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Резиме на језику 
рада:

У овој тези проучавамо комбинаторне игре на графовима 
које играју 2 играча.  Посебну пажњу посвећујемо јаким 
позиционим играма, у којима оба играча имају исти циљ. 
Прво,  посматрамо  такозвану јаку  Авојдер-Авојдер игру 
са задатим фиксним графом у којој два играча, Црвени и 
Плави наизменично селектују гране комплетног графа Kn, 
а играч који први селектује копију фиксног графа F губи 
игру. Ако ниједан од играча не садржи копију од F у свом 
графу  и  сви  елементи  табле  су  селектовани,  игра  се 
проглашава  нерешеном.  Иако  су  ове  игре  проучаване 
деценијама,  врло  је  мало  познатих  резултата.  Ми  смо 
направили  корак  напред  доказавши да  Плави  има 
победничку стратегију у  две  различите  игре  ове  врсте. 
Такође, уводимо јаке ЦАвојдер-ЦАвојдер F игре у којима 
граф сваког играча мора остати повезан током игре. Ово 
је природно проширење јаких  Авојдер-Авојдер  игара, са 
ограничењем повезаности. Доказујемо да Плави може да 
победи у три стандардне ЦАвојдер-ЦАвојдер F игре.
Затим проучавамо јаке Мејкер-Мејкер F игре, у којима је 
играч који први селектује копију од F победник. Познато 
је  да  исход  ових  игара уколико оба  играча  играју 
оптимално  може  бити  или  победа  првог  играча  или 
нерешено.  Циљ нам је да пронађемо  ачивмент  број  а(F) 
јаке  Мејкер-Мејкер F  игре,  односно  најмање  n за  које 
Црвени  има  победничку  стратегију.  Дајемо тачну 
вредност a(F) за неколико графова F, укључујући путеве, 
циклусе,  савршене мечинге и  поткласу  стабала са  n 
чворова.  Такође,  дајемо  горње  и  доње  ограничење 
ачивмент броја за звезде и стабла.
Коначно,  уводимо  уопштене игре  сатурације као 
природно проширење две различите врсте комбинаторних 
игара,  игара  сатурације и  Конструктор-Блокер игара. У 
уопштеној игри сатурације унапред су дата два графа H и 
F.  Два  играча  по  имену  Макс  и  Мини  наизменично 
селектују слободне гране комплетног графа  Kn и заједно 
постепено  граде  граф  игре  G,  који  се  састоји  од  свих 
грана које су  селектовала оба играча. Граф  G не сме да 
садржи копију  од  F, а игра се завршава када више нема 
потеза, односно када је G сатуриран граф који не садржи 
F.  Занима  нас  резултат  ове  игре,  односно,  број  копија 
графа  H у  G на крају  игре. Макс жели да максимизира 
овај  резултат,  док  Мини  покушава  да  га  минимизира. 
Игра  се  под  претпоставком  да  оба  играча  играју 
оптимално.  Проучавамо  неколико  уопштених игара 
сатурације за природне изборе F и H, у настојању да што 
прецизније одредимо резултат игре.
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Preface

In this thesis, we study 2-player combinatorial games on graphs, which means
that they are played with perfect information, no chance moves and sequen-
tially play. Structurally, a positional game consists of a board on which the
game is played (a finite set X), and a family of target sets (a family F of
subsets of X). When the game is played, the players alternately claim un-
claimed elements of the board until all the elements are claimed. When it
comes to determining the winner of the game, there are several conventions of
positional games, some of which are Maker-Breaker games, Avoider-Enforcer
games, strong Maker-Maker games, and strong Avoider-Avoider games. We
devote a lot of attention to strong positional games. In these games, both
players have the same goal, and generally speaking, that makes them more
complex and harder to analyze.
First, we consider the so-called fixed graph strong Avoider-Avoider game
in which two players called Red and Blue alternately claim edges of the
complete graph Kn, and the player who completes a copy of a fixed graph F
first loses the game. If neither of the players claimed a copy of F in his graph
and all the elements of the board are claimed, the game is declared a draw.
Even though these games have been studied for decades, they turned out to
be notoriously hard to analyze and consequently, there are very few known
results. It is proven that Blue wins for F a 2-path in [62], and that Blue wins
for F = Sk, where Sk represents a star on k vertices, see [17]. We make a
step forward by analyzing two more games, proving that Blue has a winning
strategy for F a 3-path and for CC>3, where CC>3 is a family of inclusion-
minimal connected graphs on more than three vertices. Furthermore, we
introduce strong CAvoider-CAvoider F games where the claimed edges of
each player must form a connected graph throughout the game. This is a
natural extension of the strong Avoider-Avoider games, with a connectedness
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constraint analog to the ones introduced in [82] and similar to [42, 50]. We
prove that Blue can win in three standard CAvoider-CAvoider F games.
Next, we study strong Maker-Maker F games, where now, the player who
occupies a copy of F first is the winner. It is well-known that the outcome of
these games when both players play optimally can be either the first player’s
win or a draw. We are interested in finding the achievement number a(F ) of
a strong Maker-Maker F game, that is, the smallest n for which Red has a
winning strategy, introduced by Harary in [61]. We can find the exact value
a(F ) for several graphs F , including paths, cycles, perfect matchings, and a
subclass of trees on n vertices. We also give the upper and lower bounds for
the achievement number of stars and trees.
Finally, we investigate a problem laid out by Patkós, Stojaković and Vizer
in [93], where the concept of generalized saturation games is first introduced
as a natural extension of two different types of combinatorial games – satu-
ration games and Constructor-Blocker games. In the generalized saturation
game, two graphs H and F are given in advance. Two players called Max
and Mini alternately claim unclaimed edges of the complete graph Kn and
together gradually build the game graph G, the graph that consists of all
edges claimed by both players. The graph G must never contain a copy
of F , and the game ends when there are no more moves, i.e. when G is a
saturated F -free graph. We are interested in the score of this game, that
is, the number of copies of the graph H in G at the end of the game. Max
wants to maximize this score, whereas Mini tries to minimize it. The game
is played under the assumption that both players play optimally. We study
several generalized saturation games for natural choices of F and H, in an
effort to locate the score of the game as precisely as possible.

The thesis is organized as follows.

In Chapter 1 we introduce the basic notions and theoretic concepts that lie
in the background of the obtained results. Our goal is to make a solid foun-
dation for a formal introduction of combinatorial games, various conventions
of positional games and saturation games.

In Chapter 2 we list our main results that will be proven in the rest of this
thesis.

In Chapter 3 we take a closer look at the strong Avoider-Avoider games,
giving a Blue’s winning strategy for two different games. We also introduce



strong CAvoider-CAvoider games and present a winning strategy for Blue in
a number of well-studied fixed graph games.
The results of this chapter are published in:

• M. Stojaković and J. Stratijev, On strong avoiding games, Discrete
Mathematics, 346 (2023), 113270 [103].

In Chapter 4 we study the achievement number a(F ) in strong Maker-Maker
games, and we find that value for several graphs F .
The results of this chapter will be published in:

• M. Stojaković and J. Stratijev, On achievement number in strong
Maker-Maker games, in preparation [104].

In Chapter 5 we introduce generalized saturation games, and we find the
score for a number of pairs of graphs H and F , many of which were previously
studied in similar settings.
The results of this chapter will be published in:

• M. Stojaković and J. Stratijev, On generalized saturation games, in
preparation [105].

Finally, in Chapter 6 we give some open problems and concluding remarks.

Novi Sad, 2023. Jelena Stratijev
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Prošireni izvod

Igre

U ovoj tezi su proučavane igre koje igraju dva igrača i za čiju analizu koristi-
mo različite matematičke alate. Posmatrane su igre savršenih informacija,
što znači da svaki igrač pre nego što odigra svoj potez zna sve prethodne
poteze ostalih igrača. Mi smo zainteresovani za igre kod kojih nema slučaj-
nih poteza i koje se igraju sekvencijalno, što znači da igrači povlače svoje
poteze naizmenično.
Osim pomenutih igara, o kojima će biti više reči kasnije, postoji mnogo
različitih vrsta igara koje izučavamo koristeći matematičke alate. Pre nego
što nastavimo dalje, reći ćemo nekoliko reči i o njima. Naučna grana koja u
poslednje vreme privlači puno pažnje je teorija igara.
Teorija igara proučava matematičke modele strateških interakcija između
racionalnih agenata. Uopšteno govoreći, uključuje igre na sreću, igre nesa-
vršenog znanja i igre u kojima igrači povlače poteze istovremeno. Ove igre
imaju tendenciju predstavljanja situacije donošenja odluka u stvarnom ži-
votu. To je veoma primenljiva grana nauke, posebno u ekonomiji, logici,
informatici, itd. Jednu od prvih knjiga iz teorije igara napisao je Neumann
1944. godiine, videti [88], nakon koje kreće nagli razvoj ove nauke.
Za razliku od igara savršenih informacija koje smo prethodno pomenuli,
igre nesavršenih informacija igraju igrači koji ne znaju sve poteze koje su
odigrali njihovi protivnici. Većina igara koje se proučavaju u teoriji igara su
igre nesavršenih informacija, kao što su igre simultanih poteza, i većina igara
sa kartama.
Igre sa nultom sumom (engl. zero-sum games) su one u kojima izbori igrača
ne mogu ni povećati niti smanjiti ukupne raspoložive resurse – jedan igrač
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može dobiti samo onoliko resursa koliko drugi igrač izgubi. Jedan primer
igre sa nultom sumom je poker jer jedan igrač može da osvoji tačno onoliko
koliko drugi igrač izgubi.
Sa druge strane, u igrama bez nulte sume, dobitak jednog igrača ne mora
nužno da odgovara gubitku drugog. Mnoge igre koje proučava teorija igara
su ove vrste, a mi ćemo dati jedan primer koji se zove zatvorenička dilema,
videti [2].

Primer 0.0.1. Vlasti su uhvatile dva zatvorenika. Oni su razdvojeni i sva-
kome je dat izbor između priznanja i ćutanja. Dogodiće se jedan od četiri
moguća ishoda. Ako zatvorenik A prizna dok drugi ćuti, zatvorenik A izlazi
na slobodu. Ako obojica ćute, svako dobija po godinu dana zatvora. Ako
obojica priznaju, svako dobija po pet godina zatvora. Ako zatvorenik A ćuti
dok drugi priznaje, zatvorenik A se suočava sa desetogodišnjom kaznom, dok
zatvorenik B izlazi na slobodu.

Ispostavlja se da svaki zatvorenik dobija veću nagradu za izdaju onog drugog.
Pretpostavimo da smo na mestu zatvorenika A. U slučaju da je zatvorenik
B priznao, zatvorenik A može ćutati i dobiti desetogodišnju kaznu ili izdati
i dobiti kaznu od pet godina. U suprotnom, ako je zatvorenik B ćutao,
zatvorenik A takođe može da ćuti i dobije kaznu od godinu dana ili prizna i
ode kući. Stoga, bez obzira na to šta zatvorenik B odluči, za zatvorenika A
najbolja opcija je izdaja.
Za skup strategija kažemo da je Nešova ravnoteža (engl. Nash equilibrium)
ako nijedan igrač ne može učiniti svoju strategiju boljom. Zamislimo da svaki
igrač zna strategije drugih. Imajući sve te strategije na umu svaki igrač se
pita: „Mogu li imati koristi od promene strategije?“ Ako bi bilo koji igrač
mogao da odgovori sa ,,Da”, onda taj skup strategija nije Nešova ravnoteža.
U suprotnom, ako ni jedan igrač ne želi da menja svoju strategiju, onda taj
skup strategija jeste Nešova ravnoteža.
Posmatrajući primer 0.0.1 shvatamo da je Nešova ravnoteža (izdaja, izdaja),
dok je društveni optimum (ćutati, ćutati).

Kombinatorne igre

Kombinatornu igru igraju dva igrača, u pitanju je igra savršenih informacija
bez slučajnih poteza, pogledati npr. [51]. U poređenju sa klasičnom teorijom
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igara, glavna razlika je u tome što igrači igraju naizmenično, a ne istovreme-
no, tako da nema skrivenih informacija. Kombinatorne igre uključuju dobro
poznate igre kao što su šah, dame i Go. Mogu biti igrane i na beskonačnoj
tabli. Svi mogući potezi u kombinatornoj igri mogu se predstaviti stablom
igre. Jedna od najproučavanijih igara ove vrste je Nim za čije se korene ve-
ruje da potiču iz Kine, dok je pod današnjim imenom prvi put uvedena u
[21].

Primer 0.0.2. Nim je igra koju igraju dva igrača koji naizmenično uklanjaju
predmete sa različitih gomila, formiranih na početku igre. Igrač bira jednu
gomilu i uklanja najmanje jedan predmet sa nje u svakom svom potezu.
Postoje dve verzije igre, u prvoj je cilj da se izbegne uzimanje poslednjeg
predmeta, dok je u drugoj cilj da se uzme poslednji predmet.

Pozicione igre

Pozicione igre su kombinatorne igre. To su konačne igre savršenih informacija
bez slučajnih poteza. Primeri pozicionih igara su Iks-Oks, Heks, Sim, igra
red-kolona, itd.
Istorijski prvi radovi o pozicionim igrama pojavili su se 1963. godine, kada
su Hales i Jewett napisali [60], a zatim su 1973. godine Erdős i Selfridge
publikovali rad [40]. Kasnije je József Beck doneo mnoge nove ideje, pitanja
i otvorene probleme u ovoj oblasti. Objavio je brojne radove i knjigu [9] ko-
ja pokriva širok spektar oblasti o pozicionim igrama. U ovoj knjizi može se
naći mnogo teorema, primera, rešenih i nerešenih problema, kao i zanimlji-
vih metoda za analizu novih problema. Nedavno se pojavila knjiga koju su
napisali Hefetz, Krivelevich, Stojaković i Szabó [69], koja predstavlja sjajnu
bazu za izučavanje ovih igara dajući uvid u aktuelne rezultate kao i otvorene
probleme.
Analizirajući ove igre pretpostavljamo da oba igrača igraju sledeći svoju
optimalnu strategiju. Strategiju igrača možemo zamisliti kao ,,knjigu” u kojoj
možemo pronaći odgovor za svaki protivnikov potez, šta god da protivnik
odigra. Cilj nam je da odredimo kakav će biti krajnji ishod igre, a moguće
su tri opcije: pobeda prvog igrača, pobeda drugog igrača ili nerešeno. Ako
je ishod igre igrač A pobeđuje, kažemo da igrač A ima pobedničku strategiju.
Pitanje koje se samo nameće je da li bi korišćenjem moćnog računara mogli
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odrediti ishod igre. Međutim, ispostavlja se da su čak i današnji računari
ograničeni po tom pitanju. Neophodno je iscrpno pretražiti celo stablo igre
koje je obično eksponencijalno veliko. To je razlog zašto su matematički alati
i metode najvažniji u analizi pozicionih igara.
Sada ćemo dati formalnu definiciju pozicionih igara. Poziciona igra je uređen
par (X,F), gde je X konačan skup koji se zove tabla, a F je familija ciljnih
skupova. Igru igraju dva igrača koji naizmenično biraju slobodne elemente
table X dok god tabla ne ostane prazna. Uređen par (X,F) takođe nazivamo
hipergrafom igre, čiji čvorovi su elementi table X, a hipergrane su elementi
familije F .
Kada u svakom svom potezu igrač bira tačno jedan element table onda se
igra naziva fer. Takođe možemo definisati i asimetričnu igru (a : b) (engl.
biased game), u kojoj igrač koji prvi počinje igru bira a elemenata table po
potezu, dok drugi bira b elemenata po potezu.
Kada je reč o pravilima za određivanje pobednika igre u pozicionoj igri,
postoji nekoliko varijanti. Dve osnovne klase pozicionih igara su jake igre i
slabe igre i svaka od njih ima svoje potklase. Više o ovim varijantama biće
rečeno u narednim odeljcima.

Jake igre

U jakim pozicionim igrama, oba igrača imaju isti cilj. Među ovim igrama su
veoma popularni primeri, jedan od njih je nadaleko poznata igra Iks-Oks.
Možemo ih podeliti u dve velike potklase, a to su jake Mejker-Mejker igre i
jake Avojder-Avojder igre.

Jake Mejker-Mejker igre

U jakoj Mejker-Mejker igri (X,F) (engl. strong Maker-Maker game), dva
igrača, koje zovemo Crveni i Plavi, naizmenično biraju slobodne elemenate
table X, tako da Crveni počinje igru. Igrač koji prvi selektuje sve elemente
nekog F ∈ F je pobednik. Ako nijedan od igrača ne pobedi i nema više slo-
bodnih elemenata table, igra se proglašava nerešenom. Ovde se ciljni skupovi
familije F nazivaju pobednički skupovi.

Primer 0.0.3. Najistaknutiji primer ove klase pozicionih igara je široko po-
pularna igra Iks-Oks. Ova igra se igra na tabli predstavljenoj kvadratnom
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mrežom 3×3. Tabla se sastoji od devet elemenata, dok se familija F sastoji
od osam pobedničkih skupova: tri horizontalne linije, tri vertikalne linije i
dve dijagonale. Pobednik je prvi igrač koji poseduje celu pobedničku lini-
ju (skup). Poznato je da ukoliko oba igrača igraju optimalno, ova igra se
završava nerešenim ishodom.

Uopšteno govoreći, određivanje ishoda u jakoj Mejker-Mejker igri se poka-
zalo kao prilično izazovno, i jedva da postoje opšti matematički alati na
raspolaganju. Jedan od njih je krađa strategije (engl. strategy stealing) koju
možemo koristiti da pokažemo da Crveni može da garantuje makar nerešeno
u bilo kojoj igri.

Teorema 0.0.1. [9] U jakoj Mejker-Mejker igri (X,F), prvi igrač može
garantovati najmanje nerešeno.

Dokaz. Pretpostavimo suprotno, da drugi igrač (Plavi) ima pobedničku stra-
tegiju S. Prvi igrač (Crveni) igra svoj prvi potez proizvoljno, a zatim krade
strategiju S. Nakon prvog poteza Plavog, Crveni zamišlja da je drugi igrač i
odgovara na svaki potez Plavog kako strategija S nalaže. Ako ova strategija
predlaže da Crveni izabere element koji je već uzeo u svom prvom potezu,
onda on igra proizvoljno. Primetimo da ovde jedan dodatni potez ne može
naštetiti igraču. Dakle, prateći strategiju S, Crveni takođe pobeđuje, što je
kontradikcija.

Ovaj argument potvrđuje da prvi igrač zaista ima prednost. Zaključujemo
da su u ovakvoj igri moguća samo dva ishoda: pobeda Crvenog i nerešeno.
Ponekad proučavamo igre u kojima nerešeno nije moguće, u tom slučaju ko-
ristimo krađu strategije da zaključimo da Crveni ima pobedničku strategiju.
Loša strana ovog argumenta je činjenica da ne znamo ništa o pobednič-
koj strategiji, a pravljenje eksplicitne pobedničke strategije vrlo često deluje
beznadežno.
Kao što smo već videli, u jakoj Mejker-Mejker igri, dovoljno je znati da
nerešeno nije opcija, pa da znamo pobednika. Matematički alat koji može-
mo koristiti u ovoj situaciji je Remzijeva osobina hipergrafa igre. Ako igra
(X,F) ima Remzijevu osobinu, to znači da svako bojenje table u dve boje,
crvenu i plavu, daje monohromatski skup F ∈ F . Prema tome, ako igra ima
Remzijevu osobinu, nerešen ishod je nemoguć.
Skoro na kraju liste alata je strategija uparivanja (engl. pairing strategy),
koju možemo koristiti da pokažemo da Plavi može da garantuje nerešeno.
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Zaista, ako možemo da napravimo disjunktno uparivanje elemenata table X,
tako da svaki pobednički skup sadrži jedan element nekog od parova, onda
Plavi uvek može da izabere drugi element iz para koji je Crveni odabrao,
što sprečava Crvenog da pobedi.
Nije previše iznenađujuće da se u literaturi može naći tako malo rezultata o
jakim Mejker-Mejker igrama.
Nedavno se u radu [44] pojavila zanimljiva ideja, do koje su došli Ferber
i Hefetz. Oni su dokazali da igrajući na skupu grana kompletnog grafa
Kn, za dovoljno veliko n, Crveni može da pobedi u igri savršenog mečin-
ga (engl. perfect matching game) i igri Hamiltonove konture (engl. Hamilton
cycle game), dok su u radu [45] isti autori dokazali da, za dovoljno veliko n
i svaki pozitivan ceo broj k, prvi igrač može pobediti u igri k-povezanosti
(engl. k-Connectivity game). Oba rada se oslanjaju na strategiju brze pobede
u slabim igrama.

Jake Avojder-Avojder igre

Druga vrsta jakih igara su jake Avojder-Avojder igre (X,F) (engl. strong
Avoider-Avoider games). Ovu igru ponovo igraju dva igrača Crveni i Plavi,
ali sada igrač koji prvi potpuno selektuje neki F ∈ F gubi igru. Ako nijedan
od igrača ne izgubi i svi elementi table su selektovani, igra se proglašava
nerešenom. Ovde se ciljni skupovi familije F nazivaju gubitnički skupovi.

Primer 0.0.4. Prvu takvu igru, poznatu pod imenom Sim, uveo je 1961.
Simmons [99]. Tabla ove igre je skup grana kompletnog grafa K6, a igrač
koji prvi selektuje trougao u svom grafu gubi. Iako je jasno da je nerešeno
nemoguće (koristeći Remzijevo svojstvo table), a pritom je tabla relativno
mala (ima samo petnaest grana), analiziranje ove igre je izazovno, a dokaz
da Plavi pobeđuje je izveden uz pomoć kompjutera.

U [100] Slany je dao metodološku studiju o kompleksnosti određivanja po-
bednika za nekoliko igara sličnih igri Sim. Zatim su Mead, Rosa i Huang
u [87] dali eksplicitnu pobedničku strategiju za Plavog u igri Sim, a nedav-
no je u [110] Wrzos-Kaminska dala jednostavnu pobedničku strategiju koju
može da igra čovek bez pomoći računara. Druge varijante jakih Avojder-
Avojder igara proučavao je Harary u [61], koji je posmatrao konačne igre na
grafovima do šest čvorova.
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Na prvi pogled može izgledati da u jakim Avojder-Avojder igrama, za razliku
od jakih Mejker-Mejker igara, Plavi uvek ima prednost, a Crveni kao prvi
igrač ne može očekivati pobedu igrajući optimalno. Ispostaviće se da ovo
nije tačno!
Na primer, u d-dimenzionalnoj igri Iks-Oks nd (pogledati [9] za više detalja),
gde je n neparno, Crveni ima eksplicitnu pobedničku strategiju: U svom
prvom potezu bira centralni element, označimo ga sa C. Nakon toga, kad
god Plavi odabere element P , Crveni bira P ′ koji je simetričan u odnosu na
C. Pretpostavimo suprotno, da Crveni gubi, tj. da njegov graf ima crvenu
liniju L (primetimo da nije moguće da C pripada L), tada je L′, njena
simetrična slika u odnosu na centar kocke, plava linija koja je selektovana
pre L, što je kontradikcija.
Znajući da se igra 33 ne može završiti nerešenim rezultatom (koristeći Rem-
zijevo svojstvo [9]), možemo zaključiti da Crveni pobeđuje. Johnson, Leader
i Walters su dokazali da postoje tranzitivne igre u kojima Crveni pobeđuje,
za sve veličine table osim prostog broja i stepena dvojke [77].

Mejker-Brejker igre

Za razliku od jakih pozicionih igara u kojima se dva igrača takmiče u želji
da postignu isti cilj, u slaboj igri igrači imaju različite ciljeve. Prvi igrač želi
da ostvari svoj cilj, dok drugi igrač samo pokušava da spreči prvog igrača u
postizanju cilja.
U Mejker-Brejker pozicionoj igri (X,F) (engl. Maker-Breaker game), koju
takođe zovemo i ,,slaba igra”, dva igrača se zovu Mejker i Brejker, a elementi
familije F se nazivaju pobednički skupovi. Mejker pobeđuje u igri ako do
kraja igre selektuje sve elemente nekog F ∈ F , dok u suprotnom pobeđuje
Brejker.
Kao i u jakim Mejker-Mejker igrama, Mejker želi da selektuje sve elemente
nekog pobedničkog skupa, ali sada to ne mora da uradi prvi. Štaviše, sada
je potpuno nebitno da li će Plavi selektovati pobednički set ili ne. Ova igra
ne može biti završena nerešenim rezultatom, Mejker pobeđuje ako do kraja
igre selektuje neki pobednički skup, a Brejker pobeđuje ako uzme bar jedan
element u svakom od pobedničkih skupova.

Primer 0.0.5. Posmatramo igru Iks-Oks igranu po pravilima Mejker-Brejker
igre. Mejker želi da stavi tri svoja znaka u istu pobedničku liniju, ali sada ne
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mora da razmislja da li će i Brejker staviti tri svoja znaka u neku pobednič-
ku liniju. Imajući ovo na umu, lako se može pronaći Mejkerova pobednička
strategija.

Obično posmatramo igre koje se igraju na kompletnom grafu Kn, što znači
da je tabla igre skup grana kompletnog grafa sa n čvorova. Neke od naj-
proučavanijih igara ove vrste su: igra savršenog mečinga Mn, u kojoj su
pobednički skupovi svi savršeni mečinzi grafa Kn, zatim igra povezanosti Cn
(engl. Connectivity game), gde su pobednički skupovi sva pokrivajuća sta-
bla od Kn, i igra Hamiltonove konture Hn, gde su pobednički skupovi svi
Hamiltonovi ciklusi od Kn.
U nekim Mejker-Brejker igrama nije teško dokazati da Mejker može da po-
bedi, za te igre se prirodno pojavilo pitanje ,,Koliko brzo to može da uradi?”.
Pokazalo se da je ovo pitanje važno jer njegov odgovor ima brojne primene
u drugim vrstama pozicionih igara. Videli smo u prethodnom odeljku da je
jake igre teško analizirati, ono što je interesantno je da brza pobeda Mejkera
podrazumeva pobedu Crvenog u jakoj Mejker-Mejker igri. Zaista, pošto je
Mejker prvi igrač, ako uspe da selektuje ceo pobednički skup A u |A| pote-
za, gde je A najmanji pobednički skup, igra se završava i pre nego što Plavi
ima priliku da odigra svoj |A|-ti potez. Dakle, Crveni ne mora da razmišlja
o tome kako da spreči Plavog, nego samo kako da selektuje ceo pobednički
skup za sebe.
U sledećem primeru biće data eksplicitna pobednička strategija za Mejkera,
za n ≥ 6.

Primer 0.0.6. [69] Igra trougla se igra na skupu grana kompletnog grafa
Kn, pobednički skupovi su kopije grafa K3 u grafu Kn. Mejker započinje igru
tako što bira proizvoljnu granu uv, a zatim u svom prvom potezu Brejker bi-
ra granu xy. Označimo sa vw drugi potez Mejkera, takav da w /∈ {u, v, x, y}.
Ako drugi potez Brejker-a nije grana uw, onda Mejker bira tu granu i po-
beđuje u svom trećem potezu. U suprotnom, ako Brejker izabere baš uw,
onda Mejker bira granu vz za neki čvor z /∈ {u, v, x, y, w}. Sada postoje dve
slobodne grane čijim izborom Mejker pravi trougao u svom grafu (zw i zu),
pošto Brejker ne može da selektuje obe u svom sledećem potezu, Mejker
pravi trougao u četvrtom potezu i pobeđuje.
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Mejker-Brejker asimetrične igre

Kao što se može videti u strategiji iz primera 0.0.6, Mejker lako pobeđuje u
ovoj igri, dok su šanse Brejkera jednake nuli. Prirodno se nameće pitanje kako
malom promenom pravila možemo Brejkeru dati veću moć. Jedan standardni
način da se to uradi po prvi put su predložili Chvátal i Erdős u [28]. Ovu
vrstu igre nazivamo asimetrična igra.

