s.2 After

250 s, the voltage angle real-time measurements become available with parameters

vrt = 10−6 deg and tps →∞. For every measurement, arrival process in each interval

is modeled using Poisson process with average inter-arrival time 1/λ, where for active

power flow and injection real-time measurements we set λ = 0.05 and for angle

real-time measurements λ = 0.5.
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Figure 3.12: Real-time estimates of voltage angles θ3, θ8 and θ14 where real-time
measurements arrived at the computational unit according to Poisson process.

Figure 3.12 shows state estimates of state variables θ3, θ8 and θ14 over the time

interval of 300 s for the described scenario. During the first 250 s, the BP SE provides

state estimates according to incoming noisy real-time measurements and, as apparent

2Although the period of 103 s may appear large, note that this is compensated by very high
variance vps = 1060 MW at tps.
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from the figure, each new real-time measurement will affect the current state of

the system. After t = 250 s, the voltage angle real-time measurements arrived with

constant and very low variance, thus providing state estimates which are considerably

more accurate.

3.5 Summary

We proposed a fast real-time state estimator based on the BP algorithm. The estimator

is easy to distribute and parallelize, thus alleviating computational limitations and

allowing for processing measurements in real time. Convergence of the DC-BP

algorithm depends of the spectral radius of the matrix that governs evolution of

means from indirect factor nodes to variable nodes, and we proposed improved DC-BP

algorithm using synchronous scheduling with randomized damping.

The algorithm may run as a continuous process, with each new measurement

being seamlessly processed by the distributed state estimator. In contrast to the

matrix-based state estimation methods, the belief propagation approach is robust

to ill-conditioned scenarios caused by significant differences between measurement

variances, thus resulting in a solution that eliminates observability analysis. Using the

DC model, we numerically demonstrate the performance of the state estimator in a

realistic real-time system model with asynchronous measurements. We note that the

extension to the non-linear state estimation is possible within the same framework.



Chapter 4

Native Belief Propagation based
Non-Linear State Estimation

The native BP-based algorithm (AC-BP) for the non-linear SE represents a logical step

in the transition from a linear to a non-linear model. We use insights from the DC-BP

algorithm therein to derive the AC-BP algorithm. Due to non-linearity of measurement

functions, the closed-form expressions for certain classes of BP messages cannot be

obtained, and using approximations, we proposed the algorithm as an approximate

BP solution for the non-linear SE problem. Unfortunately, due to approximations,

the AC-BP algorithm does not match the performance of the centralized non-linear

SE based on Gauss-Newton method.

Additionally, the AC-BP messages have considerably more complex form as com-

pared to the DC-BP, and the algorithm requires prior knowledge (e.g., historical data).

Despite all that, the AC-BP gives a different interpretation of the BP algorithm and

establishes interesting connections between the BP algorithm and WLS equations.

Without loss of generality, in the rest of the chapter, for the AC-BP we observe

only legacy measurements. To recall, the non-linear SE model is characterized by

the set of state variables x ≡ [θ,V]T, while measurement functions are defined with

(2.24), (2.28), (2.30) and (2.33).

4.1 The Factor Graph Construction

According to (2.5), in the non-linear scenario, the set of state variables x ≡ [θ,V]T

determines the set of variable nodes V = {(θ1, V1), . . . , (θN , VN )} ≡ {x1, . . . , xn},
while the set of factor nodes F = {f1, . . . , fk} is defined by the set of measurements

M. A factor node fi connects to a variable node xs ∈ V if and only if the state

variable xs is an argument of the corresponding measurement function hi(x).

Example 4.1.1 (Constructing factor graph). In this toy example, using a simple

3-bus model presented in Figure 4.1, we demonstrate the conversion from a bus/branch
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model with a given measurement configuration into the corresponding factor graph for

the AC-BP model.

1

3

2

3PM
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Figure 4.1: Transformation of the bus/branch model and measurement configuration
(subfigure a) into the corresponding factor graph for the AC-BP model (subfigure b).

The variable nodes represent state variables X = {θ1, V1, θ2, V2, θ3, V3}. Factor

nodes are defined by corresponding measurements, where in our example, measurements

MP12 and MP3 are mapped into factor nodes F = {fP12 , fP3}. 4

4.2 The Belief Propagation Algorithm

The AC-BP algorithm is based on the direct BP application over set of variable V
and factor F nodes, thus insights from the DC-BP algorithm can be used.

4.2.1 Derivation of BP Messages and Marginal Inference

Message from a variable node to a factor node: Due to the fact that variable

node output messages do not depend on measurement functions according to (3.1),

relations (3.2) and (3.3) hold for the AC-BP.

Message from a factor node to a variable node: Due to non-linear measure-

ment functions hi(·), the integral in (3.4) for the AC-BP cannot be evaluated in closed

form. Consequently, the message from a factor node to a variable node will not be

Gaussian. In the following, as an approximation, we assume that for the AC-BP,

the message µfi→xs(xs) also has the Gaussian form (3.5). According to DC-BP we

provide arguments that lead us to approximations used to derive messages for the

AC-BP.

Mean value evaluation: The expression for the mean of the DC-BP zfi→xs is exact

and equals (3.9a). Although the expression (3.9a) is obtained by directly evaluating
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(3.4) for the linear DC model, we note that it has a useful interpretation via conditional

expectation. For that purpose, let us define a vector xb = Vi\xs, and let zxb→fi denote

a vector of mean values of messages from variable nodes Vi \ xs to the factor node fi.

Then, the conditional expectation E[hi(xs,xb)|xb = zxb→fi ] can be calculated as:

E[hi(xs,xb)|xb = zxb→fi ] = CxsE[xs|xb = zxb→fi ] +
∑

xb∈Vi\xs
Cxbzxb→fi = zi. (4.1)

From the BP perspective, the conditional expected value E[xs|xb = zxb→fi ] repre-

sents the mean zfi→xs . Hence, it is possible to define the conditional expectation of

non-linear measurement function hi(·):

E[hi(xs,xb)|xb = zxb→fi ] = zi. (4.2)

Due different forms of non-linear measurement functions hi(·), see equations (2.24),

(2.28) and (2.30), the equation (4.2) will produce different forms of conditional

expectation E[xs|zxb→fi ] ≡ zfi→xs :

aE[xs|zxb→fi ] + b = 0 (4.3a)

aE[x2
s|xb = zxb→fi ] + bE[xs|xb = zxb→fi ] + c = 0 (4.3b)

aE[sin2 xs|xb = zxb→fi ] + bE[sinxs|xb = zxb→fi ] + c = 0, (4.3c)

where a, b and c are coefficients derived from non-linear measurement functions (see

Appendix C for details).

Due to quadratic form of (4.3b) and (4.3c), we may obtain two possible values for

the mean value zfi→xs . Thus in order to unambiguously define zfi→xs , we assume

that certain a priori knowledge of state variables, denoted as x̃ ≡ (θ̃, Ṽ), is available

(e.g., historical data). Given the prior data, we evaluate the mean value as:

zfi→xs =


z

(1)
fi→xs , if ∆ > 0 and d1 < d2

z
(2)
fi→xs , if ∆ > 0 and d1 > d2

x̃s, if ∆ < 0,

(4.4)

where ∆ is the discriminant of the quadratic polynomial, and d1 = |z(1)
fi→xs − x̃s|,

d2 = |z(2)
fi→xs − x̃s|, (see Appendix C for details).

The variance evaluation: The expression for the variance of the DC-BP vfi→xs is

equal (3.9b). Let us provide another interpretation of the variance vfi→xs . For this
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purpose, we observe the factor graph presented in Figure 4.2.
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Figure 4.2: Factor graph which provides interpretation of the variance vfi→xs .

Consider the set of messages µxb→fi = N (xb|zxb→fi , vxb→fi) arriving to the factor

node fi from any variable node neighbour xb ∈ Vi. Informally, we note that this

message carries a “belief” about itself that the variable node xb sends to the factor

node fi, representing collective evidence the rest of the factor graph provides about

the variable node xb. Let us represent this belief by an equivalent factor node attached

to each variable node. Thus for a set of variable nodes Vi, we introduce a set of factor

nodes Feq = {fs, fl, . . . , fL}, where for each xb ∈ Vi, the corresponding factor node

fb ∈ Feq is singly-connected to xb and by N (xb|zxb→fi , vxb→fi). Note that, from the

perspective of SE, this factor node can observed as a measurement defined by the

value zxb→fi , variance vxb→fi , and measurement function hb(xb) = xb.

Let us now solve the system illustrated in Figure 4.2 using the WLS method. It is

easy to show that the corresponding Jacobian matrix1 H and the measurement error

covariance matrix R have the following form:

H =


Cxs Cxl . . . CxL
1 0 . . . 0

0 1 . . . 0
...

...
...

0 0 . . . 1

 (4.5)

R = diag(vi, vxs→fi , vxl→fi , . . . , vxL→fi). (4.6)

1Note that the measurement function of the factor node fi is given by (3.8), while for all other
factor nodes fb ∈ Feq, it is equal to hb(xb) = xb.
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A variance-covariance matrix of WLS method is defined as:

V(xi) = (HTR−1H)−1 =


var(xs) cov(xs, xl) . . . cov(xs, xL)

cov(xl, xs) var(xl) . . . cov(xl, xL)
...

...
...

cov(xL, xs) cov(xL, xl) . . . var(xL)

 . (4.7)

According to (4.7), and using (4.5) and (4.6), the variance var(xs) is:

1

var(xs)
=

1

vxs→fi
+

[
1

C2
xs

(
vi +

∑
xb∈Vi\xs

C2
xb
vxb→fi

)]−1

. (4.8)

Consider the second term on the right-hand side of (4.8). Recall that it represents the

inverse of the variance vfi→xs of the message from the factor node fi to the variable

node xs, as defined by (3.9b). Therefore, we have demonstrated that by applying

WLS on the factor graph in Figure 4.2, one can obtain the expression for the variance

of the message from the factor node fi to the variable node xs.

For the SE that deals with non-linear measurement functions, it is possible to

define a linear approximation of the variance-covariance matrix at a given point xi
using the Gauss-Newton method (2.22a):

V(xi) = [J(xi)
TR−1J(xi)]

−1. (4.9)

It can be shown, using (4.9), that the variance vfi→xs is governed by (3.9b) where

the coefficients Cxp , xp ∈ Vi are defined by Jacobian elements (see Appendix A and

C for details):

Cxp =
∂hi(·)
∂xp

∣∣∣∣∣xs=zfi→xs
xb=zxb→fi

. (4.10)

Note that the coefficients above are evaluated at the point xi = (xs,xb), where the

values in xi represent the mean-values of the corresponding messages.

To summarize, the message evaluation for the AC-BP is governed by (4.3) and

(3.9b), where coefficients are obtained using (4.10).

Marginal inference: The marginal of the state variable xs is governed by (3.12).
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4.2.2 Iterative AC-BP Algorithm

Here, the indirect factor nodes Find ⊂ F include measurements of power flows,

power injections and current magnitudes. The direct factor nodes Fdir ⊂ F include

measurements of bus voltage magnitudes.

Algorithm 2 The AC-BP

1: procedure Initialization τ = 0

2: for Each fs ∈ Floc do

3: send µ
(0)
fs→xs to incident xs ∈ V

4: end for

5: for Each xs ∈ V do

6: send µ
(0)
xs→fi = µ

(0)
fs→xs , to incident fi ∈ Find

7: end for

8: for Each fi ∈ Find do

9: send µ
(0)
fi→xs = µ

(0)
xs→fi to incident xs ∈ V

10: end for

11: end procedure

12: procedure Iteration loop τ = 1, 2, . . .