Definicija 0.0.7. [69] Neka su p i q pozitivni celi brojevi, neka je X konačan
skup, i neka je F ⊆ 2X familija podskupova od X. U asimetričnoj igri
(p : q) Mejker-Brejker (X,F), Mejker selektuje p slobodnih elemenata table
po potezu i Brejker selektuje q slobodnih elemenata table po potezu. Cele
brojeve p i q nazivamo biasom Mejkera i Brejkera, redom. Ako u poslednjem
potezu igrač nema dovoljno slobodnih elemenata na tabli, on selektuje sve
slobodne elemente table i igra se završava.

Kada su Chvátal i Erdős uveli (1 : b) Mejker-Brejker igre [28], primetili su da
su one bias monotone. Da budemo precizniji, ako Brejker može da pobedi
u igri (1 : b), može da pobedi i u igri (1 : b + 1). Primetimo da ako je
tabla igre X, onda Brejker pobeđuje u igri (1 : |X|), osim u slučaju kada
familija pobedničkih skupova F sadrži prazan ili jednočlan skup. Prema
tome, možemo definisati granični bias igre (X,F) kao jedinstveni pozitivan
ceo broj bF takav da je (1 : b) igra pobeda Brejkera ako i samo ako je b > bF ,
pod pretpostavkom da su F ̸= ∅ i min{|A| : A ∈ F} ≥ 2.
Asimetrična Mejker-Brejker (a : b) igra (X,F) je takođe bias monotona, tj.
ako Mejker može da pobedi u igri (a : b), onda može da pobedi i u igri
(a + 1 : b) kao i (a : b − 1). Ista stvar važi i za Brejkera, ako je (a : b)
Mejker-Brejker (X,F) igra Brejkerova pobeda, onda Brejker takođe može
da pobedi u (a : b+ 1) i (a− 1 : b) igri. Generalno, ako igrač selektuje više
elemenata u bilo kom trenutku igre, to mu ne može naškoditi.

Avojder-Enforser igre

Avojder-Enforser igre (engl. Avoider-Enforcer) su misère verzija Mejker-
Brejker igara, sa dva igrača po imenu Avojder i Enforser. Pravila u ovim
igrama su na neki način suprotna pravilima u Mejker-Brejker igrama. Zaista,
dok je cilj Mejkera da selektuje ceo pobednički skup i Brejker želi da ga spreči
u tome, Avojderov cilj je da izbegne da selektuje ceo pobednički skup, dok
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Enforser želi da natera Avojdera da to uradi. Preciznije, Enforser pobeđuje
u igri (X,F) ako na kraju igre Avojder selektuje sve elemente nekog F ∈ F ,
u suprotnom Avojder pobeđuje.
Asimetrična verzija ove igre definiše se na isti način kao u Mejker-Brejker
igrama. U Avojder-Enforser igri (a : b) koja se igra na tabli X sa datom
familijom gubitničkih skupova F , Avojder selektuje a elemenata table po po-
tezu, dok Enforser selektuje b elemenata table po potezu. Ako u poslednjem
potezu ima manje slobodnih elemenata na tabli od biasa igrača koji treba
da igra, on selektuje sve preostale slobodne elemente table.
Kao što smo već videli, Mejker-Brejker igre su bias monotone i prirodno
je zapitati se da li to važi i za Avojder-Enforser igre. Ako razmišljamo kao
Avojder, odnosno cilj je da izbegnemo nešto, na prvi pogled izgleda da se-
lektovanje manje elemenata ne može da naškodi igraču, međutim ispostavlja
se da to nije tačno. Avojder-Enforser igre u opštem slučaju nisu bias mono-
tone. Ovo implicira da nije moguće definisati granični bias na isti način kao
u igrama Mejker-Brejker. Imajući to u vidu, Hefetz, Krivelevich i Szabó su
u [70] uveli sledeću definiciju.

Definicija 0.0.8. Za igru (1 : b) Avojder-Enforser (X,F) definišemo donji
granični bias kao najveći ceo broj f−

F tako da za svaki b ≤ f−
F Enforser

pobeđuje. Analogno tome, gornji granični bias je najmanji nenegativan ceo
broj f+

F takav da za svaki b > f+
F Avojder pobeđuje. Gornji i donji granični

bias uvek postoje (osim u nekim trivijalnim slučajevima) i znamo da f−
F ≤

f+
F važi. U specijalnom slučaju kada je f−

F = f+
F , ovaj broj se naziva granični

bias igre.

Odsustvo graničnog biasa inspirisalo je autore [64] da prilagode ova pravila
tako da obezbede njegovo postojanje. Definisali su takozvana monotona pra-
vila, gde je svakom od igrača dozvoljeno da zahteva više elemenata table po
potezu. Preciznije, neka je (X,F) monotona (a : b) Avojder-Enforser igra.
U svakom svom potezu, Avojder selektuje najmanje a elementa table, dok
Enforser selektuje najmanje b elementa table. Sa ovim pravilima igra zaista
postaje monotona. Ako u igri (a : b) Avojder pobeđuje, onda je to takođe
slučaj i u igrama (a− 1 : b) i (a : b+ 1).

Definicija 0.0.9. Neka je (X,F) (1 : b) Avojder-Enforser igra. Definišemo
jedinstveni monotoni granični bias fmon

F kao najveći nenegativan ceo broj
takav da Enforser pobeđuje u igri ako i samo ako je b ≤ fmon

F .

xx



Originalna pravila, gde svaki od igrača selektuje tačno onoliko elemenata
koliko bias sugeriše, nazivamo striktna pravila. Svaka Avojder-Enforser igra
se može igrati na oba skupa pravila, pa uvek naglašavamo na kom skupu
pravila igramo igru, striknom ili monotonom. Iako ova izmena pravila deluje
neznatna, njihovom zamenom moguće je drastično promeniti ishod igre.

Jake CAvojder-CAvojder igre

U poslednjih nekoliko godina pojavilo se nekoliko varijanti pozicionih igara,
poput igre PrimMejker-Brejker (engl. PrimMaker-Breaker) uvedene u [82]
gde podgraf koji se sastoji od Mejkerovih grana mora ostati povezan tokom
čitave igre. U Voker-Brejker (engl. Walker-Breaker) igrama koje su uveli
Espig, Frieze, Krivelevich i Pegden [42], Mejker je prinuđen da selektuje
grane šetnje ili puta. Slično, u igrama VokerMejker–VokerBrejker [50], oba
igrača imaju ograničenje da selektuju grane šetnje. Na sličan način, Jake
CAvojder-CAvojder igre (engl. strong CAvoider-CAvoider) su nastale kao
prirodno proširenje jakih Avojder-Avojder igara.
Jaku CAvojder-CAvojder igru (E(Kn),F) igraju dva igrača Crveni i Plavi,
pri čemu igrač koji prvi u potpunosti selektuje neki F ∈ F gubi. Igrači
naizmenično selektuju grane kompletnog grafa Kn, tako da graf oba igrača
mora ostati povezan tokom čitave igre. Ako nijedan od igrača ne izgubi i svi
elementi table su selektovani, igra se proglašava nerešenom. Ciljni skupovi
familije F nazivaju se gubitnički skupovi. Ove igre su uvedene u [103] gde
se familija F sastoji od kopija nekog zadatog grafa F .

Igre saturacije sa dva igrača

Igre saturacije

Za dati graf G = (V,E) se kaže da je saturiran u odnosu na monotono
rastuću osobinu grafa P, ako G nema svojstvo P, ali G ∪ {e} ∈ P za svaku
granu e ∈

(
V
2

)
\E.

Za dati prazan graf sa n čvorova Kn i osobinu P, dva igrača Maks i Mini
progresivno grade graf G ⊆ Kn takav da G ne zadovoljava osobinu P. Pri-
metimo da oba igrača selektuju grane iste boje, tj. oni grade isti graf G. Igra
se završava kada više nema slobodnih grana koje se mogu dodati u G, pa
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je G saturiran graf. Maksov cilj je da igra što duže traje, dok Mini želi da
minimizira dužinu igre. Označimo sa s(n,P) rezultat igre, to je broj grana
grafa G na kraju igre. Cilj je naći rezultat igre u dva slučaja, kada je Maks
prvi igrač i kada je Mini prvi igrač.
Definisaćemo dva broja koja su povezana sa rezultatom ove igre. Prvi je broj
saturiranosti grafa (engl. saturation number), označavamo ga sa sat(n,P),
što je minimalna veličina saturiranog grafa sa n čvorova u odnosu na osobinu
P. Drugi je maksimalna moguća veličina saturiranog grafa sa n čvorova
u odnosu na osobinu P, označavamo ga sa ex(n,P). Iz svega navedenog
zaključujemo da je sat(n,P) ≤ s(n,P) ≤ ex(n,P).
Igre saturacije na grafovima prvi put su u [52] predstavili Füredi, Reimer
i Seress. Oni su posmatrali broj s(n,K3) gde je K3 osobina grafa da sadrži
trougao. Iz Mantelove teoreme [109] znamo da je ex(n,K3) = ⌊n2

4 ⌋. Sa druge
strane, sat(n,K3) = n− 1, jer je zvezda saturiran graf u odnosu na osobinu
K3. Prema tome, znamo da je s(n,K3) negde između ovih granica. U [52]
autori daju donje ograničenje reda n lnn. Kasnije su Biró, Horn i Vildstrom
[18] poboljšali gornje ograničenje na 26

121n
2 + o(n2).

Carraher et al. u [27] su pronašli rezultate nekih određenih igara, u kojima
je osobina P pripadanje familiji neparnih ciklusa O, familiji pokrivajućih
stabala Tn, sadržati graf K1,3 i sadržati graf P4. U istom radu su takođe
posmatrane igre saturacije koje se igraju na bipartitnim grafovima. Kasnije u
[63] Hefetz, Krivelevich, Naor i Stojaković su našli donje i gornje ograničenje
rezultata u igrama u kojima je svojstvo P biti k-povezan, imati hromatski
broj najmanje k i postojanje mečinga date veličine.

Konstruktor-Bloker igre

Constructor-Blocker igre su nedavno uveli Patkós, Stojaković i Vizer [93].
Ove igre su spoj dve dobro poznate igre: Mejker-Brejker igre i igre saturacije.
Neka su H i F dva fiksna grafa. Dva igrača, koja se zovu Konstruktor i
Bloker, naizmenično selektuju slobodne grane kompletnog grafa Kn. Kon-
struktor je ograničen da traži samo grane čijom selekcijom njegov graf ne
sadrži kopiju od F . Sa druge strane, Bloker može selektovati bilo koju granu
bez ograničenja. Igra je gotova kada Konstruktor ne može da povuče nijedan
dalji potez, tj. njegov graf je saturiran ili su sve grane selektovane. Rezultat
ove igre je broj kopija grafa H u Konstruktorovom grafu na kraju igre. Cilj
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Konstruktora je da maksimizira rezultat, dok Bloker želi da rezultat bude
što manji. Rezultat igre kada oba igrača igraju optimalno označavamo sa
g(n,H, F ).
Označimo sa N (H,G) broj kopija grafa H u grafu G, a sa ex(n,H, F ) =
max
G

{N (H,G) : G je graf bez F sa n čvorova}. Lako se može videti da

je ex(n, F ) = ex(n,K2, F ) jer u tom slučaju brojimo broj grana u grafu
G. Nedavno u [1] autori su proučavali funkciju ex(n,H, F ). Jasno je, da je
nejednakost g(n,H, F ) ≤ ex(n,H, F ) uvek tačna.
U igrama Konstruktor-Bloker, za razliku od saturacionih igara, oba igrača
grade sopstvene grafove, a broji se broj kopija H samo u grafu Konstruktora.
U [93] autori su došli do rezultata za nekoliko različitih igara: kada su i F i
H zvezde, F = P4 i H = P3, F je zvezda i H je drvo, F = P5 i H = K3, i
dali su gornje i donje ograničenje za g(n, P4, P5).

Uopštena igra saturacije

Uopštenu igru saturacije (engl. Generalized saturation game) uvodimo kao
prirodno proširenje dve različite vrste igara, igara saturacije i Konstruktor-
Bloker igara.
Neka su H i F grafovi koji su unapred dati. Dva igrača, Maks i Mini, na-
izmenično selektuju grane Kn tako da graf igre G ne sadrži kopiju od F .
Igra se završava kada igrači ne mogu da selektuju ni jednu granu, tj. graf
G je saturiran ili više nema slobodnih grana. Primetimo da ovde, kao i u
saturacionim igrama, oba igrača zajedno grade isti graf G ⊆ Kn.
Rezultat igre je broj kopija od H u G na kraju igre. Maks želi da maksimizira
rezultat, dok Mini pokušava da napravi rezultat što manjim. Kada je graf
H = K2, ove igre postaju igre saturacije, tako da možemo da kažemo da su
igre saturacije specijalan slučaj uopštenih igara saturacije.
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Rezultati

Jake Avojder-Avojder igre

Jake Avojder-Avojder igre na E(Kn)

U ovoj tezi proučavamo Jake Avojder-Avojder F igre koje se igraju na gra-
nama kompletnog grafa Kn, gde su elementi familije F skupovi koji sadrže
kopiju grafa F . Dakle, igrač koji prvi u potpunosti selektuje kopiju od F
gubi igru. O ovim igrama se ne zna puno, dok je otvorenih problema mno-
go. U [62] je pokazano da Plavi ima pobedničku strategiju u igri P3, gde je
zabranjeni graf put sa samo dve grane. Nedavno je Beker [17] generalizovao
ovaj rezultat na sve zvezde, dokazujući da je za svako fiksno k jaka Avojder-
Avojder igra zvezda Sk+1 pobeda drugog igrača za svako n dovoljno veliko.
Dokaz je koncipiran više na pravljenju nego na izbegavanju – pokazujući da
Plavi može da napravi graf maksimalne veličine koji ne sadrži Sk+1 brzo, bez
gubljenja poteza, čime se automatski obezbeđuje pobeda. Zapravo, jedina
netrivijalna jaka Avojder-Avojder igra na granama kompletnog grafa čiji je
ishod poznat je igra zvezda.
Koristimo skraćenicu CC>3 za kolekciju inkluzivno-minimalnih povezanih
grafova sa više od tri čvora. Neka je S4 zvezda sa četiri čvora, dok P4 pred-
stavlja put sa četiri čvora. Cilj je naći ishod za igre P4 i CC>3.

Teorema 0.0.2. Plavi ima pobedničku strategiju u jakoj Avojder-Avojder
P4 igri, igranoj na Kn, gde je n ≥ 8.

U sledećoj teoremi, razmatramo igru u kojoj igrač gubi igru čim napravi
povezanu komponentu sa više od tri čvora.

Teorema 0.0.3. Plavi ima pobedničku strategiju u jakoj Avojder-Avojder
CC>3 igri, igranoj na Kn, gde je n ≥ 5.

Neka je R(F ) dijagonalni Remzijev broj, tako da svako bojenje grana kom-
pletnog grafa sa najmanje R(F ) čvorova u dve boje daje monohromatsku
kopiju od F . Ako n ≥ R(F ) znamo da jaka Avojder-Avojder F igra na
E(Kn) ne može da se završi nerešeno. Za igru P4 kao i za igru CC>3 odavde
sledi da nema nerešenog ishoda ako je n ≥ 5.
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Jake CAvojder-CAvojder igre

Proučavamo jake CAvojder-CAvojder F igre u kojima graf oba igrača mora
ostati povezan tokom igre. Tabla je i dalje skup grana od Kn, a igrači ne
smeju da selektuju kopiju zabranjenog grafa F .
U nastavku dokazujemo da Plavi može da pobedi u tri različite jake CAvojder-
CAvojder igre.

Teorema 0.0.4. Plavi ima pobedničku strategiju u jakoj CAvojder-CAvojder
S4 igri, igranoj na Kn, gde je n ≥ 7.

Teorema 0.0.5. Plavi ima pobedničku strategiju u jakoj CAvojder-CAvojder
P4 igri, igranoj na Kn, gde je n ≥ 5.

U sledećoj teoremi posmatramo Ciklus igru u kojoj igrač koji prvi selektuje
ciklus gubi.

Teorema 0.0.6. Plavi ima pobedničku strategiju u jakoj CAvojder-CAvojder
Ciklus igri, igranoj na Kn, gde je n ≥ 6.

Primetimo da ako je F ∈ {S4,K3}, onda je dijagonalni Remzijev broj R(F )
6, pa nerešeno nije moguće ni u jednoj od gore pomenute tri igre.

Jake CAvojder-CAvojder igre igrane sa pozicije

Ovde proučavamo jake CAvojder-CAvojder igre koje počinju sa određene
pozicije na grafu, odnosno možemo pretpostaviti da je u ovoj igri već odi-
grano nekoliko poteza, i pritom znamo kako graf igre izgleda u tom trenutku,
i zatim nastavljamo da igramo. Ovakav način igre je proučavan u [86].
Graf K5 čije su grane obojene u dve boje, tako da se sastoji od dva ci-
klusa C5, jednog u plavoj a drugog u crvenoj boji, nazivamo ,,obojen K5”
(engl. “drawn K5”). Pozicija T je konfiguracija grafa G, takva da se G sastoji
od jednog ,,obojenog K5” i n − 5 izolovanih čvorova. Igra neparnog (odno-
sno, parnog) ciklusa je igra u kojoj je zabranjeni graf svaki graf koji sadrži
neparan (odnosno, paran) ciklus.
U sledećoj teoremi pretpostavljamo da se posle prvih pet rundi graf igre
sastoji od ,,obojenog K5” i izolovanih čvorova.
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Teorema 0.0.7. Igrajući od pozicije T , Plavi ima pobedničku strategiju u
jakoj CAvojder-CAvojder C3 igri, C4 igri, C6 igri, igri neparnog ciklusa i
igri parnog ciklusa.

Dokazi za rezultate date iz ovog odeljka mogu se naći u glavi 3.

Ačivment broj u jakim Mejker-Mejker igrama

Proučavamo jaku Mejker-Mejker igru igranu na skupu grana kompletnog
grafa Kn, sa unapred zadatim grafom F . Prvi igrač koji selektuje kopiju od
F u svojoj boji je pobednik. Definišemo ačivment broj (engl. Achievement
number) od F kao najmanje n za koje Crveni može da pobedi u ovoj igri i
označavamo ga sa a(F ). Označimo sa R(F ) dijagonalni Remzijev broj, kao
najmanji ceo broj takav da svako bojenje table u dve boje daje monohro-
matski graf F . Koristeći krađu strategije znamo da je a(F ) ≤ R(F ).
Želimo da damo odgovore na neka od pitanja koje je Harary postavio u
[61]. U tom radu data je tabela sa ačivment brojevima za nekoliko malih
grafova F čije su vrednosti izračunate pomoću računara. Kasnije je u [41]
isti autor proširio ovu tabelu sa još dve vrednosti dobijene na isti način.
Naredni problem i pretpostavka dati su u [61].

Problem 0.0.10. [61] Odrediti a(F ) za različite familije grafova. (Deluje teško
čak i za stabla.)

Pretpostavka 0.0.11. [61] Minimalna vrednost a(T ) među svim stablima T
veličine n se ostvaruje kada je T = Pn, put. Maksimum od a(T ) se postiže
kada je T zvezda K1,n−1.

Pobednička strategija Crvenog za male grafove

U dokazima sledećih tvrdnji, dajemo eksplicitnu pobedničku strategiju za
Crvenog počevši od a(F ) izolovanih čvorova za neke grafove F date u [61], a
takođe posmatramo broj poteza koji je Crvenom neophodan da bi pobedio.

Opservacija 0.0.12. Ačivment brojevi za K2 i P3 su 2 i 3, redom, tj. a(K2) =
2 i a(P3) = 3.

Propozicija 0.0.1. Ačivment broj za 2K2 je 5, tj. a(2K2) = 5.

Propozicija 0.0.2. Ačivment broj za P4 je 5, tj. a(P4) = 5.
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Propozicija 0.0.3. Ačivment broj za K1,3 je 5, tj. a(K1,3) = 5.

Propozicija 0.0.4. Ačivment broj za K3 je 5, tj. a(K3) = 5.

Propozicija 0.0.5. Ačivment broj za K1,3 + e je 5, tj. a(K1,3 + e) = 5.

Propozicija 0.0.6. Crveni može da pobedi u jakoj Mejker-Mejker igri K4−e
igranoj na K7, tj. a(K4 − e) ≤ 7.

Ačivment broj za puteve, cikluse, zvezde i savršen mečing

Bavimo se pronalaženjem ačivment broja za puteve, cikluse, zvezde i savršen
mečing, istovremeno dajući neke od odgovora za problem 0.0.10.

Propozicija 0.0.7. Ačivment broj za put sa n čvorova je a(Pn) = n, za n
dovoljno veliko.

Propozicija 0.0.8. Gornje ograničenje ačivment broja za zvezdu sa n čvo-
rova je a(Sn) ≤ 2n− 3, za sve n ≥ 3 .

Propozicija 0.0.9. Ačivment broj za ciklus sa n čvorova je a(Cn) = n, za
n dovoljno veliko.

Propozicija 0.0.10. Ačivment broj za savršen mečing M2n na 2n čvorova
je a(M2n) = 2n, za n dovoljno veliko.

Primetimo da je ovde data tačna vrednost za puteve, cikluse i savršen me-
čing, dok je za zvezde data gornja granica. Očigledna donja granica za a(Sn)
je n, pošto igranjem na n čvorova Plavi može da dodirne sve čvorove (praveći
savršen mečing) pre nego što Crveni odigra n− 1 poteza.

Ačivment broj za stabla

U ovom delu cilj je pronalaženje gornjeg i donjeg ograničenja ačivment broja
za stabla sa n čvorova Tn. U pretpostavci 0.0.11 se pitamo da li je za fiksno
drvo Tn, vrednost a(Tn) negde između a(Pn) i a(Sn). Koristeći propozicije
0.0.7 i 0.0.8 znamo da je to negde između n i broja koji nije veći od 2n− 3.
Za koreno stablo Tn označavamo sa d(u) izlazni stepen čvora u ∈ V (Tn).
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Teorema 0.0.8. Neka je Tn fiksno stablo sa n čvorova i v′0 čvor maksimalnog
stepena u Tn. Ako je čvor v′0 koren od Tn, onda važi sledeće

a(Tn) ≤ max{n+ 4
√
n,

∑
u∈V (Tn)
d(u)̸=0

(2d(u)− 1)},

za n dovoljno veliko.

U narednoj propoziciji dat je ačivment broj za specijalnu klasu stabala, a to
su stabla sa ograničenim stepenom koja sadrže dugačak ogoljen put čiji je
jedan kraj istovremeno i list stabla. Put unutar stabla T naziva se ogoljen
(engl. bare) ako su svi njegovi unutrašnji čvorovi stepena dva u T .

Propozicija 0.0.11. Neka je ∆ pozitivan ceo broj. Postoje celi brojevi m =
m(∆) i n0 = n0(∆,m) takavi da za svako stablo Tn gde je n ≥ n0 i ∆(Tn) ≤
∆, važi sledeće. Ako Tn sadrži ogoljen put dužine m, a pri tome je jedan od
njegovih krajeva istovremeno i list od Tn, onda je a(Tn) = n.

Dokazi za tvrđenja data u ovom odeljku mogu se naći u glavi 4.

Uopštena igra saturacije

Cilj ovog odeljka je da nađemo rezultat igre za neke unapred date grafove H i
F . Označavamo sa s1(n,H, F ) rezultat igre kada oba igrača igraju optimalno
i Maks počinje, a sa s2(n,H, F ) kada Mini počinje. Ako je s1 = s2 koristimo
s umesto s = s1 = s2. Ponekad koristimo s umesto s(n,H, F ) kada je jasno
o kojoj igri je reč. Ukoliko je rezultat u oba slučaja između a i b, koristimo
notaciju a < s < b umesto a < s1 < b i a < s2 < b.

Zabranjen je ili P5 ili svi ciklusi

Prvo ćemo tražiti rezultat igre u kojoj je zabranjeni graf put sa 5 čvorova
P5 i na kraju igre brojimo trouglove, pretpostavljajući da oba igrača igraju
optimalno.

Teorema 0.0.9.
n− 4

3
≤ s(n,K3, P5) ≤

n− 4

3
+ 4.

Zatim, pronalazimo rezultat dve različite igre u kojima je zabranjeni graf F
ciklus. U narednoj teoremi, brojimo zvezde sa k čvorova na kraju igre.
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Teorema 0.0.10.
(

⌊n2 ⌋
k − 1

)
≤ s(n, Sk, Ciklus) ≤

(
⌈n2 ⌉
k − 1

)
, k > 3.

Zatim, brojimo puteve P4 na kraju igre.

Teorema 0.0.11.
n2

16
+O(n) ≤ s(n, P4, Ciklus) ≤ n2

16
+O(n).

Zabranjen je P4

Prvo posmatramo igru u kojoj određujemo broj puteva. Jasno, jedini put
koji se može pojaviti je P3.

Teorema 0.0.12. n− 4 ≤ s(n, P3, P4) ≤ n.

Sada posmatramo igru u kojoj brojimo zveze dok je zabranjeni graf isti.

Opservacija 0.0.13. s(n, Sk, P4) = 0, k ≥ 4.

Ostaje igra u kojoj brojimo cikluse. Jasno je da je jedini ciklus koji može
postojati C3. Dakle, s(n,Ck, P4) = 0, kada je k > 3.

Teorema 0.0.13. s(n,C3, P4) = 1 ako je n neparan, i s(n,C3, P4) = 0 ako
je n paran.

Svi neparni ciklusi su zabranjeni

U naredna dva tvrđenja, posmatramo uopštene saturacione igre, gde su za-
branjeni grafovi svi neparni ciklusi O. Drugim rečima, u ovim igrama graf
igre ostaje bipartitan.

Opservacija 0.0.14. s(2n, P2k,O) =
( n!

(n− k)!

)2
i s(2n,C2k,O) =

1

k

( n!

(n− k)!

)2
.

Zatim, brojimo zvezde u bipartitnom grafu sa 2n čvorova.

Opservacija 0.0.15. s(2n, Sk,O) = 2n

(
n

k − 1

)
.
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Glava 0. Prošireni izvod

Tn je zabranjen

U ovom odeljku interesuju nas uopštene igre saturacije, gde su zabranjeni
grafovi sva pokrivajuća stabla Tn. Na kraju igre graf mora biti disjunktna
unija dva kompletna grafa Kr i Kn−r.

Opservacija 0.0.16. s(n, Pk, Tn) =
k!

2

(
n− 2

k

)
,

s(n,Ck, Tn) =
(k − 1)!

2

(
n− 2

k

)
i s(n, Sk, Tn) = (n− 2)

(
n− 3

k − 1

)
.

S4 je zabranjen

U nastavku posmatramo uopštene igre saturacije gde je zabranjen graf zve-
zda S4. Prvo, računamo broj puteva na kraju igre kada oba igrača igraju
optimalno.

Teorema 0.0.14. n− 1 ≤ s(n, P3, S4) ≤ n za n ≥ 3. Štaviše,
s1(n, P3, S4) = n ako je n paran i s2(n, P3, S4) = n ako je n neparan.

Teorema 0.0.15. n− 3 ≤ s(n, P4, S4) ≤ n za n ≥ 4.

Teorema 0.0.16. s(n, P5, S4) ≤ 6. Pored toga, s2(n, P5, S4) ≥ 5 za n = 4k
i k ≥ 2 ili n = 4k + 1.

Teorema 0.0.17. s(n, Pk, S4) = 0 gde je k ≥ 6.

Sledeće što želimo da odredimo je broj zvezda na kraju igre. Kako je S4

zabranjeni graf, može se pojaviti samo zvezda S3 = P3, što je već urađeno
u teoremi 0.0.14.
Na kraju, brojimo cikluse na kraju igre.

Teorema 0.0.18. s(n,Ck, S4) ≤ 1, kada je 3 ≤ k ≤ 5 i s(n,Ck, S4) = 0,
kada je k ≥ 6.

Dokazi tvrđenja iz ovog odeljka su izloženi u glavi 5
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Chapter 1

Introduction

1.1 Games

In this thesis, we study games played by two players that we can analyze
using different mathematical tools. We observe games of perfect information,
which means that each player before each of his moves knows the previous
moves made by all other players. Also, we are interested in games that are
sequential, which means that players make their moves alternately. Finally,
there are no chance moves.
Apart from the aforementioned games, which will be discussed much more
later, there are many different types of games mathematically analyzed. We
will say a few words about them before we continue with our prime interest.
A scientific branch that has attracted a lot of attention recently is game
theory.
Game theory is the study of mathematical models of strategic interactions
among rational agents. In general, it includes games of chance, games of
imperfect knowledge, and games in which players can move simultaneously,
and they tend to represent real-life decision-making situations. It is a very
applicable branch of science, especially in economics, logic, computer science,
etc.
The modern game theory began with the idea of mixed-strategy equilibria
in a two-person zero-sum game and its proof by Neumann, see [88]. This
book was published in 1944, and later in the 1950s, this field of science start
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Chapter 1. Introduction

developing extremely fast.
To make these games more understandable we give some of their variants
and examples. Unlike the games with perfect information that we mentioned
above, imperfect information games are played by players who do not know
all moves played by their opponents. Most games studied in game theory are
imperfect-information games, such as simultaneous move games and most
card games.
Zero-sum games (more generally, constant-sum games) are games in which
choices by players can neither increase nor decrease the available resources.
One player can gain just the amount of resources that another player loses.
One example of a zero-sum game is poker because one player can win exactly
the amount another player loses. Another example follows.

Example 1.1.1. Matching pennies is a game played by two players, Even
and Odd. Both players have a penny and must secretly turn it to the side
they want. After that, at the same time, they show each other what they
have chosen. If the pennies match (both heads or both tails), the Even takes
both pennies for himself (Even gains 1, and Odd loses 1). Otherwise, Odd
takes both pennies (Odd gains 1, and Even loses 1).

On the other hand, in non-zero-sum games, a gain by one player does not
necessarily correspond with a loss by another. Many games studied in game
theory are of this kind.
If the identities of the players can be changed without changing the payoff
to the strategies, then a game is symmetric. We give one example of a
symmetric and non-zero-sum game, called prisoner’s dilemma, see [2].

Example 1.1.2. Two prisoners have been captured by the authorities. They
are separated and each is given the choice between confessing and remaining
silent. One of four possible outcomes will occur. If prisoner A talk while the
other one remains silent, prisoner A go free. If both of them remain silent,
each receives one year in prison. If both confess, each receives a five-year
sentence. If prisoner A remain silent while the other one confesses, prisoner
A face a ten-year sentence while prisoner B goes free.

It turns out that each prisoner gets a higher reward for betraying the other.
Suppose that we think as a prisoner A. In case prisoner B betrayed, prisoner
A can stay silent and get a ten-year sentence or betray and get a five-year

2



1.2. Combinatorial game theory

sentence. Otherwise, if prisoner B stayed silent, prisoner A can stay silent
too and get one year sentence or betray and go home. Therefore, regardless
of what prisoner B decides, for the prisoner A the best option is to betray.
A strategy profile is a Nash equilibrium if no player can do better by unilat-
erally changing their strategy. To see what this means, imagine that each
player knows the strategies of the others. Having all those strategies in mind
each player asks themselves: "Can I benefit by changing my strategy?" If
any player could answer "Yes", then that set of strategies is not a Nash
equilibrium. Otherwise, if every player prefers not to switch then the set of
strategies is a Nash equilibrium.
Observing Example 1.1.2 we realize that the Nash equilibrium is (betray,
betray), while the social optimum is (stay silent, stay silent).

1.2 Combinatorial game theory

A combinatorial game is defined to be a two-player, perfect-information
game with no chance elements, see e.g. [51]. This is the class of games that
we are going to talk about in this thesis. Compared to classical game theory
the main difference is that players move in sequence and not simultaneously,
so there is no hidden information. Combinatorial games include well-known
games such as chess, checkers, and Go. They can also be played on the
infinite board. Moves in combinatorial games can be represented by a game
tree. One of the most studied combinatorial games is Nim.

Example 1.2.1. Nim is a game played by two players who take turns in
removing objects from different piles. A player chooses one pile and removes
at least one object from it in each of his moves. There are two versions of
the game, and in the first one, the goal is to avoid taking the last object,
whereas, in the second one, the goal is to take the last object.

It is believed that the origins of this game go back to China, but under this
name, it was introduced for the first time by Bouton in [21].

1.3 Positional games

Positional games are combinatorial games. They are finite, perfect infor-
mation games with no chance moves. Examples of positional games include

3



Chapter 1. Introduction

Tic-Tac-Toe, Hex, Sim, Row-column game, etc.
Historically first papers about positional games appeared in 1963, by Hales
and Jewett [60], and in 1973, by Erdős and Selfridge [40]. Later, the man
who brought many new ideas, questions, and open problems to this field was
Józef Beck. He published numerous papers and a book [9] that covers a lot
about positional games, containing many theorems, examples, solved and
unsolved problems on this subject, and interesting methods for analyzing
new problems. Recently, the book written by Hefetz, Krivelevich, Stojaković
and Szabó [69] has appeared, which is a great study base with numerous up-
to-date results and open problems.
While analyzing these games we assume that both players play according to
their optimal strategy. We can imagine a strategy of the player as a “book”
in which we can find response for every move of the opponent, regardless of
his choice. We want to determine what will be the outcome of the game,
and there are three options: the first player’s win, the second player’s win,
or a draw. If the outcome of the game is player A wins, we say that player
A has a winning strategy.
One can ask about using a powerful computer for determining the outcome
of the game. However, it turns out that even today’s computers are limited
to help. It is necessary to exhaustively search the whole game tree which is
usually exponentially large. That is the reason why mathematical tools and
methods are the most important in analyzing positional games.
One of the surprising facts is that the probabilistic method can be used
for analyzing these games. At first sight it may look implausible since in
these games there is no hidden information. This method involves comput-
ing the probability of a certain move leading to a win or a draw and then
choosing the move with the highest probability of success. The probabilistic
method can also be used to estimate the expected outcome of a game, such
as the probability of winning or drawing, given a particular position. This
phenomenon was extensively studied both in [9] and [69].
Now we give a formal definition of positional games. A positional game is
a pair (X,F), where X is a finite set called the board, and F is the family
of target sets. The game is played by two players who alternately claim
previously unclaimed elements of X until all the elements of the board are
claimed. (X,F) is also called the hypergraph of the game, whose vertices
are the elements of X and hyperedges are the elements of the family F .
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1.3. Positional games

When in each of the rounds each player claims exactly one element of the
board we call the game unbiased. But, we can also define the biased (a : b)
game, where the player who is first to move claims a elements of the board
per round, while the other one claims b elements per round.
When it comes to the rules for determining the game winner in a positional
game, there are several variants. The largest classes of positional games are
certainly strong games and weak games and each of them has its subclasses.
More about each variant of positional game is given in the following sections.

1.3.1 Strong games

In Strong positional games, both players have the same goal. These games
have some popular examples, one of them is the widely known game Tic-
Tac-Toe. We can divide these games into two big subclasses which are strong
Maker-Maker games and strong Avoider-Avoider games.

Strong Maker-Maker game

In the strong Maker-Maker game (X,F), two players called Red and Blue
take turns in claiming previously unclaimed elements of X, with Red going
first. The player who first fully occupies some F ∈ F is the winner. If
neither of the players wins and all the elements of the board are claimed,
the game is declared a draw. Here, the target sets of the family F are called
winning sets.

Example 1.3.1. The most notable example of this class of positional games
is the widely popular game Tic-Tac-Toe. This game is played on the board
represented with a 3 × 3 grid square. The board consists of nine elements,
while the family F consists of eight winning sets which are: three horizontal
lines, three vertical lines, and two diagonals, see Figure 1.1. The winner is
the first player who possesses a whole winning line (set). We know that if
both players play optimally this game ends in a draw.

We give another example of a Strong Maker-Maker game that is often studied
and represents the generalized version of the Tic-Tac-Toe game.

Example 1.3.2. The generalized version of the Tic-Tac-Toe game is the
so-called nd game. The board of this game is X = [n]d, the d-dimensional
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-8-8 -6-6 -4-4 -2-2 22 44 66 88 1010 1212 1414

-4-4

-2-2

22

44

66

88

00

Figure 1.1. Tic-Tac-Toe game.

cube. A winning set (line) is an n-tuple (a(1),a(2), ...,a(n)), such that the
sequence akj , 1 ≤ j ≤ d, is either increasing, decreasing or constant, where
1 ≤ k ≤ n, and not all sequences are constant. The winner is the player who
occupies an entire winning set (line) first. The classical Tic-Tac-Toe game
is the 32 game. We do not know much about the nd game, and the reason
lies in the fact that analyzing this game in full generality is out of reach.
What we do know is that for fixed n the first player wins if d is large enough.
However, if the situation is the opposite, i.e. d is fixed and n is large enough,
the game ends in a draw.

Generally speaking, determining the outcome in a strong Maker-Maker game
proves to be challenging, and there are hardly any general tools at disposal.
One such tool is the strategy stealing argument which we can use to show
that Red can guarantee at least a draw in any game.

Theorem 1.3.3. [9] In the strong Maker-Maker positional game (X,F), the
first player can guarantee at least a draw.

Proof. We will assume to the contrary that the second player–Blue has a
winning strategy S. The first player–Red plays his first move arbitrarily
and then steals the strategy S. After the first move of Blue, Red imagines
that he is the second player and responds to each of Blue’s moves as the
strategy S dictates. If this strategy proposes that Red claims the edge that
he has already claimed in his first move, then he plays arbitrarily. Note
that here one extra move cannot harm the player. Therefore, following the
strategy S, Red can also win, which is a contradiction.
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This argument affirms that the first player indeed has an advantage. We also
conclude that in this kind of game, only two outcomes are possible: Red’s
win and a draw. Sometimes we work with games where a draw is not an
option, in that case, using strategy stealing argument we conclude that Red
has a winning strategy. One downside of this argument is the fact that we
do not know anything about the winning strategy, and finding an explicit
winning strategy very often looks hopeless.
As we saw above in the strong Maker-Maker game it is enough just to know
that a draw is not an option to know the winner. A mathematical tool that
we can use in this situation is the Ramsey property of the game hypergraph
(see [9]). If a game has a Ramsey property, that means that every 2-coloring
of the board in red and blue gives a monochromatic set F ∈ F . Therefore,
if a game has a Ramsey property draw is impossible.
Almost at the end of the list of tools is a pairing strategy, which we can use
to show that Blue can guarantee a draw. Indeed, if we can make a disjoint
pairing of the elements of the board X, such that each winning set contains
one of the pairs, then Blue can always claim the other element from the pair
Red has chosen and thus, prevent Red from winning.
Having in mind how limited the set of tools is, it is not too surprising that
so few results on strong Maker-Maker games can be found in the literature.
Recently, an interesting idea appeared in paper [44], by Ferber and Hefetz.
They proved that playing on the edge set of Kn, for sufficiently large n, Red
can win perfect matching and Hamilton cycle game, and in [45] the same
authors proved that, for sufficiently large n and every positive integer k, the
first player can win k-vertex-connectivity game. Both papers rely on fast
winning strategies for weak games.

Strong Avoider-Avoider game

Another type of strong games is the Strong Avoider-Avoider game (X,F).
This game is again played by two players Red and Blue, but now the player
who first fully occupies some F ∈ F loses the game. If neither of the players
loses and all the elements of the board are claimed, the game is declared a
draw. Here, the target sets of the family F are called losing sets.

Example 1.3.4. The first such game, widely known as Sim, was introduced
in 1961 by Simmons [99]. The board of Sim is the edge set of K6, and a
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Chapter 1. Introduction

player who first claims a triangle loses, see Figure 1.2. Even though it is
immediate that draw is impossible (using the Ramsey property of the board),
and the board is reasonably small (it has just fifteen edges), analyzing it is
challenging, and the proof that Blue wins is performed with the help of a
computer.

(a) (b)

Figure 1.2. The game Sim: (a) the graph after Red’s fifth move. (b) the graph at
the end of the game (Red claims a triangle and loses in his last move).

In [100] Slany gave a methodical study of the hardness of determining the
winner for several games similar to Sim. Further, Mead, Rosa and Huang
in [87] gave an explicit winning strategy for Blue in Sim, and recently
in [110] Wrzos-Kaminska gave a simple human-playable winning strategy.
Other variants of strong Avoider-Avoider games were studied by Harary
in [61], who introduced several finite games on graphs on up to six vertices.
At first sight, it may seem that in strong Avoider-Avoider games, in contrast
to the strong Maker-Maker games, Blue always has an upper edge, and Red
as the first player cannot expect to win under optimal play. This, however,
turns out not to be true!
For example, in d-dimensional Tic-Tac-Toe game nd (see [9] for details),
where n is odd, Red has an explicit drawing strategy: In his first move, he
chooses the central element, let us denote it by C. After that, whenever
Blue chooses an element P Red chooses P ′ that is symmetrical with respect
to C. If we suppose for a contradiction that Red loses, i.e. that his graph
has a red line L (note that it is not possible that C belongs to L), then

8
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L′, its mirror image over the cube’s center, is a blue line and has been fully
occupied before L, a contradiction.
Now, as game 33 cannot end in a draw (using the Ramsey property [9]), we
can conclude that it is a Red’s win. In [77] Johnson, Leader, and Walters
proved that there are transitive games that are a Red’s win, for all board
sizes which are not a prime, or a power of 2.

1.3.2 Maker-Breaker games

In contrast to the strong positional games where the two players compete
for achieving the same objective, the weak games are asymmetrical. The
first player is given a goal while the second one just tries to prevent the first
player from achieving his goal.
In Maker-Breaker positional game (X,F) (also called “the weak game”), two
players are called Maker and Breaker, and the elements of the family F are
called the winning sets. Maker wins the game if, by the end of the game, he
claims all elements of some F ∈ F , otherwise, Breaker wins the game.
As in strong Maker-Maker games, Maker wants to claim all the elements of
some winning set, but he does not have to do it first. Furthermore, whether
Blue has occupied a winning set for himself or not is of no interest. Note
that this game cannot end in a draw, Maker wins if by the end of the game,
he occupies some winning set, and Breaker wins if he occupies an element
in each of the winning sets.

Example 1.3.5. Observe the game Tic-Tac-Toe under the Maker-Breaker
rules. Here Maker wants to put three of his marks in the same winning line,
and he does not care about three Breaker marks in a winning line. Having
this in mind, one can easily find a winning strategy for Maker.

We give another example of a Maker-Breaker game called the Row-Column
Game.

Example 1.3.6. In the Row-Column Game, the board is n× n square and
the players alternately claim its elements. Winning sets (lines) are all rows
and columns, so together there are 2n winning sets. Maker wants to achieve
an advantage in some winning set, and if he succeeds in doing that, the game
is Maker’s win, otherwise, it is Breaker’s win.

9
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Besides determining the winner of the game, one equally interesting ques-
tion we can find in the literature about this game is how large the Maker’s
advantage can be. It is clear that in case Breaker wins this game, the advan-
tage is 0. If we reduce the family of winning sets just to rows (or columns),
then we can use the pairing strategy and conclude that for even n there is
no advantage, otherwise, the advantage is 1.
Taking into account both rows and columns, the situation is substantially
different. Beck proved in [8] that Maker can achieve at least n

2 + 32
√
n

elements of some winning set. For the upper bound Székely in [108] showed
that the second player has a strategy to limit the number of opponent’s
elements in each winning set to at most n

2 +O(
√
n log n).

Figure 1.3. The game Hex on the 11× 11 board: A Blue winning path.

Example 1.3.7. The game Hex is played on a board that is a rhombus of
hexagons of size n×n (the well-known versions are when n = 11 or n = 13).
Two opposite sides of the rhombus are colored red and blue, respectively,
see Figure 1.3. Two players, Maker and Breaker alternately color uncolored
hexagons of the board red and blue, respectively. The goal of each player is
to connect the opposite sides of the board in his color first, i.e. to make a
path in his color from one side to the other.

10
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At first glance, it may seem that this is a strong game. However, this is
not true, because the winning sets of the players are not the same. We can
observe the family of winning sets as all red paths between two opposite red
sides of the board, and reformulate Maker’s goal to win, if by the end of
the game he owns one of these paths. On the other hand, Breaker wins if
he prevents Maker from making such a path. That this setup is equivalent
to the original game we can conclude from the well-known Hex theorem of
Nash [53], which says that every red/blue coloring of the Hex board results
in a monochromatic path that connects two opposite sides of the rhombus
of the same color.

In weak games, we will assume that Maker is the first player, unless it is
stated differently. Being the first player is an advantage as one extra move
cannot harm a player. Indeed, we know that if Maker can win as the second
player, he can also win as the first player [69]. The same holds for Breaker.
One of the most applied results for Maker-Breaker games is the following
criterion that gives us a general condition for Breaker’s win.

Theorem 1.3.8. ([40], Erdős-Selfridge Theorem). Let F be a hypergraph.
If ∑

A∈F
2−|A| <

1

2

then Breaker has the winning strategy as the second player. If Breaker plays
first, then he wins if ∑

A∈F
2−|A| < 1.

This theorem has many applications in analyzing these games, one of the
reasons is that the condition for Breaker’s win can be easily checked. When
we work with games where the hypergraph of the game is k-uniform, which
means that each of the winning sets has exactly k elements, Erdős-Selfridge
criterion becomes true if |F| < 2k−1.

Beck in [9] gave a similar criterion for Maker’s win. Denote with ∆2(F) the
max-pair degree of F , that is, max{|{A ∈ F : {u, v} ⊆ A}| : u, v ∈ X}.

Theorem 1.3.9. [9] Let F be a hypergraph of the game. If∑
A∈F

2−|A| >
1

8
∆2(F)|X|,
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then Maker has a winning strategy.

Usually, we observe games that are played on Kn, which means that the
board of the game is an edge set of the complete graph on n vertices. One
of the most studied games of this kind is Perfect Matching game Mn, in
which the winning sets are all perfect matchings of Kn. The second one is
Connectivity game Cn, where the winning sets are all spanning trees of Kn.
For Hamiltonocity game Hn, the winning sets are all Hamilton cycles of Kn.
In [81] Lehman showed that Maker can win in the Connectivity game played
on E(Kn). Moreover, he proved that Maker needs just n− 1 moves to make
a spanning tree, which is the best possible.
An attempt was made to prove similar results for Hamiltonocity game. The
first attempt can be found in [28] where Chvátal and Erdős proved that
Maker can win Hamiltonocity game played on E(Kn) for sufficiently large
n. Then, Papaioannou in [92] improved this result proving that Maker can
win this game for n ≥ 600. Later, Hefetz and Stich in [74] showed that
Maker wins Hamiltonocity game when n ≥ 29. Eventually, Stojaković and
Trkulja showed in [107] that Maker can win this game if and only if n ≥ 8.
We now move on to study the number of moves Maker needs to play to
ensure his win. This problem for the first time was considered in [65] by
Hefetz, Krivelevich, Stojaković, and Szabó. They showed that the minimum
number of moves Maker needs to play to win in Hamiltonocity game is n+1
or n + 2, with the assumption that n is large enough. A few years later
Hefetz and Stich in [74] showed that this number is exactly n+ 1.
Maker-Breaker games on a complete bipartite graph Kn,n were studied by
Lu in [85] and [83]. Here, Maker and Breaker, alternately take previously
untaken edges of Kn,n, one edge per move, with Breaker going first. The
game ends when all edges have been taken. Let us denote by M the Maker’s
graph at the end of the game. Maker wants as many edge-disjoint Hamil-
ton cycles (respectively, Perfect matchings) as possible. He proved that
Maker can achieve n edge-disjoint Hamilton cycles (respectively, (12 − ϵ)n
edge-disjoint perfect matchings, ϵ > 0) for large n. The same author in
[84] observed Hamilton cycle game played on the edge set of the complete
graph Kn and proved that here Maker can claim (116− o(1))n edge-disjoint
Hamilton cycles.
For the Perfect matching game it is proven in [65] that Maker builds a perfect
matching in n

2 + 1 moves when n is even, and in ⌊n2 ⌋ moves for odd n.
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1.3. Positional games

In some Maker-Breaker games it is not hard to prove that Maker can win,
for those games the question “How fast he can do it?” appeared naturally. It
turned out that this question is important because its answer has numerous
applications in other types of positional games. We saw in the previous
section that strong games are hard to analyze, what is interesting is that
Maker’s fast win implies Red’s win in strong Maker-Maker game. Indeed,
as Maker is the first player, if he can occupy a whole winning set A in |A|
moves, where A is the smallest winning set, the game is finished before Blue
has a chance to play his |A|-th move. Therefore, Red does not have to think
about how to prevent Blue, but only how to occupy a winning set for himself.
Let us mention another game where the question of Maker’s quick win was
observed. For a given tree T on n vertices, we play the Maker-Breaker game
on the edge set of a complete graph on n vertices. Maker wins this game at
the moment when his graph contains a copy of T . It is proven in [29] that
if T is a tree with a bounded maximum degree and n is large enough, then
Maker can win this game in at most n+ 1 moves. Notice that this is just 2
away from the best possible.
In the following example, we give an explicit winning strategy for Maker,
when n ≥ 6.

Example 1.3.10. [69] The triangle game is played on the edge set of Kn

and the winning sets are all copies of K3 in Kn. As Maker is first to move, he
claims an arbitrary edge uv, then in his first move Breaker claims an edge,
we denote it by xy. Let us denote by vw the second move of Maker, such
that w /∈ {u, v, x, y}. If the second move of Breaker is not the edge uw, then
Maker claims that edge and wins in his third move. Otherwise, if Breaker
claims uw, then Maker claims an edge vz for some vertex z /∈ {u, v, x, y, w}.
Now there exist two free edges that make a triangle in Maker’s graph (zw
and zu), as Breaker cannot claim both of them in his next move, Maker
makes a triangle in his fourth move and wins.

Biased Maker-Breaker game

As can be seen, in the strategy in Example 1.3.10, Maker can easily win this
game, while the Breaker’s chances are equal to zero. One can ask what are
the possibilities for changing this game to give more power to Breaker. One
standard way of doing that was for the first time suggested by Chvátal and
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Erdős in [28]. This type of game we call a biased game.

Definition 1.3.11. [69] Let p and q be positive integers, let X be a finite
set, and let F ⊆ 2X be a family of subsets of X. In the biased (p : q) Maker-
Breaker game (X,F) the only difference compared to Maker-Breaker games
is that Maker claims p free elements of the board per move and Breaker
claims q free elements of the board per move. The integers p and q we
call the biases of Maker and Breaker, respectively. If in the last move the
player does not have enough free elements of the board, he claims all the
free elements of the board and the game ends.

The Maker-Braker games that we saw earlier are a special case when p =
q = 1, that we call unbiased or fair. We can now see what happens when
the triangle game from Example 1.3.10 is played under biased rules. In
[69] it is proved that Maker has a winning strategy in the (1 : b) triangle
game for every b ≤

√
n
2 , and Breaker has a winning strategy if b ≥ 2

√
n. A

slightly better strategy for Breaker given in [6] gives that Breaker wins for
every b ≥ (2 − 1

24)
√
n. Recently, in [56] Glazik and Srivastav significantly

reduced the gap towards the lower bound, proving that Breaker wins for
b ≥

√
(83 + o(1))n ≈ 1.633

√
n and n sufficiently large.

When Chvátal and Erdős introduced (1 : b) Maker-Breaker game in [28],
they noticed that they are bias monotone. To be more precise, if Breaker
can win in the (1 : b) game, he can also win in the (1 : b + 1) game. Also,
note that if the board of the game is X then Breaker wins in (1 : |X|) game,
except in the case when the family of winning sets F contains an empty
set or a set of cardinality one. Therefore, we can define the threshold bias
of the game (X,F) as a unique positive integer bF such that the (1 : b)
game is a Breaker’s win if and only if b > bF , assuming that F ̸= ∅ and
min{|A| : A ∈ F} ≥ 2, see Figure 1.4.
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Figure 1.4. Threshold bias bF .

We can also conclude that general biased (a : b) Maker-Breaker (X,F) game

14



1.3. Positional games

is bias monotone, i.e. if Maker can win (a : b) game, then he can also win
in (a + 1 : b) and (a : b − 1) game. The same thing works for Breaker, if
(a : b) Maker-Breaker (X,F) game is Breaker’s win, then Breaker can also
win in (a : b + 1) and (a − 1 : b) game. And more generally, if a player
claims more elements at any point of the game, that cannot harm him. As
in unbiased games, we have general theorems that are applicable to biased
Maker-Breaker games.

Theorem 1.3.12. ([11], Biased Erdős-Selfridge Theorem) Let (X,F) be a
positional game, and let p and q be positive integers. If∑

A∈F
(1 + q)

−|A|
p <

1

1 + q
,

then Breaker (as the second player) wins (p, q) Maker-Breaker (X,F) game.
If Breaker is the first player, then the condition for Breaker’s win is∑

A∈F
(1 + q)

−|A|
p < 1.

In the following theorem, we give a condition for Maker’s win in the biased
game.

Theorem 1.3.13. [9] Let (X,F) be a positional game, and let p and q be
positive integers. If∑

A∈F

(p+ q

p

)−|A|
>

p2q2

(p+ q)3
∆2(F)|X|,

then Maker has a winning strategy in the biased (p : q) Maker-Breaker game.

Here, we single out some results about the threshold bias in Maker-Breaker
(1 : b) games. For the Connectivity game, Chvátal and Erdős [28] proved
that the threshold bias is between (14 − ϵ) n

lnn and (1 + ϵ) n
lnn , when ϵ > 0.

Later, Beck [11] improved the lower bound to (ln 2−ϵ) n
lnn . Finally, Gebauer

and Szabó [55] showed that the threshold bias for the Connectivity game is
asymptotically equal to n

lnn , and solved the long-standing open problem.
When it comes to Hamilton Cycle game, Bollobás and Papaioannou [19]
showed that Maker can win (1 : b) Hamilton Cycle game if b ≤ O

(
lnn

ln lnn

)
.
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Then, Beck [12] gave an explicit winning strategy for Maker, when b ≤(
ln 2
27 − o(1)

)
n

lnn and n is sufficiently large. Later, Krivelevich and Szabó
in [79] improved this bound to (ln 2− o(1)) n

lnn . Finally, Krivelevich in [78]
showed that the threshold bias for Hamilton Cycle game is asymptotically
equal to n

lnn , finally settling this question.
Biased version of the Maker-Breaker game with biases a and b is also called
doubly biased Maker-Breaker game. Some of the results about these games
can be found in [73] where the authors studied the Connectivity game, de-
termining the winner for almost all a and b. Results about the (a, b) Maker-
Breaker Clique-game can be found in [54], whereas for the results about the
planarity game, the k-colorability game, and the Kt-minor game, see [68].

1.3.3 Avoider-Enforcer games

Avoider-Enforcer games are the misère version of Maker-Breaker games,
with two players named Avoider and Enforcer. The rules in these games
are, in a way, opposite to the rules in Maker-Breaker games. Indeed, while
the goal of Maker is to claim a whole winning set for himself and Breaker
wants to prevent him from doing that, Avoider’s goal is to avoid claiming a
whole winning set, while Enforcer wants to force Avoider to claim a whole
winning set. More precisely, Enforcer wins the game (X,F) if, by the end
of the game, Avoider claimed all elements of some F ∈ F , otherwise Avoider
wins.
We observe the biased version of this game in the same manner as in the
Maker-Breaker games. Namely, in an (a : b) Avoider-Enforcer game played
on the board X with the given family of losing sets F , Avoider claims a
elements of X per turn, and Enforcer claims b elements of X per turn. If in
the last move, there are fewer free elements of the board than a bias of the
player that is to play, he claims all the remaining free elements of the board.
As we saw in the previous section Maker-Breaker games are bias monotone,
and one can naturally wonder if this is true for Avoider-Enforcer games. If
we think like Avoider, i.e. the goal is to avoid something, at first sight, it
looks like claiming less elements cannot harm the player. It turns out that
this is not true.

Example 1.3.14. Observe the Avoider-Enforcer (a : b) game played on
a hypergraph whose edge set contains two disjoint sets and each of them
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has two elements, see Figure 1.5. For a = b = 1 Avoider starts the game
claiming one arbitrary element x. Then Enforcer claims one element y. If
both of them are in the same set, Avoider plays arbitrarily in his following
move and wins. Otherwise, Avoider claims another element from the set that
contains y and wins. Therefore, the (1 : 1) game is Avoider’s win. When
a = 1 and b = 2, whatever Avoider plays in his first move, Enforcer claims
both elements from the other set and manages to force Avoider to lose in
his second move. Hence, the (1 : 2) game is Enforcer’s win. If a = b = 2
Avoider starts the game claiming one element from both sets, after the first
move of Enforcer, the game is over and Avoider wins.