13: while stopping criterion is not met do

14: for Each fi ∈ Find do

15: Compute µ
(τ)
fi→xs using (4.3)*, (3.9b)*

16: end for

17: for Each xs ∈ V do

18: Compute µ
(τ)
xs→fi using (3.3)

19: end for

20: end while

21: end procedure

22: procedure Output

23: for Each xs ∈ V do

24: Compute x̂s, vxs using (3.12)

25: end for

26: end procedure

*Incomming messages are obtained in previous iteration τ − 1

The AC-BP algorithms are presented in Algorithm 2. Note that, the initialization
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step for the DC-BP and AC-BP is different. This is due to the fact that the variance

of the message from a factor node to a variable node for the AC-BP depends not only

on the mean values of incoming messages, but also on the mean value of the message

whose variance is being calculated.

4.3 Numerical Results

In the following, we compare the accuracy of the AC-BP algorithm to that of the

centralized Gauss-Newton method using the IEEE 14-bus test case. We start with

a given IEEE test case and apply the AC power flow analysis to generate the exact

currents, voltages and powers across the network. Further, we corrupt the exact

solution by the additive white Gaussian noise of variance vi and we observe the set of

measurements.

The IEEE 14-bus test case with fixed measurement configuration containing 61

measurement devices, as shown in Fig. 4.3, is used to compare the accuracy of the

SE algorithms. For each value of noise variance vi = {v1, v2} = {10−10 10−4}p.u.,

using Monte Carlo approach, we generate 1000 random sets of measurement values

and feed them to the SE algorithms. Note that, in order to initialize the AC-BP
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Figure 4.3: The IEEE 14-bus test case with given measurement configuration.

and the Gauss-Newton method, we use the “flat start” assumption (Vi = 1, θi = 0,

i = 1, . . . , N).
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To compare the accuracy of the AC-BP algorithm to that of the centralized Gauss-

Newton method, we use the weighted residual sum of squares (WRSS) as a metric:

WRSS =

k∑
i=1

[zi − hi(x)]2

vi
. (4.11)

Note that WRSS is the value of the objective function of the optimization problem

(2.6) we are solving, thus it is suitable metric for the SE accuracy. Finally, we

normalize the obtained WRSS by WRSSWLS of the centralized SE obtained using

the Gauss-Newton method after 12 iterations (which we adopt as a normalization

constant). This way, we compare the accuracy of BP-based algorithms to the one of

the centralized SE.
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Figure 4.4: The AC-BP normalized WRSS (i.e., WRSS
(τ)
BP/WRSSWLS) for the low

noise level v1(subfigure a) and the high noise level v2 (subfigure b).
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Figure 4.4 shows the weighted residual sum of squares of the AC-BP WRSS
(τ)
BP over

the iterations τ , normalized by WRSSWLS (i.e., WRSS
(τ)
BP/WRSSWLS). We observe

that the AC-BP converges for both the low and the high noise level, however, for

the high noise level, the solution of the AC-BP algorithm does not correspond to the

solution of the centralized SE. This is expected, since as the noise variance increases,

the accuracy of Gaussian approximation of the BP messages is decreasing, which

affects the accuracy of the AC-BP solution.

4.4 Summary

The AC-BP represents an approximate BP solution for the non-linear SE problem.

Despite the complexity of message forms, the AC-BP interprets the BP algorithm

through conditional expectations and gives a useful insight into the relationships

between the BP algorithm and WLS method. The algorithm presents the intermediate

step between DC-BP and BP-based Gauss-Newton algorithm described in the next

chapter.





Chapter 5

Distributed Gauss-Newton Method for
State Estimation

As the main contribution of this thesis, we adopt different methodology to derive

efficient BP-based SE method. We present a novel distributed BP-based Gauss-

Newton algorithm, where the BP is applied sequentially over the non-linear model,

akin to what is done by the Gauss-Newton method. The resulting Gauss-Newton BP

(GN-BP) algorithm represents a BP counterpart of the Gauss-Newton method. The

GN-BP is the first BP-based solution for the non-linear SE model achieving exactly

the same accuracy as the centralized SE via Gauss-Newton method. We note that

results presented in this chapter are based on our publications [67,68].

5.1 Gauss-Newton Method as a Sequential MAP

Problem

Consider the Gauss-Newton method (2.22) where, at each iteration step ν, the

algorithm returns a new estimate of x denoted as x(ν). Note that, after a given

iteration, an estimate x(ν) is a vector of known (constant) values. If the Jacobian

matrix J(x(ν)) has a full column rank, the equation (2.22a) represents the linear WLS

solution of the minimization problem [58, Ch. 9]:

min
∆x(ν)

||P1/2[r(x(ν))− J(x(ν))∆x(ν)]||22, (5.1)

where P = R−1. Hence, at each iteration ν, the Gauss-Newton method produces

WLS solution of the following system of linear equations:

r(x(ν)) = g(∆x(ν)) + u, (5.2)
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where g(∆x(ν)) = J(x(ν))∆x(ν) comprises linear functions, while u is the vector of

measurement errors. The equation (2.22a) is the weighted normal equation for the

minimization problem defined in (5.1), or alternatively (2.22a) is a WLS solution

of (5.2). Consequently, the probability density function associated with the i-th

measurement (i.e., the i -th residual component ri) at any iteration step ν is:

N (ri(x
(ν))|∆x(ν), vi) =

1√
2πvi

exp

{
[ri(x

(ν))− gi(∆x(ν))]2

2vi

}
. (5.3)

Gauss-Newton Method as a MAP Optimization Problem

The MAP solution of (2.5) can be redefined as an iterative optimization problem

where, instead of solving (2.22), we solve:

∆x̂(ν) = arg max
∆x(ν)

L
(
r(x(ν))|∆x(ν)

)
= arg max

∆x(ν)

k∏
i=1

N
(
ri(x

(ν))|∆x(ν), vi

)
(5.4a)

x(ν+1) = x(ν) + ∆x̂(ν). (5.4b)

In the following, we show that the solution of the above problem (5.4) can be efficiently

obtained using the BP algorithm applied over the underlying factor graph.

The solution ∆x̂(ν) in each iteration ν = {0, 1, . . . , νmax} of the outer iteration

loop, is obtained by applying the iterative BP algorithm within inner iteration loops.

Every inner BP iteration loop τ(ν) = {0, 1, . . . , τmax(ν)} outputs ∆x̂(ν,τmax(ν)) ≡
∆x̂(ν), where τmax(ν) is the number of inner BP iterations within the outer iteration

ν. Note that, in general, the BP algorithm operating within inner iteration loops

represents an instance of a loopy Gaussian BP over a linear model defined by linear

functions g(∆x(ν)). Thus, if it converges, it provides a solution equal to the linear

WLS solution ∆x(ν) of (2.22a).

5.2 The Factor Graph Construction

From the factorization of the likelihood expression (5.4a), one easily obtains the factor

graph corresponding to the GN-BP method as follows. The increments ∆x of state

variables x determine the set of variable nodes V = {(∆θ1,∆V1), . . . , (∆θN ,∆VN )} and

each likelihood function N (ri(x
(ν))|∆x(ν), vi) represents the local function associated

with the factor node. Since the residual equals ri(x
(ν)) = zi − hi(x(ν)), in general,

the set of factor nodes F = {f1, . . . , fk} is defined by the set of measurements M.



5.2. The Factor Graph Construction 99

The factor node fi connects to the variable node ∆xs ∈ {∆θs,∆Vs} if and only if

the increment of the state variable ∆xs is an argument of the corresponding function

gi(∆x), i.e., if the state variable xs ∈ {θs, Vs} is an argument of the measurement

function hi(x).

The GN-BP algorithm is applied sequentially over the non-linear model, where the

main algorithm routine includes BP-based inference over MAP sub-problem (5.4a).

For completeness of exposition, we provide a step-by-step presentation of the GN-BP

algorithm.

5.2.1 Derivation of BP Messages and Marginal Inference

Message from a variable node to a factor node: Consider a part of a factor

graph shown in Figure 5.1 with a group of factor nodes Fs = {fi, fw, ..., fW } ⊆
F that are neighbours of the variable node ∆xs ∈ V. Let us assume that the

incoming messages µfw→∆xs(∆xs), . . . , µfW→∆xs(∆xs) into the variable node ∆xs
are Gaussian and represented by their mean-variance pairs (rfw→∆xs , vfw→∆xs), . . . ,

(rfW→∆xs , vfW→∆xs).

Wf

wf

.

.

.
if

sx∆ )sx(∆if→sx∆µ

)sx(∆sx∆→wfµ

)sx(∆sx∆→Wfµ

Figure 5.1: Message µxs→fi(xs) from variable node xs to factor node fi.

Message from a Variable Node to a Factor Node

The message µ∆xs→fi(∆xs) from the variable node ∆xs to the factor node fi is

equal to the product of all incoming factor node to variable node messages arriving at

all the other incident edges (3.1). It is easy to show that the message µ∆xs→fi(∆xs)
is proportional to:

µ∆xs→fi(∆xs) ∝ N (∆xs|r∆xs→fi , v∆xs→fi), (5.5)
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with mean r∆xs→fi and variance v∆xs→fi obtained as:

r∆xs→fi =

( ∑
fa∈Fs\fi

rfa→∆xs

vfa→∆xs

)
v∆xs→fi (5.6a)

1

v∆xs→fi
=

∑
fa∈Fs\fi

1

vfa→∆xs

, (5.6b)

where Fs \ fi represents the set of factor nodes incident to the variable node ∆xs,

excluding the factor node fi.

To conclude, after the variable node ∆xs receives the messages from all of the

neighbouring factor nodes from the set Fs \fi, it evaluates the message µ∆xs→fi(∆xs)
and sends it to the factor node fi.

Message from a factor node to a variable node: Consider a part of a factor

graph shown in Figure 5.2 that consists of a group of variable nodes Vi = {∆xs,
∆xl, ..., ∆xL} ⊆ V that are neighbours of the factor node fi ∈ F . Let us assume

that the messages µ∆xl→fi(∆xl), . . . , µ∆xL→fi(∆xL) into factor nodes are Gaussian,

represented by their mean-variance pairs (r∆xl→fi , v∆xl→fi), . . . , (r∆xL→fi , v∆xL→fi).
The Gaussian function associated to the factor node fi is:

.

.

.

if

)Lx(∆if→Lx∆µ

)lx(∆if→lx∆µ

)sx(∆sx∆→ifµ

Lx∆

lx∆

sx∆

Figure 5.2: Message µfi→∆xs(∆xs) from factor node fi to variable node ∆xs.

N (ri|∆xs,∆xl, . . . ,∆xL, vi) ∝ exp

{
[ri − gi(∆xs,∆xl, . . . ,∆xL)]2

2vi

}
, (5.7)

where the model contains only linear functions which we represent in a general form

as:
gi(·) = C∆xs∆xs +

∑
∆xb∈Vi\∆xs

C∆xb∆xb, (5.8)

where Vi \∆xs is the set of variable nodes incident to the factor node fi, excluding
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the variable node ∆xs.

Message from a Factor Node to a Variable Node

The message µfi→∆xs(∆xs) from the factor node fi to the variable node ∆xs is

defined as a product of all incoming variable node to factor node messages arriving at

other incident edges, multiplied by the function associated to the factor node fi, and

marginalized over all of the variables associated with the incoming messages (3.4). It

can be shown that the message µfi→∆xs(∆xs) from the factor node fi to the variable

node ∆xs is represented by the Gaussian function:

µfi→∆xs(∆xs) ∝ N (∆xs|rfi→∆xs , vfi→∆xs), (5.9)

with mean rfi→∆xs and variance vfi→∆xs obtained as:

rfi→∆xs =
1

C∆xs

(
ri −

∑
∆xb∈Vi\∆xs

C∆xb · r∆xb→fi

)
(5.10a)

vfi→∆xs =
1

C2
∆xs

(
vi +

∑
∆xb∈Vi\∆xs

C2
∆xb
· v∆xb→fi

)
. (5.10b)

The coefficients C∆xp , ∆xp ∈ Vi, are Jacobian elements of the measurement function

associated with the factor node fi:

C∆xp =
∂hi(xs, xl, . . . , xL)

∂xp
. (5.11)

To summarize, after the factor node fi receives the messages from all of the neigh-

bouring variable nodes from the set Vi \∆xs, it evaluates the message µfi→∆xs(∆xs),

and sends it to the variable node ∆xs.

Marginal Inference: The marginal of the variable node ∆xs, illustrated in

Figure 5.3, is obtained as the product of all incoming messages into the variable node

∆xs Equation 3.10.

Marginal

It can be shown that the marginal of the state variable ∆xs is represented by the

Gaussian function:

p(∆xs) ∝ N (∆xs|∆x̂s, v∆xs), (5.12)
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Figure 5.3: Marginal inference of the variable node ∆xs.

with mean ∆x̂s which represents the estimated value of the state variable increment

∆xs and variance v∆xs :

∆x̂s =

( ∑
fc∈Fs

rfc→∆xs

vfc→∆xs

)
v∆xs (5.13a)

1

v∆xs

=
∑
fc∈Fs

1

vfc→∆xs

, (5.13b)

where Fs is the set of factor nodes incident to the variable node ∆xs.

Note that due to the fact that variable node and factor node processing preserves

“Gaussianity” of the messages, each message exchanged in BP is completely represented

using only two values: the mean and the variance [69].

5.2.2 Iterative GN-BP Algorithm

The indirect factor nodes Find ⊂ F correspond to measurements that measure

state variables indirectly (e.g., power flows and injections). The direct factor nodes

Fdir ⊂ F correspond to the measurements that measure state variables directly (e.g.,

voltage magnitudes). Besides direct and indirect factor nodes, we define two additional

types of singly-connected factor nodes. The slack factor node corresponds to the slack

or reference bus where the voltage angle has a given value, therefore, the residual

of the corresponding state variable is equal to zero, and its variance tends to zero.

Finally, the virtual factor node is a singly-connected factor node used if the variable

node is not directly measured. Residuals of virtual factor nodes approach zero, while

their variances tend to infinity.

We refer to direct factor nodes and two additional types of singly-connected factor

nodes as local factor nodes Floc ⊂ F . Local factor nodes repeatedly send the same
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Algorithm 3 The GN-BP

1: procedure Initialization ν = 0

2: for Each xs ∈ X do

3: initialize value of x
(0)
s

4: end for

5: end procedure

6: procedure Outer iteration loop ν = 0, 1, 2, . . . ; τ = 0

7: while stopping criterion for the outer loop is not met do

8: for Each fs ∈ Fdir do

9: compute r
(ν)
s = zs − x(ν)

s

10: end for

11: for Each fs ∈ Floc do

12: send µ
(ν)
fs→∆xs

, x
(ν)
s to incident ∆xs ∈ V

13: end for

14: for Each ∆xs ∈ V do

15: send µ
(ν)(τ=0)
∆xs→fi = µ

(ν)
fs→∆xs

, x
(ν)
s to incident fi ∈ Find

16: end for

17: for Each fi ∈ Find do

18: compute r
(ν)
i = zi − hi(x(ν)) and C

(ν)
i,∆xp

; ∆xp ∈ Vi
19: end for

20: procedure Inner Iteration loop τ = 1, 2, . . .

21: while stopping criterion for the inner loop is not met do

22: for Each fi ∈ Find do

23: compute µ
(τ)
fi→∆xs

using (5.10)

24: end for

25: for Each ∆xs ∈ V do

26: compute µ
(τ)
∆xs→fi using (5.6)

27: end for

28: end while

29: end procedure

30: for Each ∆xs ∈ V do

31: compute ∆x̂
(ν)
s using (5.13) and x

(ν+1)
s = x

(ν)
s + ∆x̂

(ν)
s

32: end for

33: end while

34: end procedure
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message to incident variable nodes. It is important to note that local factor nodes

send messages represented by a triplet: mean (of the residual), variance and the state

variable value.

The GN-BP algorithm is presented in Algorithm 3, where the set of state variables

is defined as X = {x1, ..., xn}. After the initialization (lines 1-5), the outer loop

starts by computing residuals for direct and indirect factor nodes, as well as the

Jacobian elements, and passes them to the inner iteration loop (lines 8-19). The

inner iteration loop (lines 20-29) represents the main algorithm routine which includes

BP-based message inference described in the previous subsection. We use synchronous

scheduling, where all messages in a given inner iteration are updated using the output

of the previous iteration as an input [38]. The output of the inner iteration loop is the

estimate of the state variable increments. Finally, the outer loop updates the set of

state variables (lines 30-32). The outer loop iterations are repeated until the stopping

criteria is met.

Example 5.2.1 (Constructing a factor graph). In this toy example, using a simple 3-

bus model presented in Fig. 5.4(a), we demonstrate the conversion from a bus/branch

model with a given measurement configuration into the corresponding factor graph.
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2VM1VM
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21

(a)

12Pf

3Pf
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2Vf

3θf

2θf1θf

1Vf

3θ

2θ1θ

3V

2V1V

3θ∆

2θ∆1θ∆

3V∆

2V∆1V∆

(b)

Figure 5.4: Transformation of the bus/branch model and measurement configuration
(subfigure a) into the corresponding factor graph with different types of factor nodes
(subfigure b).

The corresponding factor graph is given in Fig. 5.4(b), where the set of state

variables is X = {(θ1, V1), (θ2, V2), (θ3, V3)} and the set of variable nodes is V =

{(∆θ1,∆V1), (∆θ2,∆V2), (∆θ3,∆V3)}. The indirect factor nodes (orange squares) are

defined by corresponding measurements, where in our example, active power flow MP12

and active power injection MP3
measurements are mapped into factor nodes Find =

{fP12
, fP3

}. The set of local factor nodes Floc consists of the set of direct factor nodes

(green squares) Fdir = {fV1
, fV2

} defined by bus voltage magnitude measurements

MV1 and MV2 , virtual factor nodes (blue squares) and the slack factor node (yellow
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square). 4

5.2.3 Discussion

The presented GN-BP algorithm can be easily adapted to the multi-area SE model.

Therein, each area runs the GN-BP algorithm in a fully parallelized way, exchanging

messages asynchronously with neighboring areas. The algorithm may run as a

continuous process, with each new measurement being seamlessly processed by the

distributed state estimator. The BP approach is robust to ill-conditioned scenarios

caused by significant differences between measurement variances, thus alleviating

the need for observability analysis. Indeed, one can include arbitrarily large set of

additional pseudo-measurements initialized using extremely high variances without

affecting the BP solution within the observable part of the system [70].

5.2.4 Convergence of GN-BP Algorithm

In this part, we present convergence analysis of the GN-BP algorithm with synchronous

scheduling, and propose an improved GN-BP algorithm that applies synchronous

scheduling with randomized damping. We emphasize that the convergence of the

GN-BP algorithm critically depends on the convergence behavior of each of the inner

iteration loops. Thus, the convergence analysis presented in Subsection 3.2.3 and

Subsection 3.2.4 can be used to provide analysis for the GN-BP algorithm.

Similar to the DC-BP analysis, it will be useful to consider a subgraph of the

factor graph that contains the set of variable nodes V, the set of indirect factor

nodes Find = {f1, . . . , fm} ⊂ F , and the set of edges B ⊆ V × Find connecting them.

The number of edges in this subgraph is b = |B|. Within the subgraph, we will

consider a factor node fi ∈ Find connected to its neighboring set of variable nodes

Vi = {∆xq, . . . ,∆xQ} ⊂ V by a set of edges Bi = {bqi , . . . , bQi } ⊂ B, where di = |Vi|
is the degree of fi. Next, we provide results on convergence of both variances and

means of inner iteration loop messages, respectively.

Convergence of the Variances: As we show in Subsection 3.2.3, the evolution

of the variances vs is governed by:

v(τ)
s =

[(
C̃−1ΠC̃

)
·
(
D(A)

)−1
+ ΣaC̃

−1
]
i, (5.14)

where according to Theorem 3.2.2 variances vs from indirect factor nodes to variable

nodes always converge to a unique fixed point v̂s.

Convergence of the Means: Using equations (5.6a) and (5.10a), the evolution
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of means rs becomes a set of linear equations:

r(τ)
s = r̃−Ωr(τ−1)

s , (5.15)

where r̃ = C−1ra−D ·
(
D(Â)

)−1 ·Lrb, Ω = D ·
(
D(Â)

)−1 ·ΓΣ̂−1
s , Â = ΓΣ̂−1

s ΓT +L

and D = C−1ΠC (we remind the reader that we described the vectors, matrices and

matrix-operators involved in (5.15) in Subsection 3.2.3). According to Theorem 3.2.3,

the means rs from indirect factor nodes to variable nodes converge to a unique fixed

point r̂s :

r̂s =
(
I + Ω

)−1
r̃, (5.16)

for any initial point r
(τ=0)
s if and only if the spectral radius ρ(Ω) < 1.

Consequently, the convergence of the inner iteration loop of the GN-BP algorithm

depends on the spectral radius of the matrix Ω. If the spectral radius ρ(Ω) < 1, the

GN-BP algorithm in the inner iteration loop ν will converge and the resulting vector

of mean values will be equal to the solution of the MAP estimator. Consequently, the

convergence of the GN-BP with synchronous scheduling in each outer iteration loop

ν depends on the spectral radius of the matrix:

Ω(x(ν)) =
[
C(x(ν))−1ΠC(x(ν))

]
·
[
D(ΓΣ̂−1

s ΓT + L)
]−1 ·

(
ΓΣ̂−1

s

)
. (5.17)

Convergence of the GN-BP Algorithm with Synchronous Scheduling

Remark 1. The GN-BP with synchronous scheduling converges to a unique fixed

point if and only if ρsyn < 1, where:

ρsyn = max{ρ
(
Ω(x(ν)) : ν = 0, 1, . . . , νmax}. (5.18)

5.2.5 Convergence of GN-BP with Randomized Damping

Next, we propose an improved GN-BP algorithm that applies synchronous scheduling

with randomized damping. Using the proposed damping in Subsection 3.2.4, equation

(5.15) is redefined as:

r
(τ)
d = r(τ)

q + α1r
(τ−1)
w + α2r

(τ)
w , (5.19)

where 0 < α1 < 1 is the weighting coefficient, and α2 = 1 − α1. In the above

expression, r
(τ)
q and r

(τ)
w are obtained as:

r(τ)
q = Qr̃−QΩr(τ−1)

s (5.20a)
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r(τ)
w = Wr̃−WΩr(τ−1)

s , (5.20b)

where diagonal matrices Q ∈ Fb×b2 and W ∈ Fb×b2 are defined as Q = diag(1−q1, ..., 1−
qb), qi ∼ Ber(p), and W = diag(q1, ..., qb), respectively, and where Ber(p) ∈ {0, 1} is

a Bernoulli random variable with probability p independently sampled for each mean

value message. In a more compact form (5.19) can be written as follows:

r
(τ)
d = r̄− Ω̄r(τ−1)

s , (5.21)

where r̄ =
(
Q +α2W

)
r̃ and Ω̄ = QΩ +α2WΩ−α1W. According to Theorem 3.2.3,

the means rd from indirect factor nodes to variable nodes converge to a unique fixed

point r̂d, if and only if the spectral radius ρ(Ω̄) < 1, and for the resulting fixed point

r̂d, it holds that r̂d = r̂s.