Figure 1.5. The hypergraph of the game from the example 1.3.14.

As we can conclude from Example 1.3.14, Avoider-Enforcer games in gen-
eral are not bias monotone. This implies that it is not possible to define
the threshold bias in the same way as in Maker-Breaker games. Having
that in mind Hefetz, Krivelevich, and Szabó in [70] introduced the following
definition.

Definition 1.3.15. For an (1 : b) Avoider-Enforcer (X,F) game we define
the lower threshold bias as the largest integer f−

F such that for every b ≤ f−
F

Enforcer wins. Analogously, upper threshold bias is the smallest non-negative
integer f+

F such that for every b > f+
F Avoider wins. Upper and lower

threshold biases always exist (except in some trivial cases) and we know
that f−

F ≤ f+
F holds, see Figure 1.6. In the special case when f−

F = f+
F , this

number is called the threshold bias of the game.

The absence of the threshold bias inspired the authors of [64] to adjust these
rules such that ensure the existence of bias monotonicity. They defined the
so-called monotone rules, where each of the players is allowed to claim more
elements of the board per move. More precisely, let (X,F) be a monotone
(a : b) Avoider-Enforcer game. In each of his turns, Avoider claims at least a
elements of the board, while Enforcer claims at least b elements of the board.
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Figure 1.6. Upper and lower threshold bias.

With these rules the threshold bias becomes well-defined. If an (a : b) game
is Avoider’s win, then so are these games (a− 1 : b) and (a : b+ 1).

Definition 1.3.16. Let (X,F) be an monotone (1 : b) Avoider-Enforcer
game. We define the unique monotone threshold bias fmon

F as the largest non-
negative integer such that Enforcer wins the game if and only if b ≤ fmon

F ,
see Figure 1.7
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Figure 1.7. Monotone threshold bias.

Original rules, where each of the players claims exactly as many elements
as the bias suggests we call the strict rules. Each Avoider-Enforcer game
can be played under both sets of rules. Therefore, we emphasize which
system of rules the game is based on, strict or monotone. Even though this
adjustments in rules look minor, they can drastically change the outcome of
the game. We compare as an example results related to the Connectivity
game.
In the (1 : b) Connectivity game played on E(Kn) under strict rules, it is
interesting to observe that the threshold bias in this game exists. Indeed, in
[70] the authors showed that f−

C = f+
C = ⌊n−1

2 ⌋. On the other hand, if the
game is played under monotone rules, combining results from [64] and [79]
we get that the threshold bias for the Connectivity game is (1 + o(1)) n

lnn ,
very far from f−

C and f+
C .

As in the Maker-Breaker games, we also have two important winning criteria
for Avoider’s win in the (a : b) game (X,F).
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Theorem 1.3.17. [70] If ∑
A∈F

(1 +
1

a
)−|A|+a < 1,

then Avoider wins the biased (a : b) game (X,F), both strict and monotone,
for every b ≥ 1.

One limitting factor of this criterion is the fact that it does not consider the
Enforcer’s bias, hence it is rarely effective when b is large. This lack was
partially improved by Bednarska-Bzdȩga in [14], who gave another criterion
for games played on the hypergraphs with small rank, where the rank of F
is the cardinality of the largest set X ∈ F .

Theorem 1.3.18. Let F be a positional game of rank r. If∑
A∈F

(1 +
b

ar
)−|A|+a < 1,

then Avoider wins the biased (a : b) game (X,F), both strict and monotone.

There is a number of results on Avoider-Enforcer games in the last few
decades, we mention some of them. Anuradha, Jain, Snoeyink and Szabó
[3] looked at the unbiased non-planarity game. This game ends when the
edges chosen by Avoider form a non-planar subgraph. They showed that
Avoider can play for 3n− 26 turns. The same game was studied by Hefetz,
Krivelevich, Stojaković and Szabó in [66] where they were interested in the
question how fast Enforcer can win. They estimate this quite precisely,
giving the minimum number of moves Enforcer has to play in order to win in
the non-planarity game, the connectivity game and the non-bipartite game.
Balogh and Martin [4] studied the Avoider-Enforcer game in which Enforcer
wins this game if Avoider’s graph has the property P. In this paper P is the
property that a member of F is a subgraph or an induced subgraph, and
they tried to find the smallest number of moves Enforcer needs to play to
win.
Barat and Stojaković in [7] analyzed the duration of the unbiased Avoider-
Enforcer game for three different positional games in which the Avoider’s
goal is to keep his graph outerplanar, diamond-free and k-degenerate, re-
spectively. Later in [46] the authors studied Avoider–Enforcer games played
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on edge-disjoint hypergraphs for both sets of rules, strict and monotone, and
gave a sufficient condition to win for each player. This provides the analog
to the well-known Box games.
Grzesik et al. in [59] studied (1 : b) Avoider-Enforcer games played on Kn,
where Avoider’s goal is to avoid claiming a copy of some small fixed graph
H. They gave the explicit winning strategy for both players when H = K1,l,
for both strict and monotone rules.

1.3.4 Client-Waiter (and Waiter-Client) games

Client-Waiter games were introduced by Beck [10] under the name Chooser-
Picker games. In the unbiased game, the player called Waiter selects 2
unclaimed elements of the board X and offers them to Client, then Client
takes one of them while the other element goes back to Waiter. Client wins
in this game if he occupies a whole winning set, and Waiter wins if he can
prevent Client’s win. When |X| is odd, the last element goes to Client.
In the counter version of this game called Waiter-Client game, everything
stays the same except that the winning conditions are swapped, and when
|X| is odd, the last element goes to Waiter. Therefore, Client has the same
goal as Avoider. Waiter’s goal is to force Client to claim all elements of some
winning set and Client tries to avoid it.
Csernenszky, Mándity and Pluhár [35] give winning conditions for Waiter in
some Client–Waiter games, and extend the results of Beck. Csernenszky in
[33] confirms Beck’s conjecture that Waiter has better chances than Maker
for the diameter-2 game, that was studied by Balogh et al. [5].
Later in [34] Csernenszky et al. looked at the complexity of these games, and
proved that both versions are NP-hard, which gives support to the paradigm
that the games behave similarly while being quite different in definition.
They also investigate the pairing strategies for Maker–Breaker games in the
same paper.
Bednarska in [13] studied a biased version of the Client-Waiter game, where
she proved two weight-function-based winning criteria for Waiter and showed
that the Erdős–Selfridge winning criterion for Breaker’s win is also the win-
ning criterion for Waiter in the unbiased game. She improved previous
results from [35] and estimated the threshold bias for Waiter in some Client-
Waiter games.
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Dean and Krivelevich [36] studied several Client-Waiter games on the edge
set of the complete graph, and the H-game on the edge set of the random
graph. Hefetz et al. [71] observed the both Waiter–Client and Client–Waiter
versions of the non-planarity, Kt-minor and non-k-colorability games, and
for each of them gave the precise estimate of the unique integer at which the
outcome of the game changes from Client’s win to Waiter’s win.
Another variant of the Waiter-Client game is introduced in [15]. For a given
graph H and a positive integer n, a Waiter-Client H-game is a biased game
played on the edge set of the complete graph in which Waiter is trying to
force many copies of H and Client is trying to prevent him from doing so.
They proved that the value of the game is roughly the same as the expected
number of copies of H in the random graph when the graph H is a complete
graph or a tree.
Hefetz, Krivelevich and Tan [72] studied Waiter–Client and Client–Waiter
Hamiltonicity games on random graphs and found the smallest edge proba-
bilities p1 and p2 for which a.a.s. (asymptotically almost surely) Waiter has
a winning strategy for the (1 : q) Waiter–Client and Client-Waiter Hamil-
tonicity game, for any q.
One more version of this game is introduced recently by Krivelevich and
Trumer [80] called the Waiter-Client Maximum Degree game. Waiter and
Client play on the edge set of the complete graph such that Waiter offers
q + 1 free edges in each turn. Client claims one of them and all of the
remaining edges go to Waiter. When less than q + 1 edges that have not
been offered remain, Waiter claims them all and the game ends. Client
wins if in his graph at the end of the game there is no vertex of degree at
least D and Waiter wins otherwise. They studied the maximum degree of
the Client’s graph obtained by optimal play. For q = 1 they obtained that
D = n

2 +Θ(
√
n lnn).

Recently in [31] the authors studied fast strategies for several Waiter-Client
games played on the edge set of the complete graph in which the winning
sets are perfect matchings, Hamilton cycles, pancyclic graphs, fixed spanning
trees or factors of a given graph.
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1.3.5 Walker-Breaker games

Walker-Breaker games are another version of Maker-Breaker games. In fact,
the only difference compared to Maker-Breaker games is that Maker is forced
to play such that his graph must stay a walk or a path of a given graph
G. These games are recently introduced by Espig, Frieze, Krivelevich, and
Pegden in [42]. At any moment of the game, Walker is positioned at some
vertex v on his turn (In his first move he chooses this vertex arbitrarily).
Then, in his i-th move he claims an edge e = vui that is incident with v and
it is not previously claimed by Breaker. After that, the vertex ui becomes
the new position, i.e. v = ui. Breaker plays as usual, without any restriction,
so this setup brings more power to Breaker.

Example 1.3.19. As an example of this game, we illustrate the Breaker’s
strategy for isolating a vertex in Walker’s graph, and that implies that
Walker is not able to make a spanning graph in the unbiased version of
this game. After Walker claimed his first edge, Breaker chooses one vertex x
that is not touched by Walker. Then in each of his moves, Breaker claims the
edge that is incident with x and Walker’s current position v, which secures
a Breaker’s win.

One of the first questions about these games was studied in [42] and that is:
What is the largest number of vertices Walker can visit in a given graph?
They proved that the answer to this question in (1 : b) biased games is
n − 2b + 1. Then, in [32] the authors observed how large cycle can Walker
make. Later, Forcan and Mikalački in [48] studied the (2 : b) version of this
game and showed that Walker can win Connectivity and Hamilton cycle
game even when playing against Breaker whose bias is of the order n

lnn .
Several different game variants arose from this one such as WalkerMaker-
WalkerBreaker games, see [50] and [47], where both players have the con-
straint to claim edges of a walk.

1.3.6 Toucher-Isolator game

Toucher-Isolator game is another version of Maker-Breaker games played on
the edge set of a given graph G. This is the game played by two players
called Toucher and Isolator. They alternately claim unclaimed edges of the
board, and Toucher plays first. The aim of Toucher is to ‘touch’ as many
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vertices as possible (i.e. to maximize the number of vertices that are incident
to at least one of his chosen edges), and the aim of Isolator is to minimise
the number of such vertices.
This game was introduced recently in [38] where the authors observe the
number of untouched vertices u(G) at the end of the game when both players
play optimally. They proved that for any graph G, the number of untouched
vertices is bounded between d0+

1
2d1−1 ≤ u(G) ≤ d0+

3
4d1+

1
2d2+

1
4d3, where

di represents the number of vertices with degree exactly i. Interestingly,
from this result, we can see that it is enough to consider just the vertices
with a degree at most three. In the same paper, they studied this game for
some special classes of graphs, such as cycles, paths, trees, and k-regular
graphs, and get the following results: 3

16(n − 3) ≤ u(Cn) ≤ n
4 for cycles,

3
16(n−2) ≤ u(Pn) ≤ n+1

4 for paths, n−3
6 ≤ u(G) ≤ n

4 for any 2 regular graph
G with n vertices and n+2

8 ≤ u(T ) ≤ n−1
2 for any tree with n vertices.

Later, Räty in [96] improved the lower bound for trees to u(T ) ≥ ⌊n+3
5 ⌋,

which is sharp. The same author in [97] showed that u(Cn) = ⌊n+1
5 ⌋ and

u(Cn) = ⌊n+4
5 ⌋ when both players play optimally. Recently, Boriboon and

Kittipassorn in [20] gave the simpler proof for the Räty’s lower bound for
trees.

1.3.7 Maker-Breaker domination game

This game was for the first time introduced by Duchêne, Gledel, Parreau,
and Renault in [39] as another variant of the Maker-Breaker game. Let a
graph G = (V,E) be given, the board of the game X is the vertex set V , and
F is the set of all the dominating sets of G. Two players called Dominator
and Staller alternately occupy unoccupied vertices of G. Dominator wins if
he manages to build a dominating set of G, that is, a set D such that every
vertex not in D has a neighbor in D. Otherwise, Staller wins, i.e. he wins if
he manages to occupy a vertex and all its neighbors.
Domination game in a different setting was for the first time introduced in
[22] by Brešar, Klavžar and Rall, and more about this game can be found
in [24, 37, 90, 98, 111]
Studying Maker-Breaker domination game it turns out that it is hard to
control the sizes of the winning sets. Hence, in [39] the authors proposed
the reversed version of this game, i.e. Staller takes over the role of Maker
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in the neighborhood game, and Dominator becomes Breaker. In this paper,
they observed which player has a winning strategy. Another interesting
question is what is the minimum number of moves needed for Dominator to
win provided that he has a winning strategy, that was studied in [58].
Recently Gledel, Henning, Iršič, and Klavžar proposed a natural extension of
these games called Maker-Breaker total domination game, see [57]. Just as
the total domination game [75] (see also [23],[25],[76]) was a generalization
of the domination game, they introduced the Maker–Breaker total domina-
tion game. The first player, Dominator, wins on G if he can select a total
dominating set of G, that is, a set D such that every vertex of G has a
neighbor in D, and Staller wins if he can select all the vertices from the
open neighborhood of some vertex.
Although the definition for these two games looks very similar, it turns out
that they can be significantly different. Indeed, there are examples such as
the recent characterization of perfect graphs for the domination game, which
can confirm this, see [26]. Forcan and Mikalački [49] observed Maker-Breaker
total domination game on the connected cubic graphs.

1.3.8 Strong CAvoider-CAvoider game.

In the last few years, several variants of positional games have emerged,
like the PrimMaker-Breaker game introduced in [82] where the subgraph
induced by Maker’s edges must stay connected throughout the game. In
the Walker-Breaker games introduced by Espig, Frieze, Krivelevich, and
Pegden [42], Maker is constrained to choose edges of a walk or a path.
Similarly, in the WalkerMaker–WalkerBreaker games, see [50], both players
have the constraint to claim edges of a walk. Following this line of research
Strong CAvoider-CAvoider games can be seen as a natural extension of the
strong Avoider-Avoider games.
The Strong CAvoider-CAvoider game (E(Kn),F) is played by two players
Red and Blue, where the player who first fully occupies some F ∈ F loses the
game. Players alternately claim the edges of the complete graph Kn, such
that the graph of each player must stay connected throughout the game. If
neither of the players loses and all the elements of the board are claimed, the
game is declared a draw. The target sets of the family F are called losing
sets. We introduced these games in [103] where the family F consists of all
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copies of some given graph F .

1.3.9 Games on random boards

As we can see in the previous sections, the fair Maker-Breaker game played
on the edge set of a complete graph Kn for many standard graph properties is
Maker’s win. To give more power to Breaker, one approach was to introduce
the biased version of these games. Here, we give another approach, randomly
making the board sparser before the game starts. Therefore, some of the
winning sets vanish, Maker gets fewer chances for a win, and Breaker is given
more power. This kind of games were introduced by Stojaković and Szabó
[106].

Definition 1.3.20. Let (X,F) be a positional game and p ∈ [0, 1]. The
game on the random board (Xp,Fp) is a probability space of games, where

1. each x ∈ X is included in Xp with probability p and

2. Fp = {A ∈ F : A ⊆ Xp}.

As the probability p decreases, it becomes increasingly difficult for the Maker
to win, and at some point the Maker is no longer expected to win. As “being
a Maker’s win in F” is an increasing graph property [102], there must exist
a threshold probability pF for this property, and we search for it in the
unbiased version of the game in such a way that the following holds, see
Figure 1.8:

• Pr[Breaker wins Fp] → 1 for p ≪ pF ,

• Pr[Maker wins Fp] → 1 for p ≫ pF .

This question was studied for different types of games. Denote by G(n, p)
a graph on n vertices where each of the edges of the complete graph Kn is
included independently with probability p.
For well-known games such as connectivity and perfect matching game it
has been proven in [106] that the threshold probability is lnn

n . In the same
paper the authors showed that the threshold probability for Hamilton Cycle
game is between lnn

n and lnn√
n
. Later, Stojaković in [101] showed that pHAM
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Figure 1.8. Probability threshold.

is of order θ( lnn
n ). Finally in [67] the authors showed that the property that

Maker can win Hamilton cycle game, has a sharp threshold at (1+o(1)) lnn
n .

The Maker-Breaker k-clique game played on the edge set of the random
graph G(n, p) was studied by Müller and Stojaković in [89]. They gave the
threshold probability for the graph property that Maker wins this game and
that is pKk

= Θ
(
n

−2
k+1

)
, for all k > 3.

Another interesting fact about this game has been realized by comparing
the last result with the result of Bednarska and Łuczak [16]. They found the
threshold bias for the biased (1 : b) fixed graph game on E(Kn). It turns
out that for the Kk game the inverse threshold bias in (1 : b) game is of
the same order of magnitude as threshold probability pKk

in the unbiased
version of the game. This surprising result was for the first time found in
[106] for the perfect matching and connectivity game.
For the unbiased fixed graph game played on the random board, Nenadov,
Steger and Stojaković in [91] obtained that except trees and triangles, the
threshold for an H-game is given by the threshold of the corresponding
Ramsey property of G(n, p) with respect to the graph H.
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Combining two settings, the biased game and the game played on a random
board, a new interesting question appeared. For every p > pF , how large can
bpF be so that Maker wins Fp with bias (1 : bpF ) asymptotically almost surely?
The connecivity and perfect matching game were considered in [106], where
the authors obtained the smallest bias bpF , for which Breaker can win the
(1 : bpF ) game (Xp,Fp) almost surely. The result they got is that there exist
constants C1 and C2 such that bpC = Θ(pbC) = Θ(p n

lnn), when p ≥ C1
1
bC

, and
bpM = Θ(pbM) = Θ(p n

lnn), when p ≥ C2
1

bM
.

Later, in [43] Ferber et al. analyze biased Maker-Breaker games and Avoider-
Enforcer games, both played on the edge set of a random graph G(n, p).
More precisely, they proved that for every p = ω( lnn

n ) random graph G(n, p)
is such that the asymptotic threshold bias for perfect matching, Hamiltonoc-
ity and k-vertex-connectivity game is np

lnn . This result resolved the conjecture
given in [106]. For Avoider-Enforcer games, they proved that for p = Ω( lnn

n )
the threshold bias for all the aforementioned games is np

lnn .
Fast-winning strategies can also be studied on random boards. Clemens, Fer-
ber, Krivelevich and Liebenau [30] observed perfect matching, Hamiltonoc-
ity and k-vertex-connectivity game. They proved that for p = lnnK

n and
K > 100 the graph G(n, p) is typically such that Maker can win all the
aforementioned games as fast as possible, i.e. within n

2 + o(n), n+ o(n) and
kn
2 + o(n) moves, respectively.

1.4 Saturation two-player games on graphs

1.4.1 Saturation games.

For a given graph G = (V,E) is said to be saturated with respect to a
monotone increasing graph property P, if G does not have the property P,
but G ∪ {e} ∈ P for every edge e ∈

(
V
2

)
\E.

Given an empty graph on n vertices Kn and a property P, two players Max
and Mini progressively build a graph G ⊆ Kn such that G does not satisfy
the property P. Note that here both players claim edges of the same color,
i.e. they build the same graph G. The game finishes when there are no more
free edges that can be added to G, so G is a saturated graph. Max’s goal
is to maximize the length of the game, while Mini wants to minimize it.
Denote by s(n,P) the score of the game as the number of the edges of a
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graph G at the end of the game. The goal is to determine the score of the
game in two cases, when Max is the first player and when Mini is the first
player.
We define the two numbers that are related to the score of this game. The
first one is saturation number, denoted by sat(n,P), that is the minimum
size of a saturated graph on n vertices with respect to P. The second one is
the maximum possible size of a saturated graph on n vertices with respect
to P, denoted by ex(n,P). From everything above mentioned we conclude
that sat(n,P) ≤ s(n,P) ≤ ex(n,P).
Saturation games on graphs were first introduced in [52] by Füredi, Reimer,
and Seress. They observed the number s(n,K3) where K3 is the prop-
erty of containing a triangle. From Mantel’s theorem [109] we know that
ex(n,K3) = ⌊n2

4 ⌋. On the other hand, sat(n,K3) = n− 1, because the star
is a saturated graph with respect to K3. Therefore, we know that s(n,K3)
lies between these bounds. In [52] authors give a lower bound of order
n lnn. Later, Biró, Horn and Wildstrom [18] improved the upper bound to
26
121n

2 + o(n2).
Carraher et al. in [27] found the scores of some particular games, in which
the property P is the family of odd cycles O, the family of spanning trees
Tn, containing a K1,3, containing a P4. In the same paper they also observed
the saturation games played on bipartite graphs. Later in [63] Hefetz, Kriv-
elevich, Naor and Stojaković proved lower and upper bounds of the score
in the games where the property P is being k-connected, having chromatic
number at least k and admitting a matching of a given size.
Patkós and Vizer in [94] considered another version of this game in which
the board is the edge-set of the complete k-graph Xn,k on n vertices and
P = In,k is the set of intersecting families such that the following holds
In,k = {F ⊆ Xn,k, F ∩G ̸= ∅, ∀F,G ∈ F}.

1.4.2 Constructor-Blocker game.

Constructor-Blocker games are recently introduced by Patkós, Stojaković
and Vizer [93]. These games are a merge of two well-known games: Maker-
Breaker positional games and saturation games.
Let H and F be two fixed graphs. Two players, called Constructor and
Blocker, alternately claim unclaimed edges of the complete graph Kn. Con-
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structor is constrained to claiming only edges such that his graph does not
contain a copy of F , i.e. his graph must remain F -free. On the other hand,
Blocker can claim unclaimed edges without restrictions. The game is over
when Constructor cannot make any further moves, i.e. his graph is F satu-
rated or all edges have been claimed. The score of this game is the number
of copies of H in the Constuctor’s graph at the end of the game. The goal
of Constructor is to maximize the score, whereas Blocker aims to keep the
score as low as possible. The score of the game when both players play
optimally we denote by g(n,H, F ).
Let us denote by N (H,G) the number of copies of H in the graph G, and by
ex(n,H, F ) = max

G
{N (H,G) : G is an F -free graph on n vertices}. It can

be easily seen that ex(n, F ) = ex(n,K2, F ) because in that case, we count
the number of edges in the graph G. Recently in [1] the authors studied the
function ex(n,H, F ). It is clear that inequality g(n,H, F ) ≤ ex(n,H, F ) is
always true.
In Constructor-Blocker games unlike saturation games, both players build
their own graphs, and we count the number of copies of H just in the Con-
structor’s graph. In [93] the authors obtain the score for several different
games: when both F and H are stars, F = P4 and H = P3, F is a star and
H is a tree, F = P5 and H = K3, and they gave upper and lower bounds
on g(n, P4, P5).

1.4.3 Generalized saturation game

Generalized saturation games are introduced as a natural extension of two
different types of saturation games and Constructor-Blocker games.
Let H and F be graphs that are given in advance. Two players, Max and
Mini, alternately claim unclaimed edges of Kn such that the graph of the
game G does not contain a copy of F . The game ends when the players
cannot claim further edges, i.e. the graph G is F -saturated or there are no
more unclaimed edges. Note that here, as in the saturation games, both
players together build the same graph G ⊆ Kn.
The score of the game is the number of copies of H in G at the end of
the game. Max wants to maximize the score, while Mini tries to keep the
score as low as possible. When the graph H = K2, these games become
saturation games, so we could say that saturation games are the special case
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of generalized saturation games.
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Chapter 2

Main results

In this chapter, we list all the main results that will be proven in the rest of
this text. As we study three main topics in this thesis, this chapter consists
of three sections. Section 2.1 is devoted to Strong Avoider-Avoider positional
games. In Section 2.2 we give the main results for the achievement number
in strong Maker-Maker games. Finally, in Section 2.3 we list all the main
results we obtained for the generalized saturation games.

2.1 Strong Avoider-Avoider games

We will take a closer look at strong Avoider-Avoider games. Even though
their definition is natural and many questions about them have been asked,
very few of them have been answered. To offer some intuition behind this
phenomenon, we should keep in mind that the players in strong games have
the same goal and the only thing that makes a difference is who goes first,
we call this the “half-a-move advantage”. Informally speaking, depending on
the structure of the board there are different ways things can play out, but
that half-a-move eventually decides the game. So the player that can win
should propagate his (in most cases, comparatively small) advantage from
the beginning to the end of the game, knowing that one wrong move may
take the edge away from him. In contrast to this, in weak games, we have
more freedom when designing a winning strategy, as players have different
goals. This further allows the introduction of bias, first time introduced
in [28], which gives us more room to spare. Hence, in most of the weak
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games studied in the literature, we are not that close to the breaking point
at which a player stops winning and starts losing.

2.1.1 Strong Avoider-Avoider games on E(Kn)

As we have already seen, when we play a strong Avoider-Avoider game
(X,F), we are given a board X and a family of losing sets F . Two players
called Red and Blue in each of their moves claim one element of the board
X each, and the player who first fully occupies some F ∈ F loses the game.
We are interested in Strong Avoider-Avoider F games played on the edges
of the complete graph Kn, where the members of the family F are all sets
that contain a copy of F . Hence, the player who first fully occupies a copy
of F loses the game.
Not much is known about these games, while there are many open problems.
In [62] it was shown that Blue has a winning strategy in the P3 game, where
the forbidden graph is the path with just two edges. Recently, Beker [17]
generalized this result to all stars, proving that for each fixed k the Strong
Avoider-Avoider star Sk+1 game is a win for the second player for all n
sufficiently large. The proof is performed by actually building rather than
avoiding – showing that Blue can build a Sk+1-free graph of maximum size
fast, without wasting any moves, thus automatically securing a win.
The main idea of the proof is the following. Note that during this game,
both players must maintain the maximum degree in their graphs lower than
k + 1. We call the graph that satisfies this condition “valid”. Then, a
straightforward way for Blue to win would be to build a “valid” graph with
ex(n, Sk+1) = ⌊nk2 ⌋ edges. This proof is based on the idea that Blue can
build a “valid” graph of size ⌊nk−1

2 ⌋, such that if nk is even, there exists
an unclaimed edge which, when added to it, maintains the property that
this graph is valid. Then, using the fact that Red’s last move is uniquely
determined, Blue can force a win. In order to prove that this is possible
the author defined an auxiliary game played on a general graph, where the
goal is to make a layers of almost perfect matchings until Blue’s goal is
reached. For this, a fast winning strategy of Maker in the Maker-Breaker
perfect matching game is used.
Malekshahian [86] studied the possibility of Blue’s win in the triangle game
with the assumption that the game starts on several special mid-game posi-
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tions, without any definite implications on the outcome of the triangle game
itself. Hence, the only non-trivial Strong Avoider-Avoider game played on
E(Kn) for which the outcome is previously known is the star game.

Let S4 be a star on four vertices. We use the abbreviation CC>3 for the
collection of inclusion-minimal connected graphs on more than three vertices
and P4 represents a path on four vertices. Our goal is to determine the
outcome for the P4 game and the CC>3 game.

Theorem 2.1.1. Blue has a winning strategy in the Strong Avoider-Avoider
P4 game, played on Kn, where n ≥ 8.

In the following theorem, we consider the game where a player loses the game
as soon as he creates a connected component on more than three vertices.

Theorem 2.1.2. Blue has a winning strategy in the Strong Avoider-Avoider
CC>3 game, played on Kn, where n ≥ 5.

Let R(F ) be a diagonal Ramsey number, so every 2-coloring of edges of
a complete graph on at least R(F ) vertices gives a monochromatic F . If
n ≥ R(F ) we know that the strong Avoider-Avoider F game on E(Kn)
cannot end in a draw. For both the P4 game and the CC>3 game this readily
implies that there is no draw for n ≥ 5.

2.1.2 Strong CAvoider-CAvoider games

We have already seen in the previous chapter that intuition for these games
came naturally from similar games in which one or both players are restricted
to make a connected graph throughout the game.
We study Strong CAvoider-CAvoider F games in which the graph of each
player must stay connected throughout the game. The board is still the edge
set of Kn, and the players should not claim a copy of the forbidden graph
F . This is a natural extension of the strong Avoider-Avoider games, with a
connectedness constraint analog to the ones introduced in [82].

In the following, we prove that Blue can win in three different strong CAvoider-
CAvoider games.

Theorem 2.1.3. Blue has a winning strategy in the Strong CAvoider-CAvoider
S4 game, played on Kn, where n ≥ 7.
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Theorem 2.1.4. Blue has a winning strategy in the Strong CAvoider-CAvoider
P4 game, played on Kn, where n ≥ 5.

In the following theorem, we observe the Cycle game where the player who
first claims a cycle loses.

Theorem 2.1.5. Blue has a winning strategy in the Strong CAvoider-CAvoider
Cycle game, played on Kn, where n ≥ 6.

Note that if F ∈ {S4,K3}, then diagonal Ramsey number R(F ) is 6, hence
draw is not possible in any of the aforementioned three games.

2.1.3 Strong CAvoider-CAvoider games from a position

Here, we study strong CAvoider-CAvoider games that start from a particular
position on the graph, i.e. we can suppose that in this game several moves
have already been played, and we know how the graph of the game looks
like at that moment, and then we continue to play. This kind of game was
used by Malekshahian in [86].
A graph K5 whose edges are colored in two colors, such that it consists of
two C5’s, one in blue and the other one in red color we call a “drawn K5”, see
Figure 2.1. Position T will be the configuration of the graph G, such that
G consists of one “drawn K5” and n− 5 isolated vertices. Odd (respectively,
Even) cycle game is the game where the forbidden graph is any graph that
contains an odd (respectively, even) cycle.
In the following theorem we suppose that after the first five rounds, the
graph of the game consists of a “drawn K5” and some isolated vertices.

Theorem 2.1.6. Playing from position T , Blue has a winning strategy in the
Strong CAvoider-CAvoider C3 game, C4 game, C6 game, Odd cycle game,
and Even cycle game.
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Figure 2.1. Position T .

In Section 3.1 we give notation and preliminaries. In Section 3.2 we give the
proof of Theorem 2.1.1. In Section 3.3 we prove Theorem 2.1.2. Then, in
Section 3.4 we prove Theorem 2.1.3, Theorem 2.1.4, Theorem 2.1.5. Finally,
in Section 3.5 we prove Theorem 2.1.6.

2.2 Achievement number in strong Maker-Maker
games

Let us recall that in a strong Maker-Maker game (X,F), two players called
Red and Blue take turns in claiming previously unclaimed elements of X,
with Red going first. The player who first fully occupies some F ∈ F is the
winner. If neither of the players wins and all the elements of the board are
claimed, the game is declared a draw.

2.2.1 Opening remarks

We observe a strong Maker-Maker game played on the edge set of the com-
plete graph Kn, with the graph F given in advance. The first player who
completes a copy of F in his color is the winner. We define the achieve-
ment number of F as the smallest n for which Red can win this game, and
denote it by a(F ). Let us denote by R(F ) a diagonal Ramsey number,
that is the smallest integer such that every 2-coloring of the board gives a
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monochromatic F . Strategy stealing argument implies that a(F ) ≤ R(F ).
In the misère version of this game, called the strong Avoider-Avoider game,
the first player who completes a copy of F in his color loses. Here, we define
the avoidance number of F as the smallest n for which one of the players
can force the other one to make a copy of F and denote it by a(F ).
These numbers are for the first time introduced by Harary [61] where he
studied them for several small fixed graphs F . Later, the same author [41]
introduced the bipartite achievement number of F , denoted by ba(F ), which
is the minimum n for which Red wins playing on the complete bipartite graph
Kn,n. In this version, the fixed graph F is a bipartite graph with no isolated
vertices. In the same paper, he determined the bipartite achievement number
for stars, matchings, paths and cycles.
Achievement numbers were also studied by Beck in [9], where he was inter-
ested in finding this value for a clique Kq. Here the Erdős-Szekeres Theorem
comes to light when we need to determine the size of the board for which a
draw is not possible. It states that in any 2-coloring of the edges of the com-
plete graph KN with N ≥

(
2q−2
q−1

)
vertices, there must be a monochromatic

copy of Kq.
We are interested in several questions about the achievement numbers asked
by Harary in [61] and we are going to answer some of them. First, he gave a
table with the achievement numbers for several small graphs F whose values
were calculated using a computer, see Figure 2.2, with some unknown values
left blank. Later, in [41] Harary extended this table with two more values
calculated in the same way, a(K4 − e) = 7 and a(K4) = 10. He spelled out
the following problem and added a conjecture.

Problem 2.2.1. [61] Determine a(F ) and a(F ) for various families of graphs.
(This appears hard even for trees.)

Conjecture 2.2.2. [61] The minimum value of a(T ) among all trees T of order
n is realized when T = Pn, the path. The maximum of a(T ) is attained for
T the star K1,n−1.
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Figure 2.2. [61] The known achievement and avoidance numbers for graphs, with
the corresponding Ramsey numbers.

2.2.2 Red’s winning strategy for small graphs

As we mentioned above, the values of the achievement numbers given in the
table, see Figure 2.2, were calculated with the help of a computer, hence we
do not know anything about Red’s winning strategy. In the proofs of the
following assertions, we give an explicit winning strategy for Red starting
on a(F ) isolated vertices for some graphs F given in this table, and we also
observe the number of moves Red needs in order to win.

Observation 2.2.3. Achievement numbers for K2 and P3 are 2 and 3,
respectively, i.e. a(K2) = 2 and a(P3) = 3.

Proposition 2.2.4. The achievement number for 2K2 is 5, i.e. a(2K2) = 5.

Proposition 2.2.5. The achievement number for P4 is 5, i.e. a(P4) = 5.

Proposition 2.2.6. The achievement number for K1,3 is 5, i.e. a(K1,3) = 5.

Proposition 2.2.7. The achievement number for K3 is 5, i.e. a(K3) = 5.

Proposition 2.2.8. Achievement number for the K1,3+e is 5, i.e. a(K1,3+
e) = 5.
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We use notation K4 − e for a complete graph on four vertices minus one
edge.

Proposition 2.2.9. Red can win in a strong Maker-Maker K4 − e game
played on K7, i.e. a(K4 − e) ≤ 7.

2.2.3 Achievement number for paths, cycles, stars and per-
fect matchings

Some of the most important and oftentimes studied graphs, definitely are
paths, cycles, stars and perfect matchings. Hence, we are interested in find-
ing achievement numbers of paths, cycles, stars and perfect matchings, and
concurrently giving some of the answers for the Problem 2.2.1.

Proposition 2.2.10. Achievement number for a path on n vertices is a(Pn) =
n, for n sufficiently large.

Note that in Proposition 2.2.10 we suppose that n is sufficiently large, but
going through the proof we conclude that n must be bigger than 16. Hence,
the question if this is true for n ≤ 16 still remains open. It is clear that for
n ≤ 3 this is true, but a(P4) = 5, so for n = 4 it is not. It can be proven
that this is true for n = 5, 6, 7, so it suggests that it might be a(Pn) = n,
for all n ∈ N\{4}.

Proposition 2.2.11. Upper bound for the achievement number of a star on
n vertices is a(Sn) ≤ 2n− 3, for all n ≥ 3.

We have already seen that a(F ) ≤ R(F ) is always true, and it is interesting
to see for which graphs F is true that a(F ) < R(F ). Knowing Ramsey
numbers for a path and a star on n vertices which are R(Pn) = n+ ⌊n2 ⌋ − 1
and R(Sn) = 2(n−1)−ϵ, where ϵ = 1 or ϵ = 0 for n even or odd, respectively
(see [95]), and the results of Proposition 2.2.10 and Proposition 2.2.11, we
conclude that a(Pn) < R(Pn) is true for all n, and a(Sn) < R(Sn) is true
when n is odd.

Proposition 2.2.12. Achievement number for a cycle on n vertices is a(Cn) =
n, for n sufficiently large.

Comparing this result with the Ramsey number of the same graph, which
is R(Cn) = n+ n

2 − 1 for n even and bigger than 4 or R(Cn) = 2n− 1 for n
odd and bigger than 3 (see [95]), we conclude that a(Cn) < R(Cn).

38



2.2. Achievement number in strong Maker-Maker games

Proposition 2.2.13. Achievement number for the perfect matching M2n on
2n vertices is a(M2n) = 2n, for n sufficiently large.

Note that we gave here the exact value for paths, cycles, and perfect match-
ings, whereas for stars we gave an upper bound. An obvious lower bound
for a(Sn) is n, as playing on n vertices Blue can touch all vertices (making
a perfect matching) before Red can play n− 1 moves.

2.2.4 Achievement number for trees

In this segment we are interested in finding upper and lower bounds for
the achievement number of a tree on n vertices Tn. In Conjecture 2.2.2 we
wonder if for a fixed tree on n vertices Tn, the value a(Tn) is somewhere
between a(Pn) and a(Sn). Using Propositions 2.2.10 and 2.2.11 we know
that it is somewhere between n and a number that is at most 2n− 3. For a
rooted tree Tn we denote by d(u) a down degree of u ∈ V (Tn).
The following theorem shows that the upper bound for the achievement
number of any tree on n vertices is the same as for a star on n vertices.

Theorem 2.2.14. Let Tn be a fixed tree on n vertices and v′0 be a vertex of
maximum degree in Tn. If Tn is rooted at v′0, then the following holds

a(Tn) ≤ max{n+ 4
√
n,

∑
u∈V (Tn)
d(u)̸=0

(2d(u)− 1)},

for n sufficiently large.

Theorem 2.2.14 gives an upper bound for a(Tn) for every Tn, we believe that
for some subclasses of Tn the actual value is much closer to n.
The next proposition gives the achievement number for a special class of
trees, the bounded degree trees which admit a long bare path whose one
endpoint is at the same time a leaf of the tree. A path of a tree T is called
bare if all of its interior vertices are of degree two in T .

Proposition 2.2.15. Let ∆ be a positive integer. There exists an integer
m = m(∆) and an integer n0 = n0(∆,m) such that, for every tree Tn with
n ≥ n0 and ∆(Tn) ≤ ∆, the following holds. If Tn admits a bare path of
length m, and one of its endpoints is a leaf of Tn, then a(Tn) = n.
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Proofs for the results given in this section together with the preliminaries
can be found in Chapter 4.

2.3 Generalized saturation game

Let H and F be graphs that are given in advance. Two players, Max and
Mini, alternately claim unclaimed edges of Kn such that the graph consisting
of the claimed edges G does not contain a copy of F . The game ends when
the players cannot claim further edges. Sometimes, instead of just one graph,
we will have a family of graphs, where all graphs that belong to that family
are forbidden.
The score of the game is the number of copies of H in G at the end of the
game. Max wants to maximize the score, while Mini tries to keep the score
as low as possible.
We denote by s1(n,H, F ) the score of the game when both players play
optimally and Max starts, and by s2(n,H, F ) when Mini starts. If s1 = s2
we use s instead of s = s1 = s2. We sometimes use s instead of s(n,H, F )
when it is clear which game we are talking about. When we have that score
in both cases is between a and b, we use the notation a < s < b instead of
a < s1 < b and a < s2 < b.

2.3.1 Either P5 or all cycles are forbidden

We prove that the score of the game where the forbidden graph is a path on
5 vertices P5 and at the end of the game we count the number of triangles,
while both players play optimally, is bounded as follows.

Theorem 2.3.1.
n− 4

3
≤ s(n,K3, P5) ≤

n− 4

3
+ 4.

Then, we are interested in finding the score of two different games where
the forbidden graph F is a cycle. First, we count the number of stars on k
vertices at the end of the game.

Theorem 2.3.2.
(

⌊n2 ⌋
k − 1

)
≤ s(n, Sk, Cycle) ≤

(
⌈n2 ⌉
k − 1

)
, k > 3.

Then, we count the number of P4’s at the end of the game.
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Theorem 2.3.3.
n2

16
+O(n) ≤ s(n, P4, Cycle) ≤ n2

16
+O(n).

In the following we observe generalized saturation games where the forbidden
graphs are the same as in [109], and for each of those forbidden graphs we
count the number of the following graphs on k vertices Pk, Sk and Ck.

2.3.2 P4 is forbidden

First, we observe the game where we count the number of paths. Clearly,
the only path that can occur is P3.

Theorem 2.3.4. n− 4 ≤ s(n, P3, P4) ≤ n.

Now we observe the game where we count the number of stars with the same
forbidden graph. As S3 = P3, that case is already covered by Theorem 2.3.4.
It turns out that we can derive the score for all larger stars by using the same
strategy used to prove that result.

Observation 2.3.5. s(n, Sk, P4) = 0, k ≥ 4.

It remains to look at the game where we count the number of cycles. It
is clear that the only cycle that can exist is a C3. Hence, s(n,Ck, P4) = 0,
when k > 3.

Theorem 2.3.6. s(n,C3, P4) = 1 if n is odd, and s(n,C3, P4) = 0 if n is
even.

2.3.3 All odd cycles are forbidden

In the following two observations, we look at the generalized saturation
games where the forbidden graphs are all odd cycles O. In other words, in
these games, the game graph remains bipartite.

Observation 2.3.7.

s(2n, P2k,O) =
( n!

(n− k)!

)2
and s(2n,C2k,O) =

1

k

( n!

(n− k)!

)2
.

Then, we count the number of Sk in the bipartite graph on 2n vertices.

Observation 2.3.8. s(2n, Sk,O) = 2n

(
n

k − 1

)
.
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2.3.4 Tn is forbidden

In the following observation, we look at generalized saturation games where
the forbidden graphs are all spanning trees Tn. Note that at the end of the
game, the graph must be a disjoint union of two complete graphs Kr and
Kn−r.

Observation 2.3.9. s(n, Pk, Tn) =
k!

2

(
n− 2

k

)
,

s(n,Ck, Tn) =
(k − 1)!

2

(
n− 2

k

)
and s(n, Sk, Tn) = (n− 2)

(
n− 3

k − 1

)
.

2.3.5 S4 is forbidden

In the following we observe generalized saturation games where the forbidden
graph is a star S4.
First, we count the number of paths at the end of the game when both
players play optimally. As counting P2’s is the same as counting edges, that
has already been done in Theorem 5.1.3. Note that here the score of the
game is bounded from above by n.

Theorem 2.3.10. n− 1 ≤ s(n, P3, S4) ≤ n for n ≥ 3. Moreover,
s1(n, P3, S4) = n if n is even and s2(n, P3, S4) = n if n is odd.

In the following theorem, we count the number of P4’s at the end of the
game when both players play optimally.

Theorem 2.3.11. n− 3 ≤ s(n, P4, S4) ≤ n for n ≥ 4.

Theorem 2.3.12. s(n, P5, S4) ≤ 6. Additionally, s2(n, P5, S4) ≥ 5 for n =
4k and k ≥ 2 or n = 4k + 1.

Theorem 2.3.13. s(n, Pk, S4) = 0 where k ≥ 6.

Then we want to see what is the number of stars at the end of the game
when both players play optimally. As S4 is the forbidden graph, the only
star that can appear in the graph is S3 = P3, but we have already proven
that in Theorem 2.3.10.
Finally, we want to count the number of cycles at the end of the game.
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2.3. Generalized saturation game

Theorem 2.3.14. s(n,Ck, S4) ≤ 1, when 3 ≤ k ≤ 5 and s(n,Ck, S4) = 0,
when k ≥ 6.

Proofs for the results given in this section together with the preliminaries
can be found in Chapter 5.

43



Chapter 2. Main results

44



Chapter 3

Strong Avoider-Avoider games

The aim of this chapter is to give a solid base understanding the assertions
related to the strong Avoider-Avoider games, and then to present the proofs
of the theorems given in Section 2.1.
In Section 3.1 we give notation and preliminaries. In Section 3.2 we give
the proof of Theorem 2.1.1. In Section 3.3 we prove Theorem 2.1.2. Then,
in Section 3.4 we prove Theorem 2.1.3, Theorem 2.1.4, Theorem 2.1.5. In
Section 3.5 we prove Theorem 2.1.6. Finally in Section 3.6 we give concluding
remarks and open problems.

3.1 Preliminaries

During a game, we say that the vertices that are touched by Red are red
vertices, the ones touched by Blue are blue vertices, and the others, that are
not touched by any of the players, are black vertices. If a vertex is touched
just by Red and not by Blue, we call it a pure red vertex, and if the situation
is opposite it is a pure blue vertex.

By a player’s graph we consider the graph with all edges he claimed on the
vertex set V = [n].
A star is the complete bipartite graph K1,k, where k ≥ 0. We denote a star
on n vertices by Sn, and by Pn a path on n vertices. We will refer to the
star centered in v as a v-star. When we say that a player star-adds a vertex
x to a v-star, this means that he claims the edge vx. An H-free graph is a
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graph that does not contain a copy of H.

We will use the abbreviation RC for non-trivial red components, i.e. con-
nected components in Red’s graph, where we do not count isolated vertices
as RC. We will say that a connected component is pure red (respectively,
pure blue) if all its vertices are pure red (respectively, pure blue).

We will make use of the following facts about the P4-free graphs.

Observation 3.1.1. For every graph that does not contain a P4 as a sub-
graph, its connected components can be stars and triangles (where isolated
edges and vertices are observed as stars).

Observation 3.1.2. A P4-free graph on n vertices with the maximum num-
ber of edges is a disjoint union of triangles, when n = 3k, for some integer
k, and otherwise a disjoint union of one star and a number (possibly zero)
of triangles. The number of edges in that graph is n, if n = 3k, and n − 1
otherwise.

Observation 3.1.3. If in a maximal P4-free graph there are k disjoint stars,
then it has n− k edges.

We also need the following facts about graphs that do not have connected
components on more than three vertices.

Observation 3.1.4. For every graph that does not contain a CC>3 as a
subgraph, its connected component can be a triangle, a path on three vertices,
an isolated edge, or an isolated vertex.

Observation 3.1.5. A CC>3-free graph with the maximum number of edges
is a disjoint union of triangles, when n = 3k, a disjoint union of triangles
and one isolated vertex, when n = 3k + 1, or a disjoint union of triangles
and one isolated edge, when n = 3k + 2, for some integer k.
The number of edges in that graph is n, if n = 3k, and n− 1 otherwise.

3.2 Strong Avoider-Avoider P4 game

Proof of Theorem 2.1.1: We will describe a winning strategy for Blue.
Note that by definition of a RC and by Observation 3.1.1, Red is not allowed
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to claim any edge between two RC at any point of the game, as otherwise
he would create a P4 in his graph.

In the beginning, we have a graph G with n isolated vertices, and Red
claims an edge, let us denote it by rt. Then Blue claims an edge that is not
adjacent to the red one, we denote it by uv. In the following move Red has
four options, up to isomorphism, for choosing an edge, and those four moves
will make our four cases. For each of these cases we will show that Blue can
win. Let us denote the second move of Red by e = xy.
In the first three cases we use the idea of strategy stealing: we will suppose
that at this point of the game (after Red played two moves and Blue played
one) Red has a strategy to finish the game and win. Then we will show how
Blue can use this strategy to win the game. That will lead to a contradiction,
implying that our assumption was wrong and Blue can win the game.

Case 1. Vertex x is red and y is black.

Suppose that Red has a strategy S to win the game. W.l.o.g. let x = t.
After Red plays ty it is Blue’s turn. The graph of the game consists of two
adjacent red edges and one isolated blue edge. We denote the vertices as
depicted in Figure 3.1a. Before his next move, Blue imagines that he has
already claimed the edge yu and that Red has not claimed the edge ty, see
Figure 3.1b. Note that the edge yu will remain free throughout the game,
as otherwise Red would create a P4 in his graph.

(a) (b)

Figure 3.1. Case 1: (a) the graph before the second move of Blue. (b) The
imagined graph before the second move of Red.
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The imagined graph is isomorphic to the graph, where the roles of the players
are swapped. Blue imagines that he is the first player, he further imagines
that Red claims the edge ty as his second move, and from now on responds
as advised by the winning strategy S. Because this is a winning strategy,
Blue wins the game, a contradiction.

Case 2. Vertex x is red and y is blue.

Similar to Case 1, we suppose that Red has a strategy S to win the game.
W.l.o.g. let x = t and y = u. After Red plays tu it is Blue’s turn. The
graph of the game consists of one P4 with two adjacent red edges and one
blue edge, see Figure 3.2a. Before his next move, Blue imagines that he has
already claimed the edge rv and that Red has not claimed the edge tu, see
Figure 3.2b. Note that the edge rv will remain free throughout the game,
as otherwise Red would create a P4 in his graph.

(a) (b)

Figure 3.2. Case 2: (a) the graph before the second move of Blue. (b) The
imagined graph before the second move of Red.

The imagined graph is isomorphic to the graph, where the roles of the players
swapped. Blue imagines that he is the first player and that Red claims the
edge tu as his second move, and from now on Blue responds as advised by
S winning the game, a contradiction.

Case 3. Vertex x is blue and y is black.

We again suppose that Red has a strategy S to win the game. W.l.o.g. let
x = u. After Red plays uy the graph of the game consists of one isolated red

48



3.2. Strong Avoider-Avoider P4 game

edge and one P3 with two edges of different colours, see Figure 3.3a. Before
his next move, Blue imagines that he has already claimed the edge ty and
that Red has not claimed uy, see Figure 3.3b. Note that the edge ty will
remain free throughout the game.

(a) (b)

Figure 3.3. Case 3: (a) the graph before the second move of Blue. (b) The
imagined graph before the second move of Red.

The imagined graph is isomorphic to the graph, where the roles of the players
are swapped. Blue imagines that he is the first player and that Red claims
the edge uy as his second move. From now on, Blue responds as advised by
S thus winning the game, a contradiction.

Case 4. Both vertices x and y are black.

The Red’s graph at this moment has two isolated edges that make the first
two RC. Let us denote by C1 the component {r, t}, and by C2 the component
{x, y}. For the reminder of the game, we will dynamically update C1 and
C2 as they grow. Note that C1 will remain a different RC from C2.
Blue is the second player, so his graph cannot have more edges than the
Red’s graph. Having that in mind, as well as Observation 3.1.3, we will
describe a strategy for Blue to keep the number of stars in his graph less
then or equal to the same number in the Red’s graph throughout the game.
After Red claims the edge xy, Blue responds by claiming the edge vr, as
depicted in Figure 3.4a. Note that at this moment the Blue’s graph consists
of one v-star. In the rest of the game Blue will enlarge this v-star, and
possibly create isolated triangles.
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(a) (b)

Figure 3.4. Case 4: (a) the graph after the second move of Blue. (b) The possible
moves of Blue if the rule 1 of Stage 1 is in order, shown as dashed lines.

During the game, every vertex k that is not blue, for which it applies that
kv is free and adding the edge kv to the Red’s graph will not make a P4

will be called a dangerous vertex. All the other vertices will be called safe.
A pure red vertex j that is adjacent to the vertex v in Red’s graph will be
called inaccessible.
If in his third move Red claims the edge yv, Blue responds by claiming the
edge xv, otherwise he claims the edge yv. W.l.o.g. we will suppose that Blue
has claimed the edge yv in his third move.
Note that at this point there are only two vertices in C1 ∪C2, namely x and
t, that can be dangerous. Let S1 := {x, t}. During the game, whenever a
vertex from S1 becomes blue we remove it from S1.

Now we give a strategy for Blue that he follows from his fourth move on.
Stage 1. While there are at least two black vertices in the game, Blue
repeatedly plays by the first rule in this list that is applicable.

1. If Red has claimed one of the edges vx or vt;
in his following three moves, Blue will claim edges that close a triangle
incident with the vertex that just become inaccessible, w.l.o.g. let it
be the vertex x. By m and n we denote two arbitrary black vertices
and by k the other vertex from S1. Note that the only case when k
is not vertex t is when rule 4 has been played before. Blue starts by
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claiming the edge xm. Then, if it is unclaimed he claims the edge km,
otherwise the edge xn, and in the following move Blue closes either
the triangle xmk or xmn, see Figure 3.4b. Then, he star-adds all the
remaining vertices of the base graph that are not blue to the v-star.

2. If Red claims an edge creating a RC that is a star on three vertices
with the vertex v as a leaf, and if the edge incident with v and the
other leaf is unclaimed;
Blue claims it. We denote by r′ the inaccessible vertex, the center of
the red star. In his following three moves Blue claims the edges of the
triangle r′xt. Then, he star-adds all the remaining vertices of the base
graph that are not blue to the v-star.

3. If Red claims an edge creating a RC that is a v-star on three vertices,
and if the edge incident with both leaves is unclaimed;
Blue claims that edge. That isolated blue edge we call a cover-edge.

4. If there is exactly two black vertices, and there is no pure red vertex
that is not in C1 ∪C2, and there is no cover-edge, and one of {C1, C2}
is an isolated edge while the other one is a star with at least three
edges that does not have v as a leaf;
then Blue claims the edge incident with the center of that star and
v. Now, we remove the blue vertex from S1 and add a safe pure red
vertex from the same RC to S1.

5. Otherwise;
Blue claims an edge incident with v and one black vertex.

Now, we will prove that if it is Blue’s turn to play Stage 1, he can follow
it. First, note that if in his third move Red claimed the edge yv, the game
would be finished in step 1 of Stage 1.
If Red did not claim yv in his third move, in the beginning of Stage 1
Blue’s graph consists of the v-star and isolated vertices, and he will continue
claiming the edges of the v-star using rules 4 and 5, until a condition of one
of the rules 1, 2, 3 is fulfilled. Note that Blue can use exactly one of the
rules 1, 2, 3 at most once until the end of the game, so when it is Blue’s turn
to play one of them, his graph consists of the v-star and isolated vertices.
Clearly, Blue can always claim an edge between v and a black vertex.
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When Blue is to play by rule 1, we know that none of rules 1, 2 and 3
have been used before. Therefore Blue’s graph consists of the v-star and
isolated vertices. Also, there are two black vertices and Red has made one
inaccessible vertex x. The edge vx will be the only red edge incident with v
until the end of game, because vertex v is a leaf of a red star and claiming
another edge incident with v would make a P4 in Red’s graph. So, all the
remaining vertices that are not blue are safe. It is clear that k is pure red
and not in the same RC as x. Hence, Blue can follow rule 1 and play up to
n− 1 moves, thus winning.
When it is Blue’s turn to play by rule 2, first unclaimed edge advised by
the strategy must be available for him because his graph has the v-star and
every vertex not adjacent to v is isolated in Blue’s graph. In his following
three moves Blue can claim the edges between r′, x and t, because each of
them is in a different RC. Note that x and t are pure red because rule 4
could not have happened before and Blue could use only rule 5. For the
same reason as above, all the remaining vertices that are not blue are safe.
Now, it is clear that Blue can follow rule 2 and play up to n− 1 moves, thus
winning.
When it is Blue’s turn to play by rule 3 none of rules 1, 2 and 3 have happened
before, so every vertex not adjacent to v is isolated in Blue’s graph and he
can claim the cover-edge as advised by the strategy. Note that Red cannot
ever claim any edge adjacent to the cover-edge.
For further analysis we need to verify the following claim.

Claim 3.2.1. From the moment in the game when there is no more than
two black vertices, until the first Blue’s move after Stage 1, if there is no
pure red vertex that is not in C1∪C2 and there is no cover-edge, Red’s graph
has at least four edges and one safe pure red vertex in C1 ∪C2, and at least
one pure red vertex in each of these components.

Proof. Before Blue had played his fourth move, his graph consisted of the
v-star on 4 vertices, where v was pure blue. At that moment Red’s graph
had four edges and all of them had to be in C1 ∪C2, otherwise there would
be at least one pure red vertex in the third RC, which we assumed was not
the case. Therefore there are three options for C1 and C2:

• An isolated edge and a triangle.
In this case there were at least two pure red vertices, one in C1 and
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the other one in C2, where one of them was incident with a triangle,
so it must have been safe.