To summarize, the convergence of the GN-BP with randomized damping in every

outer iteration loop ν is governed by the spectral radius of the matrix:

Ω̄(x(ν)) = QΩ(x(ν)) + α2WΩ(x(ν))− α1W. (5.22)

Convergence of the GN-BP Algorithm with Randomized Damping

Remark 2. The GN-BP with randomized damping will converge to a unique fixed

point if and only if ρrd < 1, where:

ρrd = max{ρ
(
Ω̄(x(ν)) : ν = 0, 1, . . . , νmax}, (5.23)

and the resulting fixed point is equal to the fixed point obtained by the GN-BP with

synchronous scheduling.

In Section 5.4, we demonstrate that the GN-BP with randomized damping dra-

matically improves the GN-BP convergence.

5.3 Bad Data Analysis

Besides the SE algorithm, one of the essential SE routines is the bad data analysis,

whose main task is to detect and identify measurement errors, and eliminate them

if possible. SE algorithms based on the Gauss-Newton method proceed with the

bad data analysis after the estimation process is finished. This is usually done by

processing the measurement residuals [3, Ch. 5], and typically, the largest normalized

residual test (LNRT) is used to identify bad data [29]. The LNRT is performed after



108 5. Distributed Gauss-Newton Method for State Estimation

the Gauss-Newton algorithm converged in the repetitive process of identifying and

eliminating bad data measurements one after another [14].

Using analogies from the LNRT, we define the bad data test based on the BP

messages from factor nodes to variable nodes. The presented model establishes local

criteria to detect and identify bad data measurements. In Section 5.4, we demonstrate

that the BP-based bad data test (BP-BDT) significantly improves the bad data

detection over the LNRT.

The Belief Propagation Bad Data Test: Consider a part of the factor graph

shown in Fig. 5.5 and focus on a single measurement Mi ∈M that defines the factor

node fi ∈ F . Factor nodes {fs, fl, . . . , fL} carry a collective evidence of the rest

of the factor graph about the group of variable nodes Vi = {∆xs,∆xl, ...,∆xL} ⊆ V
incident to fi.

.

.

.

if

Lx∆

lx∆

sx∆
.
.
.

)sx(∆sx∆→ifµ

)Lx(∆
Lx∆→ifµ

)lx(∆
lx∆→ifµ

Lf

lf

sf

Figure 5.5: The part of the factor graph with messages from factor node fi to group
of variable nodes Vi = {∆xs,∆xl, ...,∆xL}.

Assume that the estimation process is done, and the residual of the measurement

Mi is given as:

ri(xi + ∆x̂i) = zi − hi(xi + ∆x̂i), (5.24)

where xi = [xs, xl, . . . , xL]T is the vector of state variables, while ∆x̂i = [∆x̂s, ∆x̂l,

. . . , ∆x̂L]T is the corresponding estimate vector of state variable increments. Let us

define vectors rfi = [rfi→∆xs , rfi→∆xl , . . . , rfi→∆xL ]T and vfi = [vfi→∆xs , vfi→∆xl ,

. . . , vfi→∆xL ]T of mean and variance values of BP messages sent from the factor node

fi to the variable nodes in Vi, respectively.

According to (5.13a), the vector of state variable increments ∆x̂i is determined as:

∆x̂i = [diag(v∆xi)] · [diag(vfi)]
−1 · rfi + b, (5.25)

where v∆xi = [v∆xs , v∆xl , . . . , v∆xL ]T is the vector of variable node variances obtained
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using (5.13b) and the vector b carries evidence of the rest of the graph about the

corresponding variable nodes Vi.

From (5.25), one can note that the BP-based SE algorithm decomposes the contri-

bution of each factor node to state variable increments, thus providing insight in the

structure of measurement residual in (5.24), where the impact of each measurement

can be observed. More precisely, the expression [diag(vfi)]
−1· rfi determines the

influence of the measurement Mi to the residual (5.24). To recall, the mean-value

messages rfi contain “beliefs” of the factor node fi about variable nodes in Vi, with

the corresponding variances vfi . Consequently, if the measurement Mi represents bad

data, it will likely provide an inflated values of the normalized residual components

[diag(vfi)]
−1· rfi in (5.25).

BP-based Bad Data Test Criteria

We observe the following vector corresponding to each factor node fi to detect

the bad data:

rBP,fi = [diag(vfi)]
−1 · [diag(rfi)] · rfi . (5.26)

Note, the expression [diag(rfi)]· rfi = [r2
fi→∆xs

, r2
fi→∆xl

, . . . , r2
fi→∆xL

]T favors larger

values of rfi .

Finally, the BP-BDT is given in Algorithm 4 following similar steps as the LNRT [3,

Sec. 5.7]. Namely, after the state estimation process is done, we compute rBP,fi , fi ∈
F , using (5.26), and observe r̄BP,fi as the largest element of rBP,fi . Comparing r̄BP,fi

values among all factor nodes, we find the largest such value rBP,fm corresponding to

the m-th factor node. If rBP,fm > κ, then the m-th measurement is suspected as bad

data, where κ is the bad data identification threshold.

Algorithm 4 The BP-BDT

1: if the GN-BP algorithm is converged then

2: for Each fi ∈ F do

3: compute rBP,fi using (5.26)

4: find r̄BP,fi as the largest element of rBP,fi

5: end for

6: find rBP,fm as the largest element among all r̄BP,fi

7: if rBP,fm > τ then

8: the measurement m-th is suspected as bad data

9: end if

10: end if
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5.4 Numerical Results

In the simulated model, we start with a given IEEE test case and apply the power flow

analysis to generate the exact solution. Further, we corrupt the exact solution by the

additive white Gaussian noise of variance vi, and we observe the set of measurements:

legacy (active and reactive injections and power flows, line current magnitudes and bus

voltage magnitudes) and phasor measurements (bus voltage and line current phasors).

The set of measurements is selected in such a way that the system is observable. More

precisely, for each scenario, we generate 300 random measurement configurations in

order to obtain average performances.

In all models, we use measurement variance equal to vi = 10−10 p.u. for PMUs, and

vi = 10−4 p.u. for legacy devices. To initialize the GN-BP and Gauss-Newton method,

we run algorithms using “flat start” with a small random perturbation [3, Sec. 9.3] or

“warm start” where we use the same initial point as the one applied in AC power flow.

Finally, randomized damping parameters are set to p = 0.8 and α1 = 0.4 (obtained by

exhaustive search). To evaluate the performance of the GN-BP algorithm, we convert

each of the above randomly generated IEEE test cases with a given measurement

configuration into the corresponding factor graph, and we run the GN-BP algorithm.

Convergence and Accuracy: We consider IEEE 30-bus test case with 5 PMUs

and the set of legacy measurements with redundancy γ ∈ {2, 3, 4, 5}. We first set the

number of inner iterations to a high value of τmax(ν) = 5000 iterations for each outer

iteration ν, where νmax = 11, with the goal of investigating convergence and accuracy

of GN-BP.

Fig. 5.6 shows empirical cumulative density function (CDF) F (ρ) of spectral radius

ρsyn and ρrd for different redundancies for “flat start” and “warm start”. For each

scenario, the randomized damping case is superior in terms of the spectral radius.

For example, for redundancy γ = 5 and “flat start”, we record convergence with

probability 0.98 for randomized damping and 0.25 for synchronous scheduling. When

operated in “warm start” via, e.g., large-scale historical data, the GN-BP can be

integrated into continuous real-time SE framework following similar steps as in [70].

In the following, we compare the accuracy of the GN-BP algorithm to that of the

Gauss-Newton method. We use the weighted residual sum of squares (WRSS) as a

metric:

WRSS =

k∑
i=1

[zi − hi(x)]2

vi
. (5.27)

Finally, we normalize the obtained WRSS
(ν)
BP over outer iterations ν by WRSSWLS
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Figure 5.6: The maximum spectral radii ρsyn with synchronous and ρrd with ran-
domized damping scheduling over outer iterations ν = {0, 1, 2, . . . , 12} for legacy
redundancy γ ∈ {2, 3, 4, 5} and variance v = 10−4 for IEEE 30-bus test case using
“flat start” (subfigure a) and “warm start” (subfigure b).

of the centralized SE obtained using the Gauss-Newton method after 12 iterations

(which we adopt as a normalization constant).

Scalability and Complexity: Next, we use the mean absolute difference (MAD)

between the state variables in two consecutive iterations as a metric:

MAD =
1

n

n∑
i=1

|∆xi|. (5.28)

The MAD value represents average component-wise shift of the state estimate over

the iterations, thus it may be used to quantify the rate of convergence.

To investigate the rate of convergence as the size of the system increases, we provide
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Figure 5.7: The GN-BP normalized WRSS (i.e., WRSS(ν)
BP /WRSSWLS) for IEEE

30-bus test case using “flat start” and legacy redundancy γ = 4 (subfigure a) and
γ = 5 (subfigure b).

MAD values for IEEE 118-bus and 300-bus test case using the “warm start” and

legacy redundancy γ = 4 with 20 and 50 PMUs, respectively. In the following, in

order to reduce the number of inner iterations, we define an alternative inner iteration

scheme. Namely, as before, we are running algorithm up to τmax(ν), but here we

allow interruption of the inner iteration loops when accuracy-based criterion is met.

More precisely, the algorithm in the inner iteration loop is running until the following

criterion is reached:

|r(ν,τ)
f→∆x − r

(ν,τ−1
f→∆x)| < ε(ν) or τ(ν) = τmax(ν), (5.29)

where rf→∆x represents the vector of mean-value messages from factor nodes to

variable nodes, ε(ν) = [10−2, 10−4, 10−6, 10−8, 10−10] is the threshold at iteration

ν. The upper limit on inner iterations is τmax(ν) = 6000 for each outer iteration ν,

where νmax = 4.

Figure 5.8 compares the MAD values of the GN-BP and Gauss-Newton method

for IEEE 118-bus and 300-bus test cases within converged simulations. The GN-BP

has achieved the presented performance at τmax(ν) = {131, 488, 855, 1357, 2587} and

τmax(ν) = {242, 1394, 5987, 6000, 6000} (i.e., median values) for IEEE 118-bus and

300-bus test case, respectively. Note that the GN-BP exhibits very similar convergence

performance to that of the centralized SE. Note also that it is difficult to directly

compare the two, due to a large difference in computational loads of a single (outer)

iteration. For example, the complexity of a single iteration remains constant but

significant (due to matrix inversion) over iterations for the centralized SE algorithm,

while it gradually increases for the GN-BP starting from an extremely low complexity
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Figure 5.8: The MAD values of the GN-BP algorithm and Gauss-Newton method
for IEEE 118-bus (subfigure a) and IEEE 300-bus (subfigure b) test case.

at initial outer iterations. Namely, the overall complexity of the centralized SE

scales as O(n3), and this can be reduced to O(n2+c) by employing matrix inversion

techniques that exploit the sparsity of involved matrices [71,72]. The complexity of

BP depends on the sparsity of the underlying factor graph, as the computational

effort per iteration is proportional to the number of edges in the factor graph. For

each of the k measurements, the degree of the corresponding factor node is limited by

a (typically small) constant. Indeed, for any type of measurements, the corresponding

measurement function depends only on a few state variables corresponding to the

buses in the local neighbourhood of the bus/branch where the measurement is taken.
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As n and k grow large, the number of edges in the factor graph scales as O(n), thus the

computational complexity of GN-BP scales linearly per iteration. ased on discussion

in [73] for full matrices, the number of iterations is likely to scale with condition

number of the underlying matrix, which for well-conditioned matrices may scale as low

as O(1). However, we leave the more detailed analysis on the scaling of the number

of BP iterations as n grows large for our future work.