• An isolated edge and a star on four vertices.
In this case there were at least three pure red vertices, one of which
was incident with the isolated edge, and all the others with the star.
Therefore, there were at least one safe pure red vertex as a leaf of the
red star.

• Both of them are a P3.
In this case there were at least three pure red vertices, at most two of
them were dangerous, so there must have been one safe. At least one
vertex in each component was pure red.

If the assumption of the claim holds, the only rules that Blue could have
applied in the meantime are rules 4 and 5. The last one does not have any
influence on pure red vertices, and rule 4 can just swap one pure red danger-
ous vertex with a pure red safe vertex in the same component. Therefore,
the assertion of the claim is proven.

When Blue is to play by rule 4, it is clear that he can claim that edge. Note
that if that edge is not free it has to be blue, otherwise rule 1 would be
achieved. Using Claim 3.2.1 we know that a pure red vertex incident with
the star exists.
Note that during Stage 1, if Blue has not already won (rule 1 and 2), his
graph consists of the v-star (rule 4 and 5), possibly one isolated cover-edge
(rule 3) and isolated vertices. Also, S1 consists of two pure red vertices
where one belongs to C1, and the other one to C2.
When Stage 1 is finished, there is at most one black vertex. We then move
on to Stage 2, distinguishing two cases.

If there is at least one pure red vertex that is not in C1 ∪ C2 or there is a
cover-edge, we proceed to Stage 2a.

Stage 2a. Before Blue plays his first move in Stage 2a, we add all inacces-
sible vertices and the ends of the cover-edge to S1. If a pure red vertex that
is not in C1 ∪ C2 exists, we denote it by w. If |S1| < 3 (there was not an
inaccessible vertex nor a cover-edge) then we add w to S1.
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Blue repeatedly plays by the first rule that is applicable in this list and if
before the move of Blue there is a new inaccessible vertex, we add it to S1.

1. If the conditions of rule 2 or rule 3 from Stage 1 are fulfilled,
Blue claims the next edge in the same way as that rule suggests.

2. If there is a black vertex,
Blue star-adds it to the v-star.

3. If there is a cover-edge,
then if |S1| is not divisible by three, we will make it by removing one
or two vertices from C1 ∪ C2. In his following two moves Blue claims
a triangle using the cover-edge and one more vertex from S1. Then,
until S1 is not empty, he chooses three vertices from S1 and makes a
triangle claiming all edges between them. At the end he star-adds all
the remaining vertices of the graph that are not blue to the v-star.

4. If there is an inaccessible vertex r′,
then if |S1| = 4 we remove w from S1. In his following three moves
Blue makes the triangle claiming edges between vertices from S1. Then
he star-adds all the remaining vertices that are not blue to the v-star.

5. If there is an unclaimed edge incident with v and one pure red dan-
gerous vertex that is not in S1,
Blue claims it.

6. Otherwise,
in his following three moves Blue makes the triangle claiming edges
between the remaining three vertices from S1. Then he star-adds all
the remaining vertices that are not blue to the v-star.

Otherwise (there is neither a pure red vertex that is not in C1 ∪ C2 nor a
cover-edge), we proceed to Stage 2b.

Stage 2b. If there is one black vertex, we denote it by j. Depending on
the types of the components C1 and C2, we have three conditions and Blue
chooses the first one which is satisfied.

1. At least one of C1 and C2 is a star with more than two edges, and it
is disjoint from v.
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Let us denote by c the center of that star. If it is unclaimed, Blue
claims the edge vc. Then, he star-adds all the remaining vertices that
he can to the v-star.

2. Each of C1 and C2 is a star with at least two edges.

(a) If v is red,
we denote by c the center of the star incident with v, and by k
a pure red vertex that is not in the same RC as c. We know
that these vertices exists by Claim 3.2.1. Blue claims the edge
cj, after that if it is free he claims the edge kj, and then the edge
kc. Then he star-adds all the remaining vertices that are not blue
to the v-star.

(b) Otherwise, v is blue,
we denote by w a safe pure red vertex and by c the center of the
star of the same RC, and with k a pure red vertex from the other
RC. We know that these vertices exists by Claim 3.2.1.
If it is unclaimed, Blue claims the edge cv. Then, if kj is un-
claimed Blue claims it. In his following three moves, he claims
the triangle kjw and star-adds all the remaining vertices that are
not blue to the v-star, if any. Otherwise, if kj is not unclaimed,
he claims the edge kv and star-adds all the remaining vertices
that are not blue to the v-star.

3. At least one of C1 and C2 is a triangle.
We denote by k a pure red vertex incident with the triangle, and with
c a pure red vertex from the other component, where if there are more
than one such vertex the dangerous one has an advantage. We know
that these vertices exists by Claim 3.2.1.

Blue claims the edge cj, if it is unclaimed, and then creates the tri-
angle cjk, otherwise he claims the edge cv. Then he star-adds all the
remaining vertices that are not blue to the v-star.

Now let us first show that when it is Blue’s turn to play Stage 2a, he can
follow it and win. Note that there are no red edges between any two vertices
of S1 because they are in two different RC or they are leaves of the same
red star, and all vertices in S1 are pure red. Also, when it is Blue’s turn to
play rules 3-6 there are no more black vertices.
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When it is Blue’s turn to play rule 1, rules 1, 3, 4 and 6 could not have been
activated before, so his graph consists of the v-star and isolated vertices.
For the same reason as in rules 2 and 3 from Stage 1 he can claim his next
edge.
When it is Blue’s turn to play rule 2, he can obviously follow it.
When it is Blue’s turn to play by rule 3, there are no more black vertices,
so red star centered in v cannot spread any more as all pure blue vertices
are in the v-star, so all the remaining vertices that are not blue have to be
safe. Now it is evident that Blue can follow his strategy as described in rule
3. Here, Blue wins by playing n− 1 edges.
When it is Blue’s turn to play by rule 4, we know that v is a leaf of a red star.
At this moment Blue’s graph consists of the v star and isolated vertices, and
all the remaining vertices that are not blue have to be safe. Now it is clear
that Blue can follow his strategy and win by playing n− 1 edges.
It is obvious that if it is Blue’s turn to play by rule 5, he can claim as advised
due to the definition of a dangerous vertex. Note that here v is blue.
If nothing above mentioned happened, v is still blue and the Blue’s graph
consists of the v star and isolated vertices. S1 consists of three vertices,
where each of them is in a different RC. Obviously, Blue can make the
triangle described in 6, and because these were the last dangerous vertices,
he can star-add all of the remaining vertices to the v-star and win with n−1
edges. Note that it is not possible that Red claims a triangle incident with
v in this step because v is blue, and the vertices from S1 cannot be adjacent
in Red’s graph.
Taking into account that Red’s graph cannot have a triangle incident with
v (considering rule 1 and the above mentioned), Red’s graph cannot have
more than n− 1 edges, so Blue wins the game.

It remains to show that when it is Blue’s turn to play Stage 2b, he can follow
it and win. Note that all pure red vertices are in C1 ∪ C2, so there are at
most three dangerous vertices and each of them has to belong to the set
{x, t, j}. Likewise, all the vertices that are not in C1 ∪C2 are blue, except j
which is black (if it exists). Each of the blue vertices is a leaf of the v-star,
therefore it is not possible that Red claims a triangle incident with v.
When it is Blue’s turn to play by rule 1, it is clear that Blue can claim
the edge vc if it is free, and then Blue can star-add to the v-star all the
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remaining vertices but possibly one. In that case Red has at least two stars
(one c-star and the other one incident with v) in his graph and he cannot
have more than n− 2 edges, by Observation 3.1.3, so Blue wins with n− 2
edges.
Otherwise, if vc is not free it has to be blue (condition of this step), so Blue
just skips this move and wins in the same way as argued above.
When it is Blue’s turn to play by rule 2:

• If v is red, that happened in the last move, otherwise the game would
have be finished in Stage 1, so there has to exist j, and Blue can claim
cj. After that all the vertices that are not blue are safe.
Then, if the edge kj has been claimed Red will have at least two stars
at the end of game, so he can have at most n−2 edges, by Observation
3.1.3. Therefore, Blue can follow rule 2 to the end and win with n− 2
edges.
Else, if kj is unclaimed, Blue claims the triangle cjk, and wins with
n− 1 edges.

• If v is blue, each of C1 and C2 is a P3, as otherwise it would be rule 1.
There has to exist j, otherwise if Red took it in his last move, before
that move one of C1, C2 was an isolated edge, and the other one P3,
and that is not possible because of Claim 3.2.1.
If the edge cv has been already claimed, it has to be blue. It is clear
that in his following move he can claim one of the edges kj or kv, and
then all the remaining pure red vertices are safe, so he can follow his
strategy until the end of the game and win with n− 1 edges.

When it is Blue’s turn to play by rule 3, we know that his previous move
was in Stage 1, so after that move there was at least one black vertex and v
was blue. Red could not claim both of the edges cj and cv in his following
move, so one of them is unclaimed and Blue can claim it. All the remaining
pure red vertices are safe, so he can follow his strategy until the end of the
game and win with n− 1 edges.
Note that Claim 3.2.1 guarantee that all cases are covered by Stage 2b
except the case when one component is an isolated edge and the other one a
star with at least four edges that are incident with v. That cannot happen
because in his previous move Blue played in Stage 1 and the conditions of

57



Chapter 3. Strong Avoider-Avoider games

rule 4 had to be fulfilled, but then Blue would make the center of that star
adjacent to v.
This concludes the proof for Case 4, and also the proof of the theorem. 2

3.3 Strong Avoider-Avoider CC>3 game

Proof of Theorem 2.1.2: We describe a winning strategy for Blue. In the
beginning, we have a graph G with n isolated vertices, and Red claims an
edge, let us denote it by uv. Then Blue claims an edge that is adjacent to
the red one, let us denote it by vi.
In the following move Red has five options, up to isomorphism, for choosing
an edge, and those five moves will make our five cases. For each of these
cases we will show that Blue can win, in the first four cases we will use the
idea of Strategy stealing, and in Case 5 we will design an explicit strategy.
Let us denote the second move of Red by e = xy.

Case 1. Vertex x is pure red and vertex y is black, i.e. x = u.
Suppose that Red has a strategy S to win the game. After Red plays uy
it is Blue’s turn. The graph of the game has one P4 with two adjacent red
edges and one blue edge. We denote the vertices as depicted in Figure 3.5a.

(a) (b)

Figure 3.5. Case 1: (a) the graph before the second move of Blue. (b) The
imagined graph before the second move of Red.
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Before his next move, Blue imagines that he has already claimed the edge
ui, and that Red has not claimed the edge uv, see Figure 3.5b. Note that
the edge ui will remain free throughout the game, as otherwise Red would
create a CC>3 in his graph.
The imagined graph is isomorphic to the graph where the roles of the players
are swapped. Blue imagines that he is the first player, he further imagines
that Red claims the edge uv as his second move, and from now on responds
as advised by the winning strategy S and wins the game, a contradiction.

Case 2. Vertex x is both red and blue and vertex y is black, i.e. x = v.

(a) (b)

Figure 3.6. Case 2: (a) the graph before the second move of Blue. (b) The
imagined graph before the second move of Red.

Suppose that Red has a strategy S to win the game. After Red plays vy, the
graph of the game has one star on three edges where two of them are red and
one is blue. We denote the vertices as depicted in Figure 3.6a. Before his
next move, Blue imagines that he has already claimed the edge vj, where j
is a black vertex, and that Red has not claimed the edge vy, see Figure 3.6b.
Note that the edge vj will remain free throughout the game, as otherwise
Red would create a CC>3 in his graph.
The imagined graph is isomorphic to the graph where the roles of the players
are swapped. Blue imagines that he is the first player, and that Red claims
the edge vy as his second move. From now on Blue responds as advised by
the winning strategy S and wins the game, a contradiction.
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Case 3. Vertex x is pure blue and vertex y is black, i.e. x = i.
Suppose that Red has a strategy to win the game. After Red plays iy, the
graph of the game has one P4 which two non-adjacent edges are red, and the
third one is blue. We denote the vertices as depicted in Figure 3.7a. Before
his next move, Blue imagines that he has already claimed the edge uy, and
that Red has not claimed the edge iy, see Figure 3.7b. Note that the edge
uy will remain free throughout the game, as otherwise Red would create a
CC>3 in his graph.

(a) (b)

Figure 3.7. Case 3: (a) the graph before the second move of Blue. (b) The
imagined graph before the second move of Red.

The imagined graph is isomorphic to the graph where the roles of the players
are swapped. Blue imagines that he is the first player, and that Red claims
the edge iy as his second move. Hereafter, Blue responds as advised by the
winning strategy S and wins the game, a contradiction.

Case 4. Both x and y are black.
Suppose that Red has a strategy S to win the game. After Red plays xy,
the graph of the game has one P3, where one edge is red and the other one
blue, and one isolated red edge. We denote the vertices as depicted in Figure
3.8a. Before his next move, Blue imagines that he has already claimed the
edge ux, and that Red has not claimed the edge uv, see Figure 3.8b. Note
that the edge ux will remain free throughout the game, as otherwise Red
would create a CC>3 in his graph.
The imagined graph is isomorphic to the graph where the roles of the players
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(a) (b)

Figure 3.8. Case 4: (a) the graph before the second move of Blue. (b) The
imagined graph before the second move of Red.

are swapped. Blue imagines that he is the first player, and that Red claims
the edge uv as his second move. Hereafter, Blue responds as advised by the
winning strategy S and wins the game, a contradiction.

Case 5. Vertex x is pure red and vertex y is pure blue, i.e. x = u and y = i.
Blue is the second player, so his graph can never have more edges than the
Red’s graph. Having that in mind, as well as Observation 3.1.5, we will
describe an explicit strategy for Blue to claim disjoint triangles until the
very end, which will enable him to win. Note that in this case the first RC
is a P3, so using Observation 3.1.5, it is not possible for Red to have more
than n− 1 edges if n = 3m, or n− 2 otherwise.
Let us introduce some terminology. During the game, whenever a blue edge
is added to a pure red P3 so that it completes a triangle, we call it a nice
edge. Furthermore we call the pure red vertex that is incident with that
triangle a nice vertex.
First we will give a strategy for Blue that he follows from his second move
on, and afterwards we will show that Blue can follow it.

Stage 1. While there is at least one black vertex in the game, Blue repeat-
edly plays by the first rule in this list that is applicable. Let k denote the
number of nice edges in Blue’s graph.
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1. If there is a pure red P3,
Blue claims the isolated edge that completes a triangle when added to
the pure red P3. In other words, Blue claims a nice edge.

2. If k = 0,

(a) Pure red vertices are in at least three different RC.
Blue chooses two pure red vertices from two different RC, say x
and y and claims an edge between them. We denote by X3 the
third RC. Then, Blue repeatedly plays by the first rule in the
following list that is applicable until he claims all three edges of
a new triangle xyz.

i. If there is a pure red P3 anywhere in the graph,
Blue claims the isolated edge that added to the pure red P3

completes a triangle, i.e. a nice edge.
ii. If degree of the vertex x in Blue’s graph is one,

Blue claims the edge xz, where z is a pure red vertex in X3.
iii. Otherwise (the degree of the vertex x in Blue’s graph is two),

Blue claims the edge yz, where y and z are endpoints of the
blue edges incident to x.

(b) The pure red vertices are in exactly two RC.
Denote by X1 the RC that has two pure red vertices, and the
other one with X2, later we will see that X1 exists. Blue claims
an edge between pure red vertex from X2 and one black vertex,
denote it by w. Then, Blue repeatedly plays by the first rule in
the following list that is applicable until he claims all three edges
of a new triangle.

i. If there is a pure red P3 anywhere in the graph,
Blue claims the isolated edge that added to the pure red P3

completes a triangle, i.e. a nice edge.
ii. If the degree of the vertex w in Blue’s graph is one,

Blue claims an edge between a pure red vertex from X1 and
w.

iii. Otherwise (the degree of the vertex w in Blue’s graph is two),
Blue claims the edge that completes the triangle.

3. If k = 1,
Blue claims an edge adjacent to the nice edge and incident with a black
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vertex. Then, Blue repeatedly plays by the first rule in the following
list that is applicable until he claims a new blue triangle.

(a) If there is a pure red P3 anywhere in the graph,
Blue claims the isolated edge that added to the pure red P3 com-
pletes a triangle, i.e. a nice edge.

(b) Otherwise,
Blue claims the edge that completes the blue triangle.

4. If k > 1,
Blue chooses a nice vertex and then a nice edge that are not in the same
RC, and then claims an edge between them. Then, Blue repeatedly
plays by the first rule in the following list that is applicable until he
claims a new blue triangle.

(a) If there is a pure red P3 anywhere in the graph,
Blue claims the isolated edge that added to the pure red P3 com-
pletes a triangle, i.e. a nice edge.

(b) Otherwise,
Blue claims the edge that completes the blue triangle.

Now we will prove that when it is Blue’s turn to play Stage 1, he can follow
it.
When it is Blue’s turn to play by rule 1, it is clear that he can claim that
edge. Since the strategy of Blue is to make disjoint triangles and nice edges,
before he plays any of the rules, his graph consists of t disjoint triangles, k
nice edges and isolated vertices, where t or k are possibly zero. Obviously,
these isolated vertices have to be black or pure red.

Claim 3.3.1. When it is Blue’s turn to play and his graph consists of disjoint
triangles and isolated vertices, there are at least three pure red vertices.

Proof. Blue’s graph is a disjoint union of t triangles and isolated vertices, so
it has 3t blue vertices and 3t edges. At this moment Red’s graph has 3t+ 1
edges. The first RC is a P3 and the Red’s graph without that component
has 3t− 1 edges. The extremal graph that is described in Observation 3.1.5
gives the smallest number of vertices for a fixed number of edges. Therefore,
a CC>3-free graph with 3t− 1 edges has at least 3t vertices. Then the Red’s
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graph has at least 3t + 3 red vertices three more than the number of blue
vertices, so at least three of them must be pure red.

Claim 3.3.2. When it is Blue’s turn to start playing by rule 2 (his graph
consists of disjoint triangles and isolated vertices), there are at most two
pure red vertices in any RC.

Proof. Suppose there is a RC with three pure red vertices.
It cannot be a pure red triangle, otherwise one move before Red made a pure
red triangle, he had to have a pure red P3. Realising that just one pure red
P3 can be made per move, Blue responds by claiming the nice edge following
his strategy.
Therefore, the RC has to be a pure red P3, but than rule 1 would be activated
and Blue would claim a nice edge and that leads to a contradiction.

Note that Red cannot claim any edge adjacent to a nice edge or incident
to a nice vertex, also he cannot claim any edge between two RC, otherwise
he would create a CC>3. Every RC has to be an isolated edge, a P3 or a
triangle, by Observation 3.1.4.
Now we will show that at the moment when Blue has to play by one of the
rules 2, 3 or 4 he can do that, and in particular he claims a new triangle.

1. k = 0.
Note that in this moment there are at least three pure red vertices by
Claim 3.3.1. If Blue claimed a nice edge in the middle of rule 2, in RC
where Blue has made a nice edge, there is still one pure red vertex,
precisely a nice vertex.

(a) There are pure red vertices in at least three RC.
It is clear that Blue can claim the edge xy. When it is Blue’s
turn to claim the edge xz, it is available for him because, as
mentioned above, z must exists even if Blue has made a nice edge
in the meantime. Clearly, Blue can follow rule 2 to the end and
claim the triangle xyz.

(b) The pure red vertices are in two RC.
We know that in one RC there can be at most two pure red
vertices by Claim 3.3.2. Also, there are at least three of them as
proven in Claim 3.3.1, therefore one RC has to have precisely two
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pure red vertices, so X1 exists. Then X2 has at least one pure
red vertex and it is clear that Blue can follow rule 2 to the end
and claim a new triangle, by same reasoning as above.

Note that it is not possible that all pure red vertices are in one RC
because of Claims 3.3.1 and 3.3.2.

2. k = 1. Clearly, Blue can follow rule 3.

3. k > 1. First we prove the following claim needed to complete the proof
for Stage 1.

Claim 3.3.3. If there are k > 1 nice edges, then there are at least
k − 1 nice vertices.

Proof. We will go through the whole strategy of Blue to determine
when the numbers of nice vertices and nice edges are changing.
In rule 1 both numbers increase by one.
In rule 2 it can happen that just the number of nice edges increases
by one, that both numbers increase by one or that there is no change.
In rule 3 the number of nice edges decreases by one.
In rule 4 both numbers decrease by one.
Therefore, the only way to make the number of nice vertices less than
the number of nice edges for one is using rule 2. That can happen only
once because Blue will not use rule 2 again as long as k ̸= 0.

Claim 3.3.3 ensures that Blue can follow rule 4 to the end and claim
a new triangle.

Note that during Stage 1, Blue’s graph consists of t disjoint triangles, k nice
edges and some isolated vertices.
When there are no more moves in Stage 1, clearly there are no more black
vertices in the game.

Stage 2. In this stage we keep the structure and all the rules from Stage 1,
we just change the following two rules:

2(b) If the pure red vertices are in exactly two RC and k = 0,
Blue claims a P3 taking just pure red vertices.
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3. If k = 1,
Blue claims an edge adjacent to the nice edge and incident with a pure
red vertex, that is not the nice vertex from the same RC. Then, in
the following move he claims the edge that together with the nice edge
and the edge that he just claimed closes a triangle.

We will prove that when Blue can no longer follow his strategy, he has
already won. Note that at that point every isolated vertex in Blue’s graph
is pure red.
When the Blue’s strategy tells him to play by rule 1, that means that in his
last move Red joined an isolated edge and a black vertex and made a pure
red P3. Therefore, this move can only be the first move of Blue in Stage
2, because at that point there are no more black vertices. Therefore, we
conclude that it is not possible for Red to claim a pure red triangle in this
stage, and Blue will never claim a nice edge while performing the rules 2, 3
or 4.

Claim 3.3.4. As long as Red has not already lost, Blue can play by one of
the rules 2, 3 or 4.

Proof. When the Blue’s strategy tells him to play by rule 2a,
Blue can claim a new triangle in the following three moves, the argument is
the same as in Stage 1. After that, his graph will have the same structure
as in the beginning of Stage 2 and he continues to play.
When the Blue’s strategy tells him to play by rule 2b,
note that it is not possible to have less than three pure red vertices here,
because in that case Blue would have already won with at most n− 2 edges
in his graph, 3m+1 ≤ n ≤ 3m+2, for some integer m (Blue’s graph consists
of triangles and isolated vertices). Red’s graph cannot have more than n−2
edges, because of his first component and Observation 3.1.5.
These pure red vertices are the only vertices that are not blue, and by Claim
3.3.2 we know that in two RC we have at most four pure red vertices. Clearly,
Blue can claim a P3 in the following two moves. Now, we show that after
these moves Blue wins.

• If there are four pure red vertices, we know that n = 3m+1, for some
integer m, and after making a P3 Blue’s graph has n−2 edges. At the
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same time Red’s graph cannot have more than n− 2 edges, because of
his first component and Observation 3.1.5, so Blue wins.

• If there are three pure red vertices. We know that n = 3k, for some
integer k, and after making a P3 Blue’s graph has n− 1 edges. At the
same time Red’s graph cannot have more than n− 1 edges, because of
his first component and Observation 3.1.5, so Blue wins.

When Blue’s strategy tells him to play by rule 3,
there is exactly one nice edge and if there is a pure red vertex, that is not the
nice vertex from the same RC, in his following two moves Blue can claim a
triangle as advised by the strategy. Then, his graph has the same structure
as in the beginning of Stage 2 and he continues to play.
Otherwise, if the only vertex that is not blue is the nice vertex from the
same RC, then Blue has already won. This is true because n = 3m, for
some integer m, and the Blue’s graph has n − 2 edges (3t + 1, where t is
the number of blue triangles), while Red’s graph cannot have more edges
because it contains at least two P3.
Note that it is not possible that there is no pure red vertices, because in
that case Blue’s graph would have n−1 edges, and Red’s graph cannot have
more then n− 3 edges, for the same reason as above (n = 3m+ 2, for some
integer m).
When Blue’s strategy tells him to play by rule 4,
the argument is the same as in Stage 1, and in his following two moves Blue
can claim a triangle. After that, his graph has the same structure as in the
beginning of Stage 2 and he continues to play.

This concludes the proof of Case 5, and also the proof of the theorem.

3.4 Strong CAvoider-CAvoider games

Proof of Theorem 2.1.3: In order not to lose each player must keep the
maximal degree in his graph at most two. Furthermore, the rules of the game
dictate that both players must maintain their respective graphs connected
throughout the game. Hence, as long as no one loses the game, the graph
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of each player must be a path or a cycle. Note that if Blue can claim a
Hamiltonian cycle he will win, because Red will lose in the following move.
We will show that Blue can win. In the beginning, we have a graph G with
n isolated vertices, and Red claims an edge, let us denote it by uv. Then
Blue claims an edge that is not adjacent to the red one, let us denote it
by rt. In the following move Red has two options, up to isomorphism, for
choosing an edge e = xy, which will be our two cases.

Case 1. Vertex x is red and y is blue, w.l.o.g x = u and y = t.
We again apply the strategy stealing argument, assuming that after his
second move Red has a strategy S to win the game.

(a) (b)

Figure 3.9. Case 1: (a) the graph before the second move of Blue. (b) The
imagined graph before the second move of Red.

After Red plays ut it is Blue’s turn. The graph of the game consists of one
P4, with two adjacent red edges and one blue edge, and isolated vertices, see
Figure 3.9a. Before his next move, Blue imagines that he has already claimed
the edge ur, and that Red has not claimed the edge ut, see Figure 3.9b. Note
that the edge ur will remain free throughout the game, as otherwise Red
would create a S4 in his graph.
The imagined graph is isomorphic to the graph where the roles of the players
are swapped. Blue imagines that he is the first player, and that Red claims
the edge ut as his second move. From now on, Blue responds as advised by
the strategy S. Because this is a winning strategy, Blue wins the game, a
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contradiction.

Case 2. Vertex x is red and y is black, w.l.o.g. x = u.
We will first describe a strategy for Blue, and then we will show that he can
follow it and win. The following move of Blue is the edge tv. In his third
move, if it is unclaimed, Blue claims the edge vy, see Figure 3.10a.

(a) (b)

Figure 3.10. Case 2: (a) Blue’s graph after his third move. (b) Blue’s graph after
his (n− 4)th move.

If Blue’s graph is not a path on n − 3 vertices, then in his following move,
Blue claims an edge incident with y and one black vertex. From that point
on, the strategy of Blue will be to make a Hamiltonian path on the vertex
set V \{u} and then to complete it to a Hamiltonian cycle by connecting the
vertex u to both ends of the blue path.
While there are more than two vertices in V \{u} that are not in the blue
path, Blue extends his path by adding one of the vertices from V \{u}.
Then, we denote the last two isolated vertices besides u in the Blue’s graph
with s and k, and the ends of the Blue’s path with i and j, see Figure 3.10b.
We distinguish these cases:

2.1 If just one of the edges {is, ik, js, jk} is free, or two of them are, but
both red edges are incident with one of the vertices {s, k}, see Figure
3.11a, 3.11b,
Blue will claim a free edge from the set {is, ik, js, jk}, and then the
edge sk.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11. Case 2: different possibilities for the graph when it is Blue’s turn to
play and his graph consists of a blue path on n− 3 edges and three isolated

vertices.
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2.2 If two of the edges {is, ik, js, jk} are red and exactly one of those edges
is incident with vertex s, see Figure 3.11c and 3.11d,
Blue will claim a free edge from the set {is, ik, js, jk}, and then the
edge sk if it is free, otherwise the remaining one from the set of edges
{is, ik, js, jk}.

2.3 If exactly one of the edges {is, ik, js, jk} is red,
w.l.o.g. let us assume that the edge is is red, see Figure 3.11e. Blue
claims the edge ik, and then in the following move he claims one of
the edges {ks, js}.

2.4 If there are no red edges in {is, ik, js, jk}, we have two subcases.

(a) If the edge sk is free,
Blue claims the edge ik. In his following move he claims one of
the edges {ks, js}.

(b) If the edge sk is red,
at least one of the vertices {s, k} has to have degree two in the
Red’s graph, w.l.o.g. let us assume that vertex is k.
Then, Blue claims the edge is and in the following move he claims
the edge jk, see Figure 3.11f.