To summarize, BP approach builds upon the factor graph structure that directly

exploits the underlying system sparsity, thus achieving minimal complexity of O(n)

per iteration, while the scaling of the number of iterations needs further study. In

contrast to the optimized centralized methods whose complexity scales as O(n2), the

BP method can be flexibly distributed by arbitrarily segmenting the underlying factor

graph into disjoint areas. In the extreme case of the fully-distributed BP algorithm,

each factor graph node operates locally and independently. Thus, the SE problem is

distributed across O(n) nodes, and if implemented to run in parallel, can be O(n)

times faster than the centralized solution. In addition, for fully-distributed BP, none

of the nodes need to store the system-level matrices (whose storage-size typically

scales as O(n2)), and storing only constant-size set of local parameters is sufficient.

Bad Data Analysis: To investigate the proposed BP-BDT, we use IEEE 14-

bus and 30-bus test case, with 3 PMUs and 5 PMUs, respectively, and the set of

legacy measurements of redundancy γ = 3. In each of 300 random measurement

configurations, we randomly generate a bad measurement among legacy measurements,

with variance set to vb20 = 400vi or vb40 = 1600vi (i.e., 20σi or 40σi). For each

simulation, we record only the largest elements rBP,fm and rN,m obtained using

BP-BDT and LNRT, respectively.

Fig. 5.9 compares the BP-BDT to the LNRT for IEEE 14-bus test case using

“warm start”. The BP-BDT successfully identified the bad measurement in 291 and 294

cases, while LNRT succeeded in 220 and 240 cases, for vb20 and vb40, respectively. Figs.

5.9(b), 5.9(c), 5.9(e) and 5.9(f) show observed distributions of BP-BDT and LNRT

metrics (rBP,fm and rN,m) when tests succeeded in identifying the bad measurement.

Clearly, the metric resolution between the cases without bad data (Figs. 5.9(a) and

5.9(d)) and the cases when the bad data exists in the measurement set, allows easier

identification of bad data with the BP-BDT, providing for easier adjustment of the

bad data identification threshold κ, in contrast to the LNRT.

The BP-BDT reconfirmed the improved bad data detection for the case where two

bad measurements exist in the measurement set (both with variance vb20 or vb40) for

IEEE 30-bus test case initialized via “flat start”. The BP-BDT successfully identified

one of the two bad data samples after the first cycle (i.e., in the presence of another
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Figure 5.9: Comparisons between BP-BDT and LNRT for bad data free measurement
set (subfigure a and d), a single bad data in the measurement set with variance vb20

(subfigure b and e) and vb40 (subfigure c and f) for IEEE 14-bus test case using “warm
start”.
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Figure 5.10: The BP-BDT performances for IEEE 30 bus test case using “flat start”
for bad data free measurement set (subfigure a), two bad data in the measurement
set with with variances vb20 (subfigure b) and vb40 (subfigure c).

bad measurement) in 267 and 275 cases, while the LNRT identified the first bad data

sample in 222 and 251 cases.
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5.5 Summary

In this chapter, we presented a novel GN-BP algorithm, which is an efficient and

accurate BP-based implementation of the iterative Gauss-Newton method. The GN-

BP can be highly parallelized and flexibly distributed in the context of multi-area

SE. The GN-BP is the first BP-based solution for the non-linear SE model achieving

exactly the same accuracy as the centralized SE via Gauss-Newton method.



Chapter 6

Conclusions

In this thesis, we presented an in-depth study of the application of the BP algorithm

to the SE problem in power systems. We provided detailed derivation, convergence

and performance analysis of BP-based SE algorithms for both DC and non-linear

model. The main contribution of our study is the GN-BP algorithm, which is shown to

represent a BP-based implementation of the iterative Gauss-Newton method. GN-BP

can be highly parallelized and flexibly distributed in the context of multi-area SE.

In our ongoing work, we are investigating GN-BP in asynchronous, dynamic and

real-time SE with online bad data detection, supported by future 5G communication

infrastructure [12].

In the forthcoming years, 5G technology will provide ideal arena for the development

of future distributed smart grid services. These services will rely on massive and

reliable acquisition of timely information from the system, in combination with large-

scale computing and storage capabilities, providing highly responsive, robust and

scalable monitoring and control solution for future smart grids, and the proposed BP

algorithms have a promising properties in such a 5G communications scenario.

In addition, we presented the fast real-time DC SE model based on the powerful BP

algorithm, which is able to provide state estimates without resorting to observability

analysis. The proposed BP estimator can be distributed and parallelized which

allows for flexible and low-delay centralized or distributed implementation suitable

for integration in emerging WAMS. For the future work, we plan to provide extensive

numerical analysis of the proposed algorithm, including the AC SE model implemented

within the same framework, and extended to the generalized SE model.
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Appendix A

The SE in Power System: Toy Example

An illustrative example presented in Figure A.1 will be used to provide a step-by-step

presentation of the centralized SE algorithm. The power system consists of 3 buses

and 3 branches, where we observe two legacy measurements, active power flow MP12

and active power injection MP3 , while bus 2 contains one PMU that provides line

current MI21 and MI23 , and bus voltage MV2 phasor measurements. Note, bus 1 is

the slack, where the voltage angle has a given value.

2M

1

3

2

3PM

12PM I21
M

I23
M

V

Figure A.1: The 3-bus power system with given measurement configuration.

We presented simultaneous SE algorithm, where state variables and phasor mea-

surements are given in polar coordinate system. Each measurement Mi ∈ M is

associated with measurement value zi, variance vi and function hi(x) as shown in

Table A.1. system.

Measurement Measurement Value Measurement Variance Measurement Function
Mi zi vi

MP12
zP12

vP12
hP12

(·)
MP3

zP3
vP3

hP3
(·)

MV2
zV2

vV2
hV2

(·)
Mθ2 zθ2 vθ2 hθ2 (·)
MI21 zI21 vI21 hI21 (·)
MI23 zI23 vI23 hI23 (·)
Mφ21

zφ21
vφ21

hφ21
(·)

Mφ23
zφ23

vφ23
hφ23

(·)

Table A.1: Measurement data.
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Vector of Measurement Values and Covariance Matrix

The vector of measurement values z ∈ RNle+2Nph and the covariance matrix R ∈
R(Nle+2Nph)×(Nle+2Nph) according to the measurement configuration are:

z =
[
zP12

zP3
zV2

zθ2 zI21 zI23 zφ21
zφ23

]T
R = diag(vP12

, vP3
, vV2

, vθ2 , vI21 , vI23 , vφ21
, vφ23

).

Note that, due to uncorrelated measurement errors the covariance matrix R has the

diagonal structure.

Measurement Functions

The vector of measurement functions h(x) ∈ RNle+2Nph is:

z =
[
hP12

(·) hP3
(·) hV2

(·) hθ2(·) hI21(·) hI23(·) hφ21
(·) hφ23

(·)
]T
.

The measurement functions associated with legacy measurements MP12
and MP3

are:

hP12(·) = V 2
1 (g12 + gs1)− V1V2(g12 cos θ12 + b12 sin θ12)

hP3
(·) = V 2

3 G33 + V3

[
V1(G31 cos θ31 +B31 sin θ31) + V2(G32 cos θ32 +B32 sin θ32)

]
.

The measurement functions associated with the bus phasor measurement MV2 =

{MV2 , Mθ2} are:

hV2
(·) = V2; hθ2(·) = θ2.

The measurement functions associated with line current phasor measurements

MI21 = {MI21 , Mφ21} and MI23 = {MI23 , Mφ23} are as follows:

hI21(·) = [A21cV
2
2 +B21cV

2
1 − 2V2V1(C21c cos θ21 −D21c sin θ21)]1/2

hI23(·) = [A23cV
2
2 +B23cV

2
3 − 2V2V3(C23c cos θ23 −D23c sin θ23)]1/2

hφ21(·) = arctan

[
(A21a sin θ2 +B21a cos θ2)V2 − (C21a sin θ1 +D21a cos θ1)V1

(A21a cos θ2 −B21a sin θ2)V2 − (C21a cos θ1 −D21a sin θ1)V1

]
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hφ23(·) = arctan

[
(A23a sin θ2 +B23a cos θ2)V2 − (C23a sin θ3 +D23a cos θ3)V3

(A23a cos θ2 −B23a sin θ2)V2 − (C23a cos θ3 −D23a sin θ3)V3

]
,

where coefficients are:

A21c = (g21 + gs2)2 + (b21 + bs2)2; B21c = g2
21 + b221

C21c = g21(g21 + gs2) + b21(b21 + bs2); D21c = g21bs2 − b21gs2

A21a = g21 + gs2; B21a = b21 + bs2

C21a = g21; D21a = b21

A23c = (g23 + gs2)2 + (b23 + bs2)2; B23c = g2
23 + b223

C23c = g23(g23 + gs2) + b23(b23 + bs2); D23c = g23bs2 − b23gs2

A23a = g23 + gs2; B23a = b23 + bs2

C23a = g23; D23a = b23.

Note that, it holds g21 = g12, b21 = b12.

Jacobian Matrix

The Jacobian matrix J(x) ∈ R(Nle+2Nph)×n is defined:

J(x) =



∂hP12(·)
∂θ2

0
∂hP12

(·)
∂V1

∂hP12
(·)

∂V2
0

∂hP3
(·)

∂θ2

∂hP3
(·)

∂θ3

∂hP3
(·)

∂V1

∂hP3
(·)

∂V2

∂hP3
(·)

∂V3

∂hθ2(·)
∂θ2

0 0 0 0

0 0 0
∂hV2

(·)
∂V2

0

∂hI21(·)
∂θ2

0
∂hI21(·)
∂V1

∂hI21(·)
∂V2

0

∂hI23(·)
∂θ2

∂hI23(·)
∂θ3

0
∂hI23(·)
∂V2

∂hI23(·)
∂V3

∂hφ21(·)
∂θ2

0
∂hφ21(·)
∂V1

∂hφ21(·)
∂V2

0

∂hφ23
(·)

∂θ2

∂hφ23
(·)

∂θ3
0

∂hφ23
(·)

∂V2

∂hφ23
(·)

∂V3



.
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Jacobian expressions corresponding to the active power flow measurement function

hP12
(·) are:

∂hP12(·)
∂θ2

= −V1V2(g12 sin θ12 − b12 cos θ12)

∂hP12
(·)

∂V1
= −V2(g12 cos θ12 + b12 sin θ12) + 2V1(g12 + gs1)

∂hP12
(·)

∂V2
= −V1(g12 cos θ12 + b12 sin θ12).

Jacobian expressions corresponding to the active power injection measurement

function hP3
(·) are:

∂hP3(·)
∂θ2

= V3V2(G32 sin θ32 −B32 cos θ32)

∂hP3
(·)

∂θ3
= V3[V1(−G31 sin θ31 +B31 cos θ31) + V2(−G32 sin θ32 +B32 cos θ32)]

∂hP3(·)
∂V1

= V3(G31 cos θ31 +B31 sin θ31)

∂hP3(·)
∂V2

= V3(G32 cos θ32 +B32 sin θ32)

∂hP3
(·)

∂V3
= V1(G31 cos θ31 +B31 + V2(G32 cos θ32 +B32 sin θ32) + 2V3G33.

Jacobian expressions corresponding to the bus phasor measurement functions hV2
(·)

and hθ2(·) are as follows:

∂hV2
(·)

∂V2
= 1;

∂hθ2(·)
∂θ2

= 1.

Jacobian expressions corresponding to the line current magnitude measurement

function hI21(·) are:

∂hI21(·)
∂θ2

=
V2V1(D21c cos θ21 + C21c sin θ21)

hI21(·)
∂hI21(·)
∂V1

=
V2(D21c sin θ21 − C21c cos θ21) +B21cV1

hI21(·)
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∂hI21(·)
∂V2

=
V1(D21c sin θ21 − C21c cos θ21) +A21cV1

hI21(·) .