2.5 Else, Blue claims any free edge that does not make an S4 in his graph.

In his last two moves Blue claims the edges that complete the Hamiltonian
cycle on the vertex set V .

Now we will show that when it is Blue’s turn to play Case 2, Blue can follow
his strategy and win.
It is clear that Blue can claim an edge in his second move. If in his third
move the edge vy has been already claimed, that means that Red’s graph
has a red triangle and he will lose in his following move, so Blue can skip
this move and claim the next edge and win. Otherwise, Blue claims the edge
vy and his graph at this moment consists of a P4 and isolated vertices.

Claim 3.4.1. If Blue’s graph consists of a path disjoint from u and more
than three isolated vertices, Blue can extend his path by adding one of the
isolated vertices from V \{u}.
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Proof. Let as denote by P that blue path. There are at least three vertices
from V \{u} that are not in P . Suppose that there is no edge such that Blue
can extend his path with vertex from V \{u}. That means that both ends of
P are incident with at least three red edges and that leads to a contradiction
because there are two vertices of red degree three.

According to Claim 3.4.1 Blue can follow his strategy while there are more
than two vertices in V \{u} that are not in the blue path. After that, one of
the following cases happens:
Case 2.1 It is obvious that the edge sk cannot be red as otherwise Red
would have a vertex of degree three. Therefore, Blue can claim his following
two edges and make a path on n− 1 vertices.
Case 2.2 We can have two different options as depicted in Figure 3.11c and
3.11d. For the first one, obviously, Blue can claim two of the edges ik, js, sk
and make a path on n−1 vertices. For the second one, if sk has become red
Blue can take the last edge from {js, jk} and win because Red has made
a triangle. Otherwise, Blue claims the edge sk and makes a path on n − 1
vertices.
Case 2.3 It is evident that Blue can claim his following two moves and make
a path on n− 1 vertices.
Case 2.4 In case that sk is free it is obvious.
Otherwise if the edge sk is red, it cannot be an isolated edge in the Red’s
graph because his graph is connected. Therefore at least one of the vertices
{s, k} has to have degree two in Red’s graph. Now, it is clear that Blue can
follow his strategy.
Case 2.5 In this case each of the edges {is, ik, js, jk} is red and Red has a
C4 in his graph. Therefore, Blue can take the edge iu and win.
If Blue has not already won, at this moment his graph consists of a path
on n − 1 vertices and one isolated vertex u. Both edges that connect the
vertex u with ends of the blue path are free and Red cannot claim them.
Therefore, Blue can claim these two edges in the following two moves and
create the Hamiltonian cycle on the vertex set V and win the game. 2

Proof of Theorem 2.1.4: First we will describe a strategy for Blue and
then we will show that he can follow it and thus win. In the beginning, we
have a graph G with n isolated vertices. After Red claims an edge, let us
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denote it by uv, Blue claims an edge that is not adjacent to the red one,
let us denote it by rt. Because they have to play on connected graphs, in
the following move Red, up to isomorphism, has two options to choose the
following edge e = xy, and these will be our two cases.

Case 1. Vertex x is red and y is black, w.l.o.g. x = u.
The following move of Blue is the edge ut, see Figure 3.12a.

(a) (b)

Figure 3.12. The graph after the second move of Blue: (a) Case 1. (b) Case 2.

Until the end of the game, Blue will star-add vertices that are not blue to
the t-star.

Case 2. Vertex x is red and y is blue, w.l.o.g. x = u, y = r.
The following move of Blue is the edge ut, see Figure 3.12b. Until the end
of the game, Blue will star-add vertices that are not blue to the t-star.
Now we will prove that Blue can follow his strategy and thus wins the game.
In both cases it is evident that Blue can play first two moves and after that
the graph of the game consists of two stars on three vertices (one red u-star
and one blue t-star), and isolated vertices.
Note that Red cannot claim any edge incident with leaves of the u-star, not
even close a red triangle, because his graph has to stay connected during the
game, and if he claims a cycle he will inevitably lose the game. Therefore,
only allowed moves for him are to star-add more vertices to the u-star. It is
clear that Red cannot colour the vertex t in red, hence Blue can claim each
of n−1 edges of t-star. At the end of the game Red will claim at most n−2
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edges, and then he has to make a P4 in his following move. Therefore, Blue
wins the game in n− 1 rounds.

We proved Theorem 2.1.4 giving an explicit strategy for Blue. Alternatively,
it is straightforward to check that we can use a similar argument of strategy
stealing as in Case 1 and Case 2 in the proof of Theorem 2.1.1, assuming
that the graphs of both players stay connected throughout the game.

Proof of Theorem 2.1.5: As each player maintains his graph connected,
it has to be a tree. Therefore, the game can last for at most n − 1 rounds.
If after the (n− 1)-st round Blue’s graph is a tree, than Red will lose in his
following move.
We will show that Blue has a winning strategy. In the beginning, we have a
graph G with n isolated vertices. After Red claims an edge, let us denote it
by uv, Blue claims an edge that is not adjacent to the red one, let us denote
it by rt. In the following move Red has two options, up to isomorphism, for
choosing an edge e = xy, and those two moves will make our two cases.

Case 1. Vertex x is red and y is blue, w.l.o.g. x = u and y = t.
We apply the strategy stealing argument, assuming that after his second
move Red has a winning strategy S.
The graph of the game consists of one P4, with 2 adjacent red edges and
one blue edge, and isolated vertices, see Figure 3.13a. Before his next move,
Blue imagines that he has already claimed the edge vt and that Red has not
claimed the edge ut, see Figure 3.13b. Note that the edge vt will remain
free throughout the game, as otherwise Red would claim a triangle.
The imagined graph is isomorphic to the graph where the roles of players
are swapped. Blue imagines that he is the first player and that Red claims
the edge ut as his second move. From now on, Blue responds as advised by
the winning strategy S, and wins the game, a contradiction.

Case 2. Vertex x is red and y is black, w.l.o.g. x = u.
After Red claims the edge uy it is Blue’s turn, so he claims the edge tu, see
Figure 3.9a. Then, no matter what Red plays, Blue claims an edge incident
with t and one black vertex. Then repeats that move for as long as possible.
When there are no more black vertices, Blue will claim the edge incident
with the pure red vertex of maximum degree and a blue vertex. He will
continue doing that until all vertices in the graph are blue.
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(a) (b)

Figure 3.13. Case 1: (a) the graph before the second move of Blue. (b) The
imagined graph before the second move of Red.

Obviously, if Blue can follow his strategy, his graph will be a tree on n− 1
edges and he will win. It remains to show that he can follow his strategy.
While there is at least one black vertex, it is evident that Blue can make it
adjacent to t by claiming the edge incident to a black vertex and t. When
there are no more black vertices in the graph, we will denote the pure red
vertex of maximum degree by m, and by i the number of edges in the Blue’s
graph. Note that at this moment Blue’s graph consists of a t-star with
i ≥

⌊
n−5
2

⌋
+ 2 edges, and isolated vertices.

Assume for a contradiction that there is no free edge between m and any
blue vertex. Note that m ̸= u because u is blue. That means that m is
adjacent to each of the blue vertices in the Red’s graph. Therefore, Red
must have a star with i + 1 edges in his graph and at least one more edge
from the beginning of the game. Hence, Red would have two edges more
than Blue, a contradiction.

3.5 Strong CAvoider-CAvoider games from a posi-
tion

Proof of Theorem 2.1.6: Each of these games starts from position T . By
cause of playing on the connected graph the only move that Red can make
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is to join a vertex of the “drawn K5” to an isolated vertex, we will denote
these vertices by r and v, respectively. We prove that using the strategy
stealing argument Blue can win. Assume that Red has a winning strategy
for each of the following games.
Blue imagines that Red did not claim the edge rv and that he claimed the
edge vu, where u is chosen as described below depending on the type of the
game.

1. If he plays C3 game or C6 game,
u is a neighbour of the vertex r in the Red’s graph, see Figure 3.14a.

2. If he plays C4 game,
u is not a neighbour of the vertex r in the Red’s graph, see Figure
3.14b.

(a) (b)

Figure 3.14. (a) The imagined blue edge in the C3 or C6 game depicted by a
dashed line. (b) The imagined blue edge in the C4 game is depicted by a dashed

line.

Note that in both cases it is not possible that Red claims the edge vu,
because he would create a forbidden subgraph. Then, the imagined graph
is isomorphic to the graph of the game, where the roles of the players are
swapped. Therefore, Blue can follow a corresponding winning strategy to
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the end of the game as a first player, starting with a response to the red
edge rv and win, a contradiction.
In case we play the Even cycle or the Odd cycle game, Blue follows the same
strategy as for the C6 game and the C3 game, respectively and wins. This
concludes the proof of the theorem.

3.6 Concluding remarks and open problems

As we have already seen, strong games are hard to analyze. Reasons for
that are the lack of mathematical tools and the fact that both players have
the same goal.
In this chapter, we saw an application of strategy stealing in proving that
Blue has a winning strategy for two different strong Avoider-Avoider F
games. We are interested in applying this tool to more such games, and
also finding more tools that could apply to them.
When we look at strong Avoider-Avoider F games played on the edge set of
the complete graph, through the whole literature the outcome for just two
games was previously known, then we added two new results. Therefore,
the vast majority of all other games remain open.
In particular, is it true that Blue has a winning strategy in a strong Avoider-
Avoider F game, where the forbidden graph F is: a triangle, a path on k
vertices Pk, a cycle on k vertices Ck or a tree on k vertices Tk?
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Chapter 4

Achievement number in strong
Maker-Maker games

This chapter is devoted to strong Maker-Maker games, more precisely to
finding the achievement number for some graphs F . Here we are going to
give definitions and notations needed for further understanding the text.
Then, we give the proofs for all theorems presented in Section 2.2.
In Section 4.1 we give notation and preliminaries. In Section 4.2 we give
the explicit Red’s winning strategy playing on the edge set of the complete
graph on a(F ) vertices, for some small graphs F . In Section 4.3 we find
the value of the achievement number for paths, cycles, stars and perfect
matchings. Then, in Section 4.4 we give an upper bound for a(Tn). Finally,
in Section 4.5 we give concluding remarks and open problems.

4.1 Preliminaries

During the game, we say that the vertices that are touched by Red are red
vertices, the ones touched by Blue are blue vertices, and the others, that
are not touched by any of the players, are black vertices. Denote the set of
isolated vertices in Red’s graph by I. The minimum and maximum degrees
of a graph G are denoted by δ(G) and ∆(G) respectively. Let us denote
with Sn a star on n vertices.
Let V (Tn) be the set of all vertices of a tree Tn, and let S(Tn) be the set of
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Chapter 4. Achievement number in strong Maker-Maker games

all vertices of the tree Tn that are not leaves. If Tn is a rooted tree, denote
by d(u) a down degree of u ∈ V (Tn). A path of a tree Tn is called a bare
path if all of its interior vertices have degree two in Tn.
For a given hypergraph F , denote by τ(F) the smallest integer t such that
Maker can win the Maker-Breaker game played on F within t moves.
We give the following theorems that we are going to use in our proofs. The
first result refers to Maker-Breaker games.

Theorem 4.1.1 ([65]). For sufficiently large n, we have τ(HPn) = n − 1,
where HPn is the hypergraph whose hyperedges are all the Hamilton paths of
Kn.

The following two results are about strong Maker-Maker games.

Theorem 4.1.2 ([44]). For sufficiently large n, Red has a winning strategy
for the strong perfect matching game Mn. Moreover, he can win this game
within ⌊n2 ⌋ moves if n is odd and within n

2 + 2 moves if n is even.

Theorem 4.1.3 ([44]). For sufficiently large n, Red has a winning strategy
for the strong Hamilton cycle game Hn. Moreover, he can win this game
within n+ 2 moves.

In the following theorem we observe the Maker-Breaker tree game, providing
us with a fast Maker’s strategy for certain trees.

Theorem 4.1.4 ([29]). Let ∆ be a positive integer. Then there exists an in-
teger m = m(∆) and an integer n0 = n0(∆,m) such that the following holds
for every n ≥ n0 and for every tree T = (V,E) with |V | = n and ∆(T ) < ∆.
If T admits a bare path of length m, such that one of his endpoints is a leaf
of T , then Maker has a strategy to win the game (E(Kn), Tn) in n−1 moves.

Now, we single out some values for the diagonal Ramsey number of certain
graphs, given in [95].
First, observe the diagonal Ramsey number of a path and a star on n vertices.
For a path R(Pn) = n+ ⌊n2 ⌋ − 1, for all n ≥ 2, whereas for a star R(Sn) =
2(n− 1)− ϵ, where ϵ = 1 for even n and ϵ = 0 otherwise.
Depending on the parity of n for a cycle on n vertices we distinguish two
cases: R(Cn) = 2n−1, for n > 3 and odd, and R(Cn) = n+ n

2 −1, for n > 4
and even.
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Ramsey number of a fixed tree on n vertices is bounded with ⌊4n−1
3 ⌋ ≤

R(Tn) ≤ 4n+1, and in particular if n is even there is another result for the
upper bound R(Tn) ≤ 2n− 2.

4.2 Red’s winning strategy for small graphs

Proof of Observation 2.2.3: It is clear that Red can win in his first,
respectively, second move, regardless of the edge selection.

Proof of Proposition 2.2.4: Red cannot win starting on K4, because, in
his first move, Blue can claim the edge that is not incident with the red one.
However, if the game is played on K5, after his first move, Red has three
winning edges, and Blue can claim just one of them. Therefore, Red wins
after his second move.

Proof of Proposition 2.2.5: Again, Red cannot win starting on K4, for
the same reason as above. However, if the game is played on K5, after the
first move of Blue, Red makes a P3 by adding a black vertex to his graph. At
this moment there are at least three winning edges for Red, so he completes
a P4 in his next move. Therefore, Red wins after three moves.

Proof of Proposition 2.2.6: Red cannot win starting on K4, because
after Red makes a P3 with central vertex v, Blue can claim the third edge
incident with v and prevent Red from completing a K1,3. However, if the
game is played on K5, after the first move of Blue, Red makes a P3 with
central vertex v, such that v is pure red, and in his next move there is at
least one free edge that completes a K1,3, Red claims it and wins in his third
move.

Proof of Proposition 2.2.7: Note that Red cannot win starting on K4,
because after Red makes a P3 with central vertex v, Blue can claim the third
edge that completes a red triangle and prevent Red from completing a K3.
On the other hand, if the game is played on K5, Red claims an arbitrary
edge xy, and after the first move of Blue, we distinguish two different cases,
up to isomorphism, and give the winning strategy for Red:
Case 1: Blue claimed an edge incident with x or y, w.l.o.g., assume that he
claimed x.
Red in his second move claims an edge incident with x and a black vertex.
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Then, in his following move either he wins or again claims the edge incident
with x and the black vertex, making a red K1,3. Two edges that complete a
red triangle are free, so Red wins in his fourth move.
Case 2: Blue claimed an edge that is incident neither with x nor y.
Red in his second move claims an edge incident with x and the black vertex.
Then, in his following move either he wins or claims an edge that completes
a red K1,3. After this move, two edges that complete a red triangle are free,
hence Red wins in his fourth move.
Note that in both cases Blue cannot complete a triangle in three moves
because his graph consists of at least four blue vertices. Therefore, Red
wins after four moves.

Proof of Proposition 2.2.8: First note that a(K1,3 + e) ≥ 5 because
K1,3 ⊂ K1,3 + e. Now, we give an explicit winning strategy for Red in a
strong Maker-Maker game played on K5.
First edge Red claims arbitrarily, then after Blue’s first move, Red claims
an edge such that his graph is a P3 with central vertex v and the graph of
the game is a P4. After the second move of Blue, Red claims the edge that
completes the red triangle if possible, otherwise, he claims the edge incident
with v and the black vertex. In his fourth move, Red makes a K1,3 + e and
wins.
Now we prove that Red can follow his strategy.
In the first case, Red’s graph after the third move is a triangle, there are six
edges such that each of them completes a K1,3 + e. Blue claimed at most
three of them, so Red wins in his fourth move.
Otherwise, note that the black vertex must exist before Red’s third move
because Blue’s graph is a P3 with two vertices in both colors. Hence, Red’s
graph is a K1,3 and there are two edges such that each of them completes a
K1,3 + e. Blue claimed at most one of them, hence, Red wins in his fourth
move.
Proof of Proposition 2.2.9: We give an explicit winning strategy for Red.
First three moves of Red are the same as in the proof of Proposition 2.2.8.
Before Red plays his fourth move he chooses one of the following two cases.
Case 1: Red’s graph is a triangle.
Red chooses a vertex that is isolated in Red’s graph and is not adjacent with
any of red vertices in Blue’s graph, let us denote it by s. In his two following
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moves Red makes s adjacent to two different red vertices, and completes a
K4 − e.
Case 2: Red’s graph is a K1,3.
We denote the vertices as depicted in Figure 4.1.

Figure 4.1. Case 2: the graph after Red claimed his third edge.

In his fourth move Red completes a triangle. When it is Red’s turn to play
his fifth move, if he can complete a K4 − e, he claims that edge and wins.
Otherwise, he chooses between two options depending on the Blue’s graph.

1. Blue needs just one free edge to complete a K4 − e.
Red claims it. In his sixth move, Red chooses a vertex y such that each
of the three edges incident with y, and a vertex from the red triangle is
free. Then, in his following two moves, Red claims two of these edges
and wins.

2. Otherwise, there are at least five blue vertices.
In his fifth move, Red chooses a vertex y, such that all three edges
incident with y and one vertex from the red triangle are free. In his
following two moves, Red claims two of those edges and wins.

Here, we prove that Red can follow the strategy from Case 1. When it is
Red’s turn to play his fourth move, four vertices are isolated in Red’s graph,
and Blue’s graph has three edges. Therefore, there must be at least one
vertex that is not adjacent to any vertex of the red triangle in Blue’s graph.
Red chooses that vertex and in his two following moves makes it adjacent

83



Chapter 4. Achievement number in strong Maker-Maker games

with two different red vertices, i.e. he completes a K4 − e in five moves and
wins.
Now we need to show that Red can indeed follow the strategy from Case 2.
Note that in both cases, before Red plays his fifth move, Blue’s graph con-
tains four edges including exactly one of the {ux, tx}. Otherwise, Red would
complete a K4 − e in his fifth move. Moreover, if all of Blue’s four edges
are played on the four vertices, than Red follows rule 1. Otherwise, Blue
touched at least 5 vertices, so Red follows rule 2.

(a) (b)

(c) (d)

Figure 4.2. Case 2: four options for the graph after Red’s fifth move.

If Red played his fifth move by rule 1, in Figure 4.2 we have depicted four
options for the game graph after that move. In his fifth move, Blue has to
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claim the edge that prevents Red from making a K4 − e in all cases except
the last one, see Figure 4.2d, but in that case, Blue’s graph is a C4, so he
needs at least three more edges to finish the game. Therefore, after Blue’s
fifth move, both players need at least two more edges to complete a K4 − e.
When it is Red’s turn to play his sixth move, there must be at least one
vertex y, such that all three edges incident with y and one vertex from the
red triangle are free. In his following two moves, Red claims two of these
edges and wins in seven moves.
If it is Red’s turn to play his fifth move by rule 2, Blue cannot win in five
moves, because his graph has at least five vertices. When it is Red’s turn to
play his fifth move, Blue’s graph contains four edges, and at most two of them
are incident with isolated vertices in Red’s graph (V \{x, t, v, u}). Therefore,
there must be at least one vertex y, such that all three edges incident with
y and one vertex from the red triangle are free. In his following two moves
Red can claim two of these edges and win in six moves.

4.3 Achievement number for paths, cycles, stars
and perfect matchings

Proof of Proposition 2.2.10: The proof is a direct consequence of Theo-
rem 4.1.1. In [65] it is proved that Maker can complete a Hamilton path on
n vertices in n − 1 moves. Hence, starting on n isolated vertices, Red can
use the same strategy and make a path on n vertices before Blue is able to
do the same. Therefore, the smallest number of vertices required for Red’s
win is n.

Proof of Proposition 2.2.11: We prove that Red can complete a star on
n vertices Sn starting on K2n−3. His first move Red chooses arbitrarily, then
after the move of Blue, Red claims the edge incident with one pure red and
one vertex from I, and makes a S3 with the central vertex v. Now, there
are 2n− 6 vertices isolated in Red’s graph and none of them is adjacent to
v. Hence, it is clear that in each of his following n− 3 moves Red can claim
one vertex from I and make it adjacent to v.

Proof of Proposition 2.2.12: The proof goes directly from Theorem 4.1.3.
Starting on a complete graph Kn, Red has a strategy to complete a Cn first
in n+ 2 moves.
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Proof of Proposition 2.2.13: The proof goes directly from Theorem 4.1.2.
Starting on K2n, Red has a strategy to complete a perfect matching first in
n+ 2 moves.

4.4 Achievement number for trees

Before proving Theorem 2.2.14 we show the following.

Proposition 4.4.1. For every tree on n vertices Tn, the following inequality
is true: ∑

u∈V (Tn)
d(u) ̸=0

(2d(u)− 1) ≤ 2n− 3.

Proof. Let |S(Tn)| = k where S(Tn) is the set of all vertices of the tree Tn

that are not leaves. Then∑
u∈S(Tn)

d(u) =
∑

v∈V (Tn)

d(v) = n− 1.

∑
u∈V (Tn)
d(u)̸=0

(2d(u)−1) =
∑

u∈S(Tn)

(2d(u)−1) = 2
∑

u∈S(Tn)

d(u)−
∑

u∈S(Tn)

1 = 2
∑

u∈S(Tn)

d(u)−k

= 2
∑

v∈V (Tn)

d(v)− k = 2(n− 1)− k = 2n− 2− k.

Knowing that k ≥ 1 for every tree Tn, we conclude that the assertion is true.
Equality applies only when Tn = Sn.

Proof of Theorem 2.2.14: Let

n1 = max{n+ 4
√
n,

∑
u∈V (Tn)
d(u)̸=0

(2d(u)− 1)}.

At the beginning of the game, the graph G is an empty graph Kn1 . We
prove that following his strategy Red can make a copy of Tn in n− 1 moves.
Let y = n1−n. At any given moment during the game, we denote the graph

86



4.4. Achievement number for trees

spanned by Red’s edges by R, and the graph spanned by Blue’s edges by B.
At the end of the game, we will have an injective function f : V (Tn) → V (G),
such that f(x)f(y) ∈ E(R) whenever x, y ∈ V (Tn) and xy ∈ E(Tn), and
this will be a witness that Red’s graph contains a copy of Tn. The function
f will be gradually defined during the play. Initially, no value is assigned to
f , as vertices of G gradually become red, each red vertex will be given its
value of f , one at a time (except in the first round, when two vertices at the
same time become red). For a vertex v ∈ V (R), we denote by f−1(v) = v′

its pre-image under f , and by d(v′) the down degree of vertex v′ with respect
to Tn.
Throughout the game exactly one red vertex vi is active, and when it reaches
the down degree d(v′i) in red edges, then it becomes passive. A red vertex v
that is at that point a leaf in R, and at the same time f−1(v) = v′ belongs to
S(Tn), is called a sleeping vertex. All the remaining red vertices are passive.
During the game, when one vertex vi stops being active, an arbitrary sleeping
vertex is elected to be the new active vertex vi+1, and so on.
The strategy of Red:
Red progressively makes a copy of Tn, adding one edge to the graph R in
each of his moves. His first edge is chosen arbitrarily, rendering two vertices
red. Then after the first move of Blue, Red chooses a pure red vertex for
the root v0 and makes it active. The other red vertex we denote by r, and
update f−1(v0) = v′0 (where v′0 is the root of Tn), whereas f−1(r) is an
arbitrary neighbour of v′0 in Tn. From now on Red claims an edge incident
to the active vertex vi and one vertex x ∈ I which he chooses by following
the first satisfied rule of the following four, and after each move he updates
that x′ is a neighbour of v′i in Tn, such that x′ /∈ f−1(V (R)). Denote by uv
the last edge that Blue has claimed.

1. If u, v ∈ I, Red chooses x to be u or v, if possible. Otherwise, if
u, v, s ∈ I completes a blue P3, Red chooses x to be s, if possible.

2. If there is a blue P3 on vertices u, v, s, where v is the central vertex
that is sleeping, while u, s ∈ I, Red chooses x to be one of the vertices
{u, s}, if possible.

3. A blue vertex from I is chosen as x.

4. A black vertex is chosen as x.
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We show that Red can follow this strategy through n − 1 rounds, hence,
makes a copy of Tn and wins.
It is clear that Red can complete the first level, i.e. make a star with central
vertex v0 and d(v′0) edges. When Red reaches a new active vertex vi and
it is his turn, we need to have at least 2d(v′i) − 1 free edges, each of them
between vi and a vertex from I.
Suppose to the contrary that Red cannot follow his strategy, i.e. he reached
a new active vertex vt, with d(v′t) = r. Let M be the set of vertices from
I that are adjacent to vt in B, and |M | = m. Then m ≥ |I| − 2r + 2, as
otherwise, Red could claim r edges incident with vt. Hence, it remains to
show that |I| > m+ 2r − 2 to arrive to a contradiction.
Note that y is either 4

√
n or n− 2− k, where |S(Tn)| = k, and each vertex

from S(Tn) \ {v′0}, with down degree d contributes with d− 1 to y (and v′0
contributes with d(v′0) − 2 to y). Knowing that d(v′0) is maximum in Tn,
we conclude that d(v′0) ≥ r + 1. Therefore, by counting just extra vertices
obtained from v0 and vt, we get that y ≥ 2r − 2. Now, we conclude that
m ≥ 2

√
n+ 1, using that |I| ≥ r + y and y ≥ 4

√
n. Indeed,

m ≥ |I| − 2r + 2 ≥ y − r + 2 ≥ y

2
+ 1 ≥ 2

√
n+ 1.

Now, we show that |I| > m + 2r − 2. We know that |I| ≥ r + y and
y ≥ 2r−2, therefore, |I| ≥ 3r−2, i.e. we need to show that there are at least
m+1− r ≤ m more vertices in |I|. If there is a vertex v′i ∈ S(Tn), 0 < i < t
with d(v′i) = m+ 1 then the assertion is true.
Otherwise d(v′i) ≤ m, for each v′i ∈ S(Tn), 0 < i < t. Each of the vertices
from M is adjacent to vt in Blue’s graph, more precisely they form a blue
star with central vertex vt and m edges, let us denote it by S(t). W.l.o.g. we
suppose that the last of these edges Blue claimed in his previous move. After
Blue claimed (m− 1)-st edge of S(t), Red could not make the active vertex
adjacent to any of the m− 1 leaves of S(t) following his strategy. Therefore,
the active vertex vx must have already been incident with at least m−1 blue
edges which form a blue star S(x) (otherwise, Red would color one vertex
from M red following rule 2). Note that x ̸= 0, otherwise all 2(m − 1)
edges of S(x) (S(x) = S(0)) and S(t) Blue claimed while v0 was active vertex.
Hence, d(v′0) ≥ 2m − 1 and y ≥ r − 1 + 2m − 3 and we conclude that
|I| > 2r + 2m− 4 > m+ 2r − 2.
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During the game, let E be the subset of 2m− 2 blue edges of S(x) and S(t)

that have been claimed by Blue up to that point of the game, and let M ′ be
a subset of the vertices from M , that are incident to the edges of E. Denote
by A = {vj , 0 < j < t} the set of vertices that were active while Blue was
claiming 2m−2 blue edges of S(x) and S(t), and |A| = a. Let ai, 1 < i < m,
be the number of vertices from A such that ai = |{vj ∈ A, d(v′j) = i}|.
At the latest when Blue claimed the third edge of E, Red could not choose
any of the vertices from M ′. Therefore, the active vertex at that moment
must have been incident with each of the vertices from M ′ in Blue’s graph.
When the next vertex from A became active, it must have been adjacent
to at least as many vertices of M ′ as the previous one. Hence, we conclude
that no matter what the value of a is, Blue’s graph consists of more edges.
We suppose for a contradiction that all vertices from A together contribute
less than m vertices to y, and then prove that B has too many edges. To
prove this we will choose such B that has the smallest possible number of
edges. For this reason, we choose the smallest possible a.
Now, we need to find the minimum of the function f(a1, . . . , am) = a1+. . .+
am under two constraints. The first constraint is that the number of edges
that Red claimed while Blue was claiming the edges of E from the third edge
to the (2m− 2)-nd one is 2m− 4, i.e. 1a1+2a2+3a3+ ...+mam = 2m− 4.
The second one is that all vertices from A together, contribute less than m
vertices to y, i.e. 0a1 + 1a2 + 2a3 + ...+ (m− 1)am < m.

a1 + ...+ am = a1 +2a2 + ...+mam − (a2 +2a3 + ...+ (m− 1)am) ≥ m− 3.