Jacobian expressions corresponding to the line current magnitude measurement

function hI23(·) are:

∂hI23(·)
∂θ2

=
V2V3(D23c cos θ23 + C23c sin θ23)

hI23(·)
∂hI23(·)
∂θ3

= −
V2V3(D23c cos θ23 + C23c sin θ23)

hI23(·)
∂hI23(·)
∂V2

=
V3(D23c sin θ23 − C23c cos θ23) +A23cV2

hI23(·)
∂hI23(·)
∂V3

=
V2(D23c sin θ23 − C23c cos θ23) +B23cV3

hI23(·) .

Jacobian expressions corresponding to the line current angle measurement function

hφ21
(·) are:

∂hφ21
(·)

∂θ2
=
A21cV

2
2 + (D21c sin θ21 − C21c cos θ21)V2V1

hI21(·)
∂hφ21

(·)
∂V1

=
V2(C21c sin θ21 +D21c cos θ21)

hI21(·)
∂hφ21(·)
∂V2

= −V1(C21c sin θ21 +D21c cos θ21)

hI21(·)

Jacobian expressions corresponding to the line current angle measurement function

hφ23
(·) are:

∂hφ23
(·)

∂θ2
=
A23cV

2
2 + (D23c sin θ23 − C23c cos θ23)V2V3

hI23(·)
∂hφ23(·)
∂θ3

=
B23cV

2
3 + (D23c sin θ23 − C23c cos θ23)V2V3

hI23(·)
∂hφ23(·)
∂V2

= −V3(C23c sin θ23 +D23c cos θ23)

hI23(·)
∂hφ23

(·)
∂V3

=
V2(C23c sin θ23 +D23c cos θ23)

hI23(·) .





Appendix B

The DC-BP Algorithm: Numerical
Example

An illustrative example presented in Figure B.1 will be used to provide a step-by-step

presentation of the proposed DC-BP algorithm. The power system consists of 3 buses

and 3 branches, where we observe 3 measurements: active power flow MP12
, active

power injection MP3
, and bus voltage angle Mθ2 . Note, bus 1 is the slack, where the

voltage angle has a given value with the corresponding variance.

2θM

1

3

2

3PM

12PM

Figure B.1: The 3-bus power system with given measurement configuration.

Table B.1 shows the branch reactances xij for the observed power system.

From Bus To Bus Reactance
i j xij (pu)

1 2 0.040
1 3 0.020
2 3 0.025

Table B.1: Branch data.

Each measurement Mi ∈M is associated with measurement value zi and variance

vi as shown in Table B.2. In addition, power measurements MP12 and MP3 are

associated with measurement functions respectively:

hP12(θ1, θ2) =
θ1 − θ2

x12
= Cθ1P12 · θ1 + Cθ2P12 · θ2
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hP3
(θ1, θ2, θ3) = −

θ1

x13
−

θ2

x23
+

θ3

x13 + x23
= Cθ1P3

· θ1 + Cθ2P3
· θ2 + Cθ3P3

· θ3,

where coefficients are:

Cθ1P12
= 25 Cθ2P12

= −25 Cθ1P3
= −50 Cθ2P3

= −40 Cθ3P3
= 90.

Measurement Measurement Value Measurement Variance Unit
Mi zi vi

MP12
1.795 10−2 pu

MP3
1.966 10−2 pu

Mθ2 -0.066 10−6 rad

Table B.2: Measurement data.

The Factor Graph

The first step is forming a factor graph, where set of variable nodes V = {θ1, θ2, θ3}
is defined by state variables. The set of measurements M defines the set of factor

nodes F , and in addition, the set F is further expanded with slack and virtual factor

nodes. More precisely, measurements MP12
and MP3

define the set of indirect factor

3θ2θ1θ
12Pf

3Pf

1θf 3θf2θf

Figure B.2: The factor graph.

nodes Find = {fP12
, fP3
} ⊂ F , and measurement Mθ2 define the set of direct factor

nodes Fdir = {fθ2} ⊂ F . Further, the slack bus defines the slack factor node fθ1 ,

while virtual factor node fθ3 is used because variable node θ3 is not directly measured.

Direct, slack and virtual factor nodes define the set of local factor nodes Floc ⊂ F . The

factor graph that correspond with power system with given measurement configuration

is shown in Figure B.1.
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The DC-BP Initialization τ = 0

Messages from local factor nodes to variable nodes

The initialization step starts with messages from local factor nodes Floc to variable

nodes V, as shown in Figure B.2. All messages are Gaussian and represent by their

mean-variance pairs.

)1θ(1θ→
1θ

fµ )2θ(2θ→
2θ

fµ )3θ(3θ→
3θ

fµ

3θ2θ1θ
12Pf

3Pf

1θf 3θf2θf

Figure B.3: Messages from local factor nodes to variable nodes.

According to properties of local factor nodes, messages from local factor nodes Floc

to variable nodes V are determined:

µfθ1→θ1(θ1) := (zfθ1→θ1 , vfθ1→θ1) = (0, 10−60)

µfθ2→θ2(θ2) := (zfθ2→θ2 , vfθ2→θ2) = (−0.066, 10−6)

µfθ3→θ3(θ3) := (zfθ3→θ3 , vfθ3→θ3) = (0, 1060).

Note that we left the iteration index τ = 0 as a consequence that messages from local

factor nodes Floc to variable nodes V are constant through iterations.

Forward incoming messages

Then, variable nodes forward the incoming messages received from local factor nodes

along remaining edges as shown in Figure B.3. Consequently, messages from variable

nodes V to indirect factor nodes Find are as follows:

µ
(0)
θ1→fP12

(θ1) := (z
(0)
θ1→fP12

, v
(0)
θ1→fP12

) = (0, 10−60)

µ
(0)
θ2→fP12

(θ2) := (z
(0)
θ2→fP12

, v
(0)
θ2→fP12

) = (−0.066, 10−6)

µ
(0)
θ1→fP3

(θ1) := (z
(0)
θ1→fP3

, v
(0)
θ1→fP3

) = (0, 10−60)
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3θ2θ1θ
12Pf

3Pf

1θf 3θf2θf

)1θ(
3Pf→1θµ

)1θ(
12Pf→1θµ

)2θ(
3Pf→2θµ )3θ(

3Pf→3θµ

)2θ(
12Pf→2θµ

Figure B.4: Variable nodes forward the incoming messages.

µ
(0)
θ2→fP3

(θ2) := (z
(0)
θ2→fP3

, v
(0)
θ2→fP3

) = (−0.066, 10−6)

µ
(0)
θ3→fP3

(θ3) := (z
(0)
θ3→fP3

, v
(0)
θ3→fP3

) = (0, 1060).

The DC-BP Iterations τ = 1,2, . . .

Messages from indirect factor nodes to variable nodes

The BP iteration τ = 1 starts with computing messages from indirect factor nodes

Find to variable nodes V, as shown in Figure B.5, using incoming messages from

variable nodes V to indirect factor nodes Find obtained in the initialization step.

3θ2θ1θ
12Pf

3Pf

1θf 3θf2θf

)1θ(1θ→
12Pfµ )2θ(2θ→

12Pfµ

)1θ(1θ→
3Pfµ )3θ(3θ→

3Pfµ)2θ(2θ→
3Pfµ

Figure B.5: Messages from indirect factor nodes to variable nodes.

Mean and variance values of messages from factor node fP12 to variable nodes θ1

and θ2 are respectively:

z
(1)
fP12

→θ1 =
1

Cθ1P12

(zP12
− Cθ2P12

· z(0)
θ2→fP12

) = 0.0058

v
(1)
fP12

→θ1 =
1

C2
θ1P12

(vP12 + C2
θ2P12

· v(0)
θ2→fP12

) = 1.7 · 10−5
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z
(1)
fP12

→θ2 =
1

Cθ2P12

(zP12
− Cθ1P12

· z(0)
θ1→fP12

) = −0.0718

v
(1)
fP12

→θ2 =
1

C2
θ2P12

(vP12
− C2

θ1P12
· v(0)
θ1→fP12

) = 1.6 · 10−5.

Mean and variance values of messages from factor node fP3 to variable nodes θ1, θ2

and θ3 are respectively:

z
(1)
fP3
→θ1 =

1

Cθ1P3

(zP3
− Cθ2P3

· z(0)
θ2→fP3

− Cθ3P3
· z(0)
θ3→fP3

) = 0.0135

v
(1)
fP3
→θ1 =

1

C2
θ1P3

(vP3
+ C2

θ2P3
· v(0)
θ2→fP3

+ C2
θ3P3
· v(0)
θ3→fP3

) = 3.24 · 1060

z
(1)
fP3
→θ2 =

1

Cθ2P3

(zP3 − Cθ1P3 · z(0)
θ1→fP3

− Cθ3P3 · z(0)
θ3→fP3

) = −0.0491

v
(1)
fP3
→θ2 =

1

C2
θ2P3

(vP3
+ C2

θ1P3
· v(0)
θ1→fP3

+ C2
θ3P3
· v(0)
θ3→fP3

) = 5.0625 · 1060

z
(1)
fP3
→θ3 =

1

Cθ3P3

(zP3
− Cθ1P3

· z(0)
θ1→fP3

− Cθ2P3
· z(0)
θ2→fP3

) = −0.0075

v
(1)
fP3
→θ3 =

1

C2
θ3P3

(vP3 + C2
θ1P3
· v(0)
θ1→fP3

+ C2
θ2P3
· v(0)
θ2→fP3

) = 1.4321 · 10−6.

To summarize, corresponding messages from indirect factor nodes Find to variable

nodes V are:

µ
(1)
fP12

→θ1(θ1) := (z
(1)
fP12

→θ1 , v
(1)
fP12

→θ1) = (0.0058, 1.7 · 10−5)

µ
(1)
fP12

→θ2(θ2) := (z
(1)
fP12

→θ2 , v
(1)
fP12

→θ2) = (−0.0718, 1.6 · 10−5)

µ
(1)
fP3
→θ1(θ1) := (z

(1)
fP3
→θ1 , v

(1)
fP3
→θ1) = (0.0135, 3.24 · 1060)

µ
(1)
fP3
→θ2(θ2) := (z

(1)
fP3
→θ2 , v

(1)
fP3
→θ2) = (−0.0491, 5.0625 · 1060)

µ
(1)
fP3
→θ3(θ3) := (z

(1)
fP3
→θ3 , v

(1)
fP3
→θ3) = (−0.0075, 1.4321 · 10−6).
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Messages from variable nodes to indirect factor nodes

Next, the algorithm proceeds with computing messages from variable nodes V to

indirect factor nodes Find, as shown in Figure B.6, using incoming messages from

factor nodes F to variable nodes V.

3θ2θ1θ
12Pf

3Pf

1θf 3θf2θf

)1θ(
3Pf→1θµ

)1θ(
12Pf→1θµ

)2θ(
3Pf→2θµ )3θ(

3Pf→3θµ

)2θ(
12Pf→2θµ

Figure B.6: Messages from variable nodes to indirect factor nodes.

Variance and mean values of messages from variable nodes θ1 and θ2 to factor node

fP12 are respectively:

v
(1)
θ1→fP12

=

(
1

vfθ1→θ1
+

1

v
(1)
fP3
→θ1

)−1

= 10−60

z
(1)
θ1→fP12

=

(
zfθ1→θ1
vfθ1→θ1

+
z

(1)
fP3
→θ1

v
(1)
fP3
→θ1

)
v

(1)
θ1→fP12

= 0

v
(1)
θ2→fP12

=

(
1

vfθ2→θ2
+

1

v
(1)
fP3
→θ2

)−1

= 10−6

z
(1)
θ2→fP12

=

(
zfθ2→θ2
vfθ2→θ2

+
z

(1)
fP3
→θ2

v
(1)
fP3
→θ2

)
v

(1)
θ2→fP12

= −0.066.

Variance and mean values of messages from variable nodes θ1, θ2 and θ3 to factor

node fP3 are respectively:

v
(1)
θ1→fP3

=

(
1

vfθ1→θ1
+

1

v
(1)
fP12

→θ1

)−1

= 10−60
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z
(1)
θ1→fP3

=

(
zfθ1→θ1
vfθ1→θ1

+
z

(1)
fP12

→θ1

v
(1)
fP12

→θ1

)
v

(1)
θ1→fP3

= 3.4118 · 10−58

v
(1)
θ2→fP3

=

(
1

vfθ2→θ2
+

1

v
(1)
fP12

→θ2

)−1

= 9.4118 · 10−7

z
(1)
θ2→fP3

=

(
zfθ2→θ2
vfθ2→θ2

+
z

(1)
fP12

→θ2

v
(1)
fP12

→θ2

)
v

(1)
θ2→fP3

= −0.0663

v
(1)
θ3→fP3

=

(
1

vfθ3→θ3

)−1

= 1060

z
(1)
θ3→fP3

=

(
zfθ3→θ3
vfθ3→θ3

)
v

(1)
θ3→fP3

= 0.

To summarize, corresponding messages from variable nodes V to indirect factor nodes

Find are:

µ
(1)
θ1→fP12

(θ1) := (z
(1)
θ1→fP12

, v
(1)
θ1→fP12

) = (0, 10−60)

µ
(1)
θ2→fP12

(θ2) := (v
(1)
θ2→fP12

, v
(1)
θ2→fP12

) = (−0.066, 10−6)

µ
(1)
θ1→fP3

(θ1) := (z
(1)
θ1→fP3

, v
(1)
θ1→fP3

) = (3.4118 · 10−58, 10−60)

µ
(1)
θ2→fP3

(θ2) := (v
(1)
θ2→fP3

, v
(1)
θ2→fP3

) = (−0.0663, 9.4118 · 10−7)

µ
(1)
θ3→fP3

(θ3) := (z
(1)
θ3→fP3

, v
(1)
θ3→fP3

) = (0, 1060).

Finally, the first iteration is done, and the iteration loop is repeated until the

stopping criteria is met. We define accuracy-based criterion where iteration loop is

running until the following criterion is reached:

|z(τ)
f→θ − z

(τ−1
f→θ )| < ε, (B.10)

where zf→θ represents the vector of mean-value messages from factor nodes to variable

nodes, and ε = 10−14 is the threshold. The algorithm converged after τ = 3 iterations

and final value of messages from indirect factor nodes Find to variable nodes V are:

µfP12
→θ1(θ1) := (zfP12

→θ1 , vfP12
→θ1) = (0.0058, 1.7 · 10−5)
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µfP12
→θ2(θ2) := (zfP12

→θ2 , vfP12
→θ2) = (−0.0718, 1.6 · 10−5)

µfP3
→θ1(θ1) := (zfP3

→θ1 , vfP3
→θ1) = (0.0138, 3.24 · 1060)

µfP3
→θ2(θ2) := (zfP3

→θ2 , vfP3
→θ2) = (−0.0491, 5.0625 · 1060)

µfP3
→θ3(θ3) := (zfP3

→θ3 , vfP3
→θ3) = (−0.0076, 1.4205 · 10−6).

The DC-BP Marginal Inference

The marginal of variable nodes V can be obtained using messages from factor nodes

F to variable nodes V , as shown in Figure B.7. Note that the mean-value of marginal

is adopted as the estimated value of the state variable.

3θ2θ1θ
12Pf

3Pf

1θf 3θf2θf

)1θ(1θ→
12Pfµ )2θ(2θ→

12Pfµ

)1θ(1θ→
3Pfµ )3θ(3θ→

3Pfµ)2θ(2θ→
3Pfµ

)1θ(1θ→
1θ

fµ )2θ(2θ→
2θ

fµ )3θ(3θ→
3θ

fµ

Figure B.7: Messages into variable nodes.

Consequently, estimated values of state variables can be obtained:

vθ1 =

(
1

vfθ1→θ1
+

1

vfP12
→θ1

+
1

vfP3
→θ1

)−1

= 10−60

θ̂1 =

(
zfθ1→θ1
vfθ1→θ1

+
zfP12

→θ1
vfP12

→θ1
+
zfP3

→θ1
vfP3

→θ1

)
vθ1 = 0

vθ2 =

(
1

vfθ2→θ2
+

1

vfP12
→θ2

+
1

vfP3
→θ2

)−1

= 9.4118 · 10−7

θ̂2 =

(
zfθ2→θ2
vfθ2→θ2

+
zfθ2→θ2
vfP12

→θ2
+
zfθ2→θ2
vfP3

→θ2

)
vθ2 = −0.0663

vθ3 =

(
1

vfθ3→θ3
+

1

vfP3
→θ3

)−1

= 1.4205 · 10−6
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θ̂3 =

(
zfθ3→θ3
vfθ3→θ3

+
zfP3

→θ3
vfP3

→θ3

)
vθ3 = −0.0076.

To recall, the BP solution for means is equivalent to the WLS solution. Unlike means,

the variances need not converge to correct values.





Appendix C

The AC-BP Algorithm: Message
Derivation

Here we present an example of evaluation of the message from a factor node to a

variable node for the AC-BP algorithm. We consider a simple model containing buses

i and j, with the active power flow measurement Mi ≡ MPij at the branch (i, j). The

mean zi, variance vi and the measurement function hi(θi, Vi, θj , Vj) defined as (2.24a)

is associated with the active power flow measurement Mi. The corresponding factor

graph is shown in Figure C.1.

Further, all incoming messages from variable nodes to the factor node fi have Gaus-

sian form. Therefore, these messages, denoted as µθi→fi(θi), µVi→fi(Vi), µθj→fi(θj)
and µVj→fi(Vj), are represented by their mean-variance pair (zθi→fi , vθi→fi), (zVi→fi ,
vVi→fi), (zθj→fi , vθj→fi) and (zVj→fi , vVj→fi), respectively (Figure C.1(a) - Fig-

ure C.1(d)).

if

)jθ(if→jθµ

)jV(if→jVµ

iθ

iV jV

jθ

)iθ(if→iθµ

)iV(iV→ifµ

(a)

if

)iV(if→iVµ )jV(jV→ifµ

iθ

iV jV

jθ

)jθ(if→jθµ)iθ(if→iθµ

(b)

if
iθ

iV jV

jθ

)jV(if→jVµ)iV(if→iVµ

)jθ(if→jθµ)iθ(iθ→ifµ

(c)

)iθ(if→iθµ )jθ(jθ→ifµ

if
iθ

iV jV

jθ

)jV(if→jVµ)iV(if→iVµ

(d)

Figure C.1: Messages from from factor node fi to variable nodes: Vi (subfigure a),
Vj (subfigure b), θi (subfigure c) and θj (subfigure d).
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According to assumption (see Chapter 4), the messages from the factor node fi to

variable nodes have Gaussian form: µfi→Vi(Vi), µfi→Vj (Vj), µfi→θi(θi) and µfi→θj (θj)
with their mean-variance pair (zfi→Vi , vfi→Vi), (zfi→Vj , vfi→Vj ), (zfi→θi , vfi→θi) and

(zfi→θj , vfi→θj ). In the following, we consider calculation of each of these messages.

• The message µfi→Vi (Figure C.1(a)): Let us first consider the mean zfi→Vi . The

equation (3.9a) for the active power flow measurement boils down to (4.3b):

aE[V 2
i |xb = zxb→fi ] + bE[Vi|xb = zxb→fi ] + c = 0,

where: xb = (θi, θj , Vj) and zxb→fi = (zθi→fi , zθj→fi , zVj→fi), with coefficients:

a = gij + gsi

b = −zVj→fi(gij cos zθij→fi + bij sin zθij→fi)

c = −zi,

where zθij→fi is determined as zθi→fi −zθj→fi . Due the fact that the conditional

expected value E[Vi|xb = zxb→fi ] represents the mean zfi→Vi , we can write:

a(z2
fi→Vi + vfi→Vi) + bzfi→Vi + c = 0.

The mean zfi→Vi follows from the quadratic equation, where we selected a solution

using (4.4).

The variance vfi→Vi is determined using (3.9b) as:

σ2
fi→Vi =

1

C2
Vi

(vi + C2
θivθi→fi + C2

θjvθj→fi + C2
VjvVj→fi),

where coefficients are defined according to Jacobian elements of the measurement

function hi(·):

Cθi =
∂hi(Vi,xb)

∂θi

∣∣∣∣∣Vi=zfi→Vi
xb=zxb→fi

Cθj =
∂hi(Vi,xb)

∂θj

∣∣∣∣∣Vi=zfi→Vi
xb=zxb→fi

CVi =
∂hi(Vi,xb)

∂Vi

∣∣∣∣∣Vi=zfi→Vi
xb=zxb→fi

CVj =
∂hi(Vi,xb)

∂Vj

∣∣∣∣∣Vi=zfi→Vi
xb=zxb→fi

• The message µfi→Vj (Figure C.1(b)): The mean zfi→Vj is defined according to
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(4.3a) as:

aE[Vj |xb = zxb→fi ] + b = 0,

where: xb = (θi, Vi, θj) and zxb→fi = (zθi→fi , zVi→fi , zθj→fi), with coefficients:

a = zi − z2
Vi→fi(gij + gsi)

b = zVi→fi(gij cos zθij→fi + bij sin zθij→fi).

Due the fact that the conditional expected value E[Vj |xb = zxb→fi ] represents the

mean zfi→Vj , we obtain:

azfi→Vj + b = 0.

The variance vfi→Vj is determined using (3.9b) as:

vfi→Vj =
1

C2
Vj

(vi + C2
θivθi→fi + C2

VivVi→fi + C2
θjvθj→fi),

where coefficient are defined according to Jacobian elements of the measurement

function hi(·).

• The messages µfi→θi and µfi→θj (Figure C.1(c) and Figure C.1(d)): Means zfi→θi
and zfi→θj are defined according to (4.3c):

aE[sin2 xs|xb = zxb→fi ] + bE[sinxs|xb = zxb→fi ] + c = 0,

where: xb = (Vi, θj , Vj) and zxb→fi = (zVi→fi , zθj→fi , zVj→fi) for the message µfi→θi ,
xb = (θi, Vi, Vj) and zxb→fi = (zθi→fi , zVi→fi , zVj→fi) for the message µfi→θj , and

xs ∈ {θi, θj}. Due the fact that the all variables and messages preserve Gaussian

distribution, the conditional expectations of sine functions are equal to E[sin2 xs|xb =

zxb→fi ] = sin2 zfi→xs and E[sinxs|xb = zxb→fi ] = sin zfi→xs , which allows us to

compute the mean:

a sin2 zfi→xs + b sin zfi→xs + c = 0.

To simplify expressions, we introduce coefficients a = A2 + B2, b = −2BC and

c = −A2 + C2:

A = gij cos zθj→fi − bij sin zθj→fi , xs ≡ θi
A = gij cos zθi→fi + bij sin zθi→fi , xs ≡ θj
B = gij sin zθj→fi + bij cos zθj→fi , xs ≡ θi
B = gij sin zθi→fi − bij cos zθi→fi , xs ≡ θi
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C =
z2
Vi→fi(gij + gsi)− zi
zVi→fizVj→fi

, xs ∈ {θi, θj}

The variance vfi→θi is determined using (3.9b) as:

vfi→θi =
1

C2
θi

(vi + C2
VivVi→fi + C2

θjvθj→fi + C2
VjvVj→fi),

where coefficients are defined, as above, by calculating Jacobian elements of the

measurement function hi(·).
The variance vfi→θj is determined according to (3.9b) as:

vfi→θj =
1

C2
θj

(vi + C2
θivθi→fi + C2

VivVi→fi + C2
VjvVj→fi),

where coefficient follow Jacobian elements of the measurement function hPi(·).
Using the same methodology, it is possible to define corresponding equations for

means and variances for every type of measurement functions.



Appendix D

The GN-BP Algorithm: Toy Example

An illustrative example presented in Figure D.1 will be used to provide a step-by-step

presentation of the proposed algorithm.

12PM

3PM

2VM1VM

3

21

Figure D.1: The 3-bus power system with given measurement configuration.

Input data for SE from measurement devices are Gaussian-type functions repre-

sented by means and variances: {zV1
, zθ2 , zθ3 , zP12

, zP3
} and {vV1

, vθ2 , vθ3 , vP12
, vP3
}.

The Factor Graph

The corresponding factor graph is given in Figure D.2, where the set of state variables

is X = {(θ1, V1), (θ2, V2), (θ3, V3)} and the set of variable nodes is V = {(∆θ1,∆V1),

(∆θ2,∆V2), (∆θ3,∆V3)}. The indirect factor nodes (orange squares) are defined by

corresponding measurements, where in our example, active power flow MP12 and

active power injection MP3
measurements are mapped into factor nodes Find = {fP12

,

fP3
}. The set of local factor nodes Floc consists of the set of direct factor nodes (green

squares) Fdir = {fV1
, fV2

} defined by bus voltage magnitude measurements MV1
and

MV2 , virtual factor nodes (blue squares) and the slack factor node (yellow square).
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Figure D.2: The factor graph.

Local factor nodes only send, but do not receive, the messages to the incident

variable nodes.

Algorithm Initialization τ = 0

1. The non-linear SE in electric power systems assumes “flat start” or a priori given

values of state variables:

x(ν=0) = [θ1 θ2 θ3 V1 V2 V3](ν=0).

2. The residual of the slack factor node is set to rθ1 = 0 with variance vθ1 → 0.

3. The value of virtual factor nodes are set to rθ2 → 0, rV3
→ 0 and rθ3 → 0, with

variances vθ2 →∞, vV3 →∞ and vθ3 →∞.

Iterate - Outer Loop: ν= 0,1,2, . . .; τ= 0

4. Each direct factor node from the set Fdir computes residual:

r
(ν)
V1

= zV1
− V (ν)

1

r
(ν)
V2

= zV2
− V (ν)

2

5. Local factor nodes Floc send messages represented by a triplet (residual, variance,

state variable) to incident variable nodes V:

µ
(ν)
fθ1→∆θ1

:=
(
rθ1 , vθ1 , θ

(ν)
1

)
µ

(ν)
fV1→∆V1

:=
(
r

(ν)
V1
, vV1 , V

(ν)
1

)
.
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6. Variable nodes V forward the incoming messages received from local factor nodes

Floc along remaining edges, e.g.:

µ
(ν,τ)
∆θ1→fP12

:=
(
r

(ν,τ)
∆θ1→fP12

, v
(ν,τ)
∆θ1→fP12

, θ
(ν)
1

)
:=
(
r

(ν)
θ1
, vθ1 , θ

(ν)
1

)
µ

(ν,τ)
∆θ1→fP3

:=
(
r

(ν,τ)
∆θ1→fP3

, v
(ν,τ)
∆θ1→fP3

, θ
(ν)
1

)
:=
(
r

(ν)
θ1
, vθ1 , θ

(ν)
1

)
.

7. Indirect factor nodes compute residuals, e.g.:

r
(ν)
P12

= zP12
− hP12

(θ
(ν)
1 , θ

(ν)
2 , V

(ν)
1 , V

(ν)
2 ).

8. Indirect factor nodes compute appropriate Jacobian elements associated with state

variables, e.g.:

C
(ν)
P12,∆θ1

=
∂hP12

(·)
∂θ1

= V
(ν)
1 V

(ν)
2 (g12sinθ

(ν)
12 − b12cosθ

(ν)
12 )

C
(ν)
P12,∆V2

=
∂hP12

(·)
∂V2

= −V (ν)
1 (g12cosθ

(ν)
12 + b12sinθ

(ν)
12 ).

Iterate - Inner Loop: τ= 1,2, . . . ,η(ν)

9. Indirect factor nodes send messages as pairs along incident edges according to

(5.10), e.g.:

µ
(τ)
fP12

→∆θ2
:=
(
r

(τ)
fP12

→∆θ2
, v

(τ)
fP12

→∆θ2

)
r

(τ)
frP12

→∆θ2
=

1

C
(ν)
P12,∆θ2

[
r

(ν)
P12
− C(ν)

P12,∆θ1
· r(ν,τ−1)

∆θ1→frP12

−C(ν)
P12,∆V1

· r(ν,τ−1)
∆V1→frP12

− C(ν)
P12,∆V2

· r(ν,τ−1)
∆V2→frP12

]

v
(τ)
frP12

→∆θ2
=

1

(C
(ν)
P12,∆θ2

)2

[
vP12

+ (C
(ν)
P12,∆θ1

)2 · v(ν,τ−1)
∆θ1→frP12

+(C
(ν)
P12,∆V1

)2 · v(ν,τ−1)
∆V1→frP12

+ (C
(ν)
P12,∆V2

)2 · v(ν,τ−1)
∆V2→frP12

]
.

10. Variable nodes send messages as pairs along incident edges to indirect factor nodes

according to (3.3), e.g.:

µ
(ν,τ)
∆θ2→frP12

:=
(
r

(ν,τ)
∆θ2→frP12

, v
(ν,τ)
∆θ2→frP12

)
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1

v
(ν,τ)
∆θ2→frP12

=
1

vθ2
+

1

v
(τ)
frP3

→∆θ2

r
(ν,τ)
∆θ2→frP12

=

(
r

(ν)
θ2

vθ2
+
r

(τ)
frP3

→∆θ2

v
(τ)
frP3

→∆θ2

)
v

(τ)
∆θ2→frP12

.

Iterate - Outer Loop: ν= 0,1,2, . . .; τ = η(ν)

11. Variable nodes compute marginals according to (3.12), e.g.:

p(∆θ2) ∝ N (∆θ̂
(ν)
2 |∆θ2, v̂

(ν)
θ2

)

1

v̂
(ν)
∆θ2

=
1

vθ2
+

1

v
(τ)
frP12

→∆θ2

+
1

v
(τ)
frP3

→∆θ2

∆θ̂
(ν)
2 =

(
r

(ν)
θ2

vθ2
+
r

(τ)
frP12

→∆θ2

v
(τ)
frP12

→∆θ2

+
r

(τ)
frP3

→∆θ2

v
(τ)
frP3

→∆θ2

)
v̂

(ν)
∆θ2

.

12. Variable nodes update the state variables, e.g.:

θ
(ν+1)
2 = θ

(ν)
2 + ∆θ̂

(ν)
2 .

13. Repeat steps 4-13 until convergence.
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[57] Y. Weng, Q. Li, R. Negi, and M. Ilić, “Semidefinite programming for power system

state estimation,” in Proc. IEEE PES General Meeting, July 2012, pp. 1–8.

[58] P. C. Hansen, V. Pereyra, and G. Scherer, Least squares data fitting with applications.

JHU Press, 2013.



BIBLIOGRAPHY 149

[59] A. G. Phadke and J. S. Thorp, Synchronized phasor measurements and their applications.

Springer, 2008, vol. 1.

[60] G. N. Korres and N. M. Manousakis, “State estimation and observability analysis for

phasor measurement unit measured systems,” IET Gener. Transm. Dis., vol. 6, no. 9,

pp. 902–913, September 2012.

[61] J. Du, S. Ma, Y. C. Wu, and H. V. Poor, “Distributed hybrid power state estimation

under PMU sampling phase errors,” IEEE Trans. Signal Process., vol. 62, no. 16, pp.

4052–4063, Aug. 2014.

[62] R. F. Nuqui, “State estimation and voltage security monitoring using synchronized

phasor measurements,” Ph.D. dissertation, Virginia Tech, 2001.

[63] Y. Weiss and W. T. Freeman, “Correctness of belief propagation in gaussian graphical

models of arbitrary topology,” in Advances in neural information processing systems,

2000, pp. 673–679.

[64] B. L. Ng, J. Evans, and S. Hanly, “Distributed downlink beamforming in cellular

networks,” in Proc. IEEE ISIT, June 2007, pp. 6–10.

[65] C. Fan, X. Yuan, and Y. J. Zhang, “Scalable uplink signal detection in C-RANs via

randomized Gaussian message passing,” IEEE Trans. Wireless Commun., vol. 16, no. 8,

pp. 5187–5200, Aug. 2017.

[66] M. Pretti, “A message-passing algorithm with damping,” Journal of Statistical Mechan-

ics: Theory and Experiment, vol. 2005, no. 11, p. P11008, 2005.

[67] M. Cosovic and D. Vukobratovic, “Distributed Gauss-Newton method for state estima-

tion using belief propagation,” IEEE Trans. Power Syst., pp. 1–1, 2018.

[68] M. Cosovic and D. Vukobratovic, “Distributed Gauss-Newton method for AC state

estimation: A belief propagation approach,” in Proc. IEEE SmartGridComm, Nov.

2016, pp. 643–649.

[69] H. A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. R. Kschischang, “The

factor graph approach to model-based signal processing,” Proc. IEEE, vol. 95, no. 6, pp.

1295–1322, June 2007.

[70] M. Cosovic and D. Vukobratovic, “Fast real-time DC state estimation in electric power

systems using belief propagation,” in Proc. IEEE SmartGridComm, Oct. 2017, pp.

207–212.

[71] M. K. Enns, W. F. Tinney, and F. L. Alvarado, “Sparse matrix inverse factors [power

systems],” IEEE Trans. Power Syst., vol. 5, no. 2, 1990.

[72] F. L. Alvarado, “Computational complexity in power systems,” IEEE Trans. Power

App. Syst., vol. 95, no. 4, July 1976.

[73] D. Bickson, “Gaussian Belief Propagation: Theory and Aplication,” ArXiv e-prints,

Nov. 2008.


	Acknowledgments
	List of Publications and Awards
	List of Figures
	List of Tables
	Abstract
	Sažetak
	Abbreviations
	Introduction
	Power System State Estimation
	Belief Propagation Approach
	Contributions
	Assumptions
	Summary

	Power System State Estimation
	Measurement Model
	State Estimation Models
	The Gauss-Newton Method
	Legacy Measurments
	Phasor Measurements with Polar State Vector
	Phasor Measurements with Rectangular State Vector
	The DC State Estimation
	Summary

	Belief Propagation based DC State Estimation
	The Factor Graph Construction
	The Belief Propagation Algorithm
	Fast Real-Time DC State Estimation
	Numerical Results
	Summary

	Native Belief Propagation based Non-Linear State Estimation
	The Factor Graph Construction
	The Belief Propagation Algorithm
	Numerical Results
	Summary

	Distributed Gauss-Newton Method for State Estimation
	Gauss-Newton Method as a Sequential MAP Problem
	The Factor Graph Construction
	Bad Data Analysis
	Numerical Results
	Summary

	Conclusions
	Appendices
	The SE in Power System: Toy Example
	The DC-BP Algorithm: Numerical Example
	The AC-BP Algorithm: Message Derivation
	The GN-BP Algorithm: Toy Example
	Bibliography