Hence, from this point on we suppose that a = m−3. Afterward, the smallest
number of blue edges we get when vertices of A are chosen in ascending order
by the down degree of its pre-image with respect to f , and when M ′ grows
as slowly as possible.
Finally, we conclude that Blue will have the fewest edges if a = m− 3, the
first m − 4 vertices from A have down degree 1 and the last one has down
degree m. Nevertheless, even in this worst-case scenario when we count the
number of edges in Blue’s graph, we get:

e ≥ 2m− 1 + 2 + 2 + 3 + 3 + 4 + 4 + ...+ ⌈m− 4

2
⌉+ 1 +m− 1

≥ 3m− 2 +
⌈m−4

2 ⌉(⌈m−4
2 ⌉+ 1)

2
2− 2
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≥ 3m− 4 +
(m− 4)2

4
+

m− 4

2
=

m2

4
+

3m

2
− 2

≥ n+ 3
√
n− 2,

and that leads to a contradiction because less than n − 1 moves have been
played. The values from the first inequality were obtained by counting the
number of blue edges for each of the blue stars S(vj), vj ∈ A.
Note that using Proposition 4.4.1 and Theorem 2.2.14 we conclude that an
upper bound for a(Tn) is 2n − 3, for n sufficiently large (or more precisely,
for n ≥ 22).

Proof of Proposition 2.2.15: This proof follows directly from Theorem
4.1.4. If the conditions given in this proposition are satisfied then we know
that Maker can build a tree Tn without wasting any moves, i.e. he can do
it in n − 1 moves. Therefore, using this strategy Red can win in a strong
Maker-Maker version of this game played on Kn.

4.5 Concluding remarks and open problems

We gave Red’s winning strategy in the strong Maker-Maker game played
on a(F ) isolated vertices for some small graphs F . Then we found the
achievement number for some particular graphs, such as paths, cycles, and
perfect matchings. We also gave an upper bound for the achievement number
for the star Sn, which is 2n − 3. As for the lower bound, we know that it
is greater than n, and it would be interesting to find the exact value of the
star achievement number, or at least to improve these bounds.
We observed the achievement number for trees, and we obtained an upper
bound, whereas the lower bound is n, which has been reached for paths and
one particular class of trees. Can the upper bound be improved? We believe
that for all trees with a bounded maximum degree, the achievement number
is at most n+ 2.
Finally, Harary’s conjecture is still open. Finding the answer to this question
needs a better understanding of the game in question. In particular, we
would profit from an upper bound for the achievement number for the star
on n vertices or a proof that this upper bound is the best possible.
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Chapter 5

Generalized saturation game

In this chapter, we introduce the generalized saturation game. In this game,
two graphs H and F are given in advance, and we are interested in the score
of this game, that is, the number of copies of the graph H in the game graph
at the end of the game. First, we give notations, definitions, and theorems
from the literature, that are essential for further study. Then, we give the
proofs for all assertions presented in Section 2.3.
In Section 5.1 we give notation and preliminaries. In Section 5.2 we deter-
mine the score of the game where the forbidden graph F is a path on 5
vertices and the graph H is a triangle. In Section 5.3 we find the score for
games in which the forbidden graphs are all cycles. Then, in Section 5.4 we
determine the score for games in which the forbidden graph is a P4. Sec-
tion 5.5 reveals the score for games in which the forbidden graphs are all odd
cycles. Section 5.6 gives the score for several games in which the forbidden
graph is a Tn, and Section 5.7 is devoted to games in which F = S4. Finally,
in Section 5.8 we give concluding remarks and open problems.

5.1 Preliminaries

During the game, we say that a legal move is claiming a free edge that added
to the game graph does not create a copy of the forbidden graph. Sometimes,
instead of just one graph, we will have a family of graphs, where all graphs
that belong to that family are forbidden.
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Chapter 5. Generalized saturation game

Let us denote with Sk a star on k vertices. We denote by G1
4 a graph on

four vertices, where three of them form a triangle and the fourth vertex is
adjacent to one of the remaining three. Disjoint union of graphs G and H
is denoted by G +H. Let us denote by O the family of all odd cycles and
by Tn the family of all trees on n vertices.
We denote by s1(n,H, F ) the score of the game when both players play
optimally and Max is the first player, and by s2(n,H, F ) when Max is the
second player. We sometimes use s instead of s(n,H, F ) when it is clear
which game we are talking about. If s1 = s2 we use s instead of s = s1 = s2.
As well when we have that score in both cases is between a and b, we use
the notation a < s < b instead of a < s1 < b and a < s2 < b.
We will need several results from [109].

Theorem 5.1.1 ([109]). s1(2k,K2,O) = s2(2k,K2,O) = k2.

Theorem 5.1.2 ([109]). If n ≥ 3, then s1(n,K2, Tn) = s2(n,K2, Tn) =(
n−2
2

)
+ 1, except that s1(5,K2, T5) = 6 and s2(4,K2, T4) = 3.

Theorem 5.1.3 ([109]).

s1(n,K2,K1,3) =

{
n, when n ∈ {3, 7} ∪ 2N− {2}
n− 1, otherwise.

s2(n,K2,K1,3) =

{
n− 1, when n ∈ 2N− {4}
n, otherwise.

5.2 Determining the score s(n,K3, P5)

Proof of Theorem 2.3.1:
First, note that the only way to have more than one triangle in a connected
component C of a graph that does not have a copy of P5 is if C is a subgraph
of K4.
Now, we give a strategy for Max. Assume first that he is the second player.
If there is at least one isolated vertex after the move of Mini, he follows
Stage 1, otherwise, he proceeds to Stage 2.
Stage 1. Max chooses the first of the following three rules that is satisfied,
depending on the type of the connected component C Mini played in her
last move:
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1. C is a K2. Max tries to claim an isolated K2. If that is not possible, he
creates a P3 connecting C with one isolated vertex and then proceeds
to Stage 2.

2. C is a P3. Max claims the edge that completes the triangle.

3. C has four vertices:

(a) If C is a P4, Max claims the edge that completes the C4.

(b) Else, if there is a free edge in that component Max claims it.

(c) Else, if there are at least two isolated vertices Max claims an
isolated K2.

(d) Else, if there is one isolated vertex, and on top of that either an
isolated edge or an isolated triangle, Max claims the edge that
creates a P3 or a G1

4, respectively, and proceeds to Stage 2.

(e) Otherwise, Max proceeds to Stage 2.

Stage 2. Max repeatedly plays any legal move to the end of the game.

We now analyze the given strategy. It is clear that Max can follow his
strategy in Stage 2.

Claim 5.2.1. During Stage 1, after Max has finished his move, every non-
trivial connected component is one of the following: K2, C3, C4,K4 − e or
K4.

Proof. We prove this by using mathematical induction. After the first move
of Max, the graph consists of two isolated edges. Now, we suppose that the
assertion is true after k rounds. Depending on Mini’s (k + 1)-st move we
have the following options:

• If Max applied rule 1, there are two more isolated edges in the graph.

• If Max applied rule 2, there is one isolated edge less and one triangle
more than in the previous round.

• If Max applied rule 3a, there are two isolated edges less and one C4

more than in the previous round. Note that Mini could not make a P4

adding an edge on P3 because of the strategy of Max.
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• If Max applied one of the rules 3b, 3c, 3d or 3e, that means Mini
added an edge to one of the following connected components: C3, C4

or K4 − e and after Max’s response we get K4 − e, K4 or K4 +K2 in
that order.

This proves the assertion of the claim.

Note that during Stage 1 it is not possible that Mini creates a connected
component that is a triangle, because of rule 2. For the same reason, it is not
possible to have a connected component K1,3 in the graph. Moreover, the
only connected components on three or four vertices that can be transformed
into a connected component on five vertices by adding one edge (without
making a copy of P5) are P3, P4,K1,3 and G1

4. Following the strategy from
Stage 1 it is not possible to have any of these components when Mini is to
move, as we can see from the proof of Claim 5.2.1. Therefore, during Stage
1 there is no option for Mini to make a connected component on more than
four vertices. Now it is clear that Stage 1 covers each of Mini’s moves.

It remains to count the number of triangles at the end of the game.
At the moment Stage 2 is triggered, besides components provided by Claim
5.2.1, there can be at most one of the following three components: P3, G1

4,
or an isolated vertex.

• In case there is an isolated vertex, that means Max played by rule 3e
and each of the remaining connected components in the graph is one
of the following: C4, K4 − e or K4. Hence, by the end of the game,
there will be 4n−1

4 = n− 1 triangles.

• In case there is one G1
4, there are no isolated vertices in the graph.

Therefore, this component must become a K4 in the rest of the game.

• In case there is one P3, that means that Max played by rule 3d or rule
1 and there are no more isolated vertices in the graph. Here, Mini
can make a connected component on five vertices making the central
vertex of this path adjacent to one end of an isolated edge. If that
happens, just one edge can be added to this component, the one that
closes a triangle.

Later in Stage 2, the only components that can change the number of vertices
are the pairs of isolated K2 that can be transformed into a K4 by the end
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of the game. Therefore, the worst scenario for Max is that at the end of the
game, there is one component on 5 vertices, one isolated edge that cannot
be added to any of the components, and all of the remaining components

are triangles. This implies s2(n,K3, P5) ≥
n− 4

3
.

Note that the same strategy works when Max is the first player, hence

s1(n,K3, P5) ≥
n− 4

3
.

Now, we give a strategy for Mini. Let us first suppose that she is the first
player.
If there is at least one isolated vertex before the move of Mini, she follows
Stage 1, otherwise, she proceeds to Stage 2.
Stage 1. Mini chooses the first satisfied of the following three conditions.

1. If there is a connected component on four vertices in the graph,
Mini chooses a vertex of maximum degree in this component and con-
nects it to an isolated vertex. (Mini makes a connected component on
five vertices.)

2. If there is a K2 component in the graph,
Mini claims an edge that connects it with an isolated vertex, creating
a P3.

3. If there are two isolated vertices, Mini connects them, otherwise, she
proceeds to Stage 2.

Stage 2. Mini repeatedly plays any legal move to the end of the game.

Now we analyze the given strategy. First, we give the following claim that
will be used in this proof.

Claim 5.2.2. During Stage 1, after Mini has finished her move, the graph
consists of the following connected components: at most one K2, a number
of P3, a number of K3 and a number of connected component on at least five
vertices.

Proof. We prove this by using mathematical induction. After the first move
of Mini, the graph consists of one isolated edge. Now, we suppose that the
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assertion is true after k Mini’s moves. After k moves of Max, the graph
consists of the following connected components: at most two K2, a number
of P3, a number of K3, at most one component from the set {K1,3, P4, G

1
4}

and a number of connected components on at least five vertices. Now we
compare the number of components after k-th and (k + 1)-st Mini’s move.
In his k-th move Max played in a connected component C, where:

• If C is a K2, using rule 2, Mini ensures that after her (k + 1)-st move
the number of K2 components is at most one, the number of P3 com-
ponents is larger by one, while the remaining components stay the
same.

• If C is a P3, after the move of Mini played by rule 3 she ensures that
only the number of P3 components increased by one.

• If C is a K3, after Mini applied one of the rules 2 or 3 she ensures that
only the number of components K2, P3 and K3 can be changed by at
most one, provided that the number of K2 components is at most one.

• If C is in {K1,3, P4, G
1
4}, after the move of Mini played by rule 1,

she ensures that there is no connected component on four vertices.
Therefore, the number of connected components on at least five ver-
tices is increased by one, while the number of components P3 or C3 is
decreased by one.

This proves the assertion of the claim.

Note that each of the connected components on four vertices that cannot
be transformed into a bigger one as described in rule 1 (these are the com-
ponents that belong to the set {C4,K4 − e,K4}) was already a connected
component on four vertices before the last edge was added. Using the proof
of Claim 5.2.2, we conclude that one of these components cannot occur when
Mini is to move.
At the moment Stage 2 is triggered, there are two options:

1. There is no isolated vertex in the graph.

2. There is one isolated vertex, but there is neither an isolated edge nor
a connected component on four vertices.
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If there is one isolated vertex that means that each of the connected com-
ponents is on three vertices or at least five vertices. The worst case for Mini
is when each of the connected components is on three vertices, then it is
possible that at most one of them becomes K4, by the end of the game.

That implies s2(n,K3, P5) ≤
n− 4

3
+ 4.

Otherwise, if there is no isolated vertex, the graph consists of the following
connected components: at most two K2, a number of P3, a number of K3,
at most one component from the set {K1,3, P4,K3 + e} and a number of
connected components on at least five vertices. Note that if there are two
isolated edges then there is no connected component on four vertices and vice
versa. Since connected components on three vertices cannot be extended by
one vertex, there can be at most one K4 by the end of the game. Therefore,

s2(n,K3, P5) ≤
n− 4

3
+ 4. This concludes the proof of the theorem.

As the strategy is the same when Mini is the second player, the same upper
bound works for s1.

5.3 All cycles are forbidden

In the following two theorems, the forbidden graphs are all cycles. That
means that during the game the graph is a forest and when there are no
more legal moves the graph must be a spanning tree.
Before we prove Theorem 2.3.2 we give the following Lemma that we will
use in the proofs of this section.

Lemma 5.3.1. Let T be a tree on ⌊n2 ⌋+1 vertices. If the players alternately
claim edges of Kn and neither is allowed to play a cycle, a player can build
T .

Proof. During the game, a player that we call TreeBuilder builds a connected
component C such that at the end of the game this component will contain
a tree isomorphic to T . After each of his moves, C will contain a subgraph
of T , let us call it T ′, which is by at least one vertex bigger than it was after
the previous round. The game begins with n components, each of them a
vertex. Before TreeBuilder plays his first move, he chooses a vertex that will
serve as a root r of T ′. If he is the first player, r is an arbitrary vertex and
C = r, otherwise, r is a vertex incident to the claimed isolated edge e and
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C = e. Then, in each of his moves, TreeBuilder adds one component to C
thus adding one edge and one vertex to the growing tree in C, and decreases
the number of components by one. Each of the Opponent moves is joining
two components into one, so he also decreases the number of components
by one in each move.
TreeBuilder needs at most ⌊n2 ⌋ rounds to build a tree that is isomorphic to
T . When he has to play the last move (⌊n2 ⌋-th or (⌊n2 ⌋−1)-st), by that time
Opponent has played ⌊n2 ⌋−1 moves and decreased the number of components
by the same value. Based on the number of moves it follows that there must
be at least one component different from C that TreeBuilder can join to C,
thus completing a tree isomorphic to T in his last move.

Proof of Theorem 2.3.2:
First, we look at a strategy for Max. Using Lemma 5.3.1 we know that Max
can build a star on ⌊n2 ⌋+ 1 vertices, regardless of whether he is the first or

the second player. Therefore, s(n, Sk, Cycle) ≥
(

⌊n2 ⌋
k − 1

)
.

Now, we give a strategy for Mini. First assume that Mini is the second
player. After Max plays his first edge e1 = xy, Mini claims an isolated edge
e2. Then we have two cases depending on the second move of Max.

1. Max claimed an edge that completes a P4. Mini chooses the end of
e2 with degree 2 to be the root r and then follows the strategy for
TreeBuilder (as a second player) from Lemma 5.3.1 on V \{x, y} to
build a path P on at least ⌊n−2

2 ⌋+ 1 = ⌊n2 ⌋ vertices.

2. Otherwise, Mini chooses one end of an isolated edge for root r, w.l.o.g.
assume that edge is e2. Let us denote by C1 a connected component
that contains e1. Applying Lemma 5.3.1 on V \{x, y} Mini can build
a path P on at least ⌊n2 ⌋ vertices, such that the component C1 joins
the last one, adding one vertex of degree one to P if needed.

It is clear that Mini can follow her strategy. Now we have to count the
number of Sk at the end of the game. Denote by S the biggest star at the
end of the game.
If Mini applied rule 1, there are at most ⌈n2 ⌉ vertices that are not in P . The
worst case for Mini is when all vertices that are not in P belong to S, then
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r must be a leaf of S and the number of leaves is at most ⌈n2 ⌉. Otherwise,
if P and S share 2 or 3 common vertices, one or two vertices from the set
{x, y} is neither in P nor S, respectively. Therefore, again there are at most
⌈n2 ⌉ leaves in S. Hence, s1(n, Sk, Cycle) ≤

(⌈n
2
⌉

k−1

)
.

Otherwise, if Mini applied rule 2, at the end of the game, path P has at
least ⌊n2 ⌋ vertices. As in the previous case the worst scenario for Mini is
that all the remaining vertices are in S, then P and S share at most one
common vertex, so the number of leaves in S is at most ⌈n2 ⌉. Otherwise, if
P and S share 2 or 3 common vertices, there are at least two vertices that
are neither in P nor S. Hence, again the number of leaves in S is at most
⌈n2 ⌉, and s1(n, Sk, Cycle) ≤

(⌈n
2
⌉

k−1

)
.

When Max is the second player strategy is analogue, so we again get that

s2(n, Sk, Cycle) ≤
(

⌈n2 ⌉
k − 1

)
.

Proof of Theorem 2.3.3: First, we define a double star as a graph that is
formed by two stars, each of them with at least three edges and their centers
are joined by an edge. If the difference between the degree of those centers
is at most one, we say that the double star is balanced.
Now, we look at a strategy for Max. Using Lemma 5.3.1 we know that Max
can build a balanced double star on ⌊n2 ⌋+ 1 vertices, regardless of whether
he is the first or the second player. Therefore, the number of leaves in that
double star is ⌊n2 ⌋ − 1 = ⌊n−2

2 ⌋.

Claim 5.3.2. Suppose that during the game the graph contains a balanced
double star Sx,x with 2x leaves, and y isolated vertices. The game ends at the
moment when the graph becomes a spanning tree. At the end of the game,
the smallest number of P4’s that are not contained in Sx,x is x+ y − 1.

Proof. Note that an edge adjacent to a leaf of the double star Sx,x increases
the number of P4’s by x. Let us denote with N the number of P4’s that are
not contained in Sx,x at the end of the game.
If all these y vertices form one path that is adjacent to a leaf of the double
star Sx,x, then N = x+y−1. Otherwise, if we have a leaf of the double star
Sx,x as a center of a new star on y leaves, then N = xy. In all the remaining
cases where y vertices do not form a new double star N = x+y−1, otherwise
when a new double star appears N > x+ y− 1, that proves the assertion of
the claim.
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Now, we count the number of P4’s at the end of the game. The number

of P4’s in the double star is at least
⌊⌊n−2

2 ⌋
2

⌋⌈⌊n−2
2 ⌋
2

⌉
. Using Claim 5.3.2

we know that the smallest number of P4’s in the rest of the graph is x +

y − 1, where x =
⌊
⌊n−2

2
⌋

2

⌋
and y = ⌈n−2

2 ⌉. Calculating this we get that

s(n, P4, Cycle) ≥ n2

16
+

n

8
− 39

16
.

Next, we look at Mini’s strategy. Using TreeBuilder’s strategy from Lemma
5.3.1 Mini can build a path P on ⌊n2 ⌋+1 vertices, regardless of whether she is
the first or the second player. Therefore, the number of vertices that do not
belong to P is ⌈n2 ⌉−1. The worst scenario for Mini is when all the remaining
vertices are in the same balanced double star S⌊x⌋,⌈x⌉ (It is easy to verify that
the graph with the largest number of P4’s is a balanced double star). There
can be at most four vertices that are at the same time in both P and S⌊x⌋,⌈x⌉.
Therefore, the double star S⌊x⌋,⌈x⌉ can have at most ⌈n2 ⌉+1 = ⌈n+2

2 ⌉ leaves.
Hence, the number of P4’s at the end of the game is at most ⌊x⌋⌈x⌉+2⌈x⌉+

y − 1, where x =
⌈n+2

2 ⌉
2

=
⌈
n+2
4

⌉
≤ n

4 + 5
4 and y = ⌊n2 ⌋ − 3 ≤ n

2 − 3.

Calculating this we get that s(n, P4, Cycle) ≤ n2

16
+

15n

8
+

21

16
.

5.4 P4 is forbidden

First, we observe what happens when the forbidden graph is P4.
Note that here the graph at the end of the game must be a disjoint union of
stars with at least three leaves, triangles, and isolated edges. There can be
at most one isolated vertex in case all the remaining nontrivial connected
components are triangles. Moreover, during the game, if two components
are combined into one, one of them must be an isolated vertex. Hence,
when there are no isolated vertices, the only legal moves are edges within
the component.
We observe the game where we count the number of paths. It is clear that
the only path that can occur is a P3.

Proof of Theorem 2.3.4:
Note that, informally speaking, in this game Max desires a “big star” with
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as many leaves as he can achieve, while Mini wants as many isolated edges
and triangles. The following strategy applies regardless of who starts the
game.
Mini’s strategy.
Stage 1

1. If there is a P3 component, Mini claims the edge that closes a triangle.

2. Otherwise, Mini tries to claim an isolated K2, if that is not possible,
she creates a P3 connecting an isolated edge with an isolated vertex.

Note that when there are no more isolated vertices, the only legal move is
turning a P3 into a triangle. Following her strategy Mini closes triangles or
claims an isolated edges, and in her last move, she can make a P3 component.
If that happens, there are no more isolated vertices, so Max has to claim the
edge that closes the triangle and the game is over. Playing this way Mini
ensures that there is no connected component on more than three vertices.
Therefore, at the end of the game, the graph is a disjoint union of triangles
and isolated edges, or a disjoint union of one isolated vertex and triangles.
Hence, s(n, P3, P4) ≤ n.
Max’s strategy.
Stage 1 If there are more than 12 isolated vertices, Max chooses the first
satisfied rule of the following three rules:

1. If there is a component that is an Sk, k ≥ 3, Max claims an edge
incident with the central vertex of that star and one isolated vertex;

2. If there is a component that is a K2, Max creates a P3 connecting that
edge with an isolated vertex.

3. Otherwise, Max claims an isolated K2.

Stage 2 If there is at least one isolated vertex, Max chooses the first satisfied
of the following three rules:

1. If there is a component that is an Sk, k ≥ 4, Max claims an edge
incident with the central vertex of that star and one isolated vertex;
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2. If there is a component that is a K2, Max creates a P3 connecting that
edge with an isolated vertex.

3. Otherwise, Max tries to claim an isolated K2, or if that is not possible,
proceeds to Stage 3.

Stage 3 Max repeatedly plays any legal move to the end of the game.
It is clear that Max can follow his strategy.
Now we have to count the number of P3’s at the end of the game. Before
that, notice that if we have a star Sl+1 and l isolated edges on one side, and
on the other side a disjoint union of l triangles and one isolated vertex (the
same number of vertices on both sides), there are more P3’s in the first case
when

(
l
2

)
> 3l, i.e. l > 7.

When it is Max’s turn to play in Stage 2 for the first time and he skips
rule 1 that means that during Stage 1, rule 1 has not been played. Hence,
every P3 component created by Max, Mini turned into a triangle. Therefore,
after the last move of Max, the graph was a union of disjoint triangles and
a P3 component or K2 component (or both of them). Hence, following his
strategy Max ensures that at the end of the game, there are either at most
two isolated edges and all the remaining connected components are triangles,
or there is at most one isolated vertex and all the remaining connected
components are triangles, or there is a star with l leaves (the biggest one)
and at most l− 2 isolated edges (where l ≤ 8). Hence, s(n, P3, P4) ≥ n− 4.
Otherwise, it is Max’s turn to play in Stage 2 for the first time and he has
to play by rule 1, he will repeat that rule until there are no more isolated
vertices. Hence, there has to be one star Sl, l ≥ 8, and at most l isolated
edges. As we explained above, there has to be more P3’s than in case the
graph was a union of disjoint triangles. Hence, s(n, P3, P4) ≥ n.

Proof of Observation 2.3.5: Mini’s strategy: Using Mini’s strategy from
Theorem 2.3.4, Mini ensures that at the end of the game, the only non-
trivial connected components in the graph are triangles and isolated edges.
Therefore, s(n, Sk, P4) = 0, k ≥ 4.

Proof of Theorem 2.3.6: In this game, Max wants as many triangles
as possible, while Mini wants as many isolated edges or a star with many
leaves (at least 3). The following strategy applies regardless of who is the
first player.
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Mini’s strategy when n is even.

• If Max played in a component that is an Sl, where l ≥ 2 (after his
move), Mini turns it into an Sl+1 adding one isolated vertex as a leaf.

• Otherwise, if Max claims an isolated K2, Mini does the same.

Note that one round (move of Max followed by the move of Mini) decreases
the number of isolated vertices by 2 or 4. Hence the number of isolated
vertices after each move of Mini is even and the strategy can be followed
until the end of the game. Therefore, there is no triangle in the graph and
s(n,C3, P4) = 0.
Mini’s strategy when n is odd.
Stage 1 If there is at least one isolated vertex, Mini chooses the first satisfied
of the following two rules:

1. If there is a P3 component, Mini claims an edge connecting its central
vertex with an isolated vertex creating an S4.

2. Otherwise, Mini tries to claim an isolated K2. If that is not possible
and there is an Sl, l ≥ 4 she claims an edge incident with the central
vertex of that star and the isolated vertex (making an Sl+1), otherwise
she proceeds to Stage 2.

Stage 2 Mini repeatedly plays any legal move to the end of the game.

It is clear that Mini can follow her strategy. During Stage 1 she ensures that
there is no triangle in the graph. When it is Mini’s turn to play in Stage 2
and there is one isolated vertex, all the remaining components are isolated
edges. Then, Mini has to complete a P3 and the last move is reserved for Max
to claim the edge that closes a triangle, hence s(n,C3, P4) ≤ 1. Otherwise,
if Stage 2 is triggered and there are no more isolated vertices, the graph
is a disjoint union of stars Sl, l ≥ 3, isolated edges, and at most one P3

component. If the last component occurs, Mini has to claim the edge that
closes a triangle, so again s(n,C3, P4) ≤ 1.
Max’s strategy when n is odd.

• If Mini played in a component that is a P3 after his move, Max claims
the edge that closes a triangle.
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• Otherwise, if Mini claims an isolated K2, Max tries to do the same, or
if that is not possible plays any legal move.

If during the game Mini completes a P3 component, following his strategy
Max completes a triangle. Otherwise, the graph is a matching and at the
very end of the game, there is one isolated vertex. Regardless of which
player is to move, he has to make a P3 component. That component has
to become a triangle in the following move. Therefore, s(n,C3, P4) ≥ 1, and
that proves the assertion.

5.5 All odd cycles are forbidden

First, we count the number of even paths P2k and cycles C2k in the complete
bipartite graph on 2n vertices. The largest number of P2k and C2k in a
complete bipartite graph has been reached when both partitions are equal.
That can be verified by calculating these values using combinatorial counting
and verifying that these expressions are maximal when both partitions are

equal, and that is
( n!

(n− k)!

)2
and

1

k

( n!

(n− k)!

)2
, respectively.

Proof of Observation 2.3.7: In these games, Max wants to get as close as
possible to Kn,n, while Mini wants an asymmetric bipartite graph. Max has
a strategy to create Kn,n following the strategy from the proof of Theorem
5.1.1, regardless of who is the first player. Therefore,

s(2n, P2k,O) =
( n!

(n− k)!

)2
and s(2n,C2k,O) =

1

k

( n!

(n− k)!

)2
.

Then, we count the number of Sk in the bipartite graph on 2n vertices. Note
that the number of Sk in the bipartite graph with partitions of x and 2n−x
vertices is

x

(
2n− x

k − 1

)
+ (2n− x)

(
x

k − 1

)
, where we suppose that x < n.

This function reaches its maximum for x = 1 if k > n, or when x is an

integer between
2n

k − 1
− 1 ≤ x <

2n

k − 1
, otherwise. That can be verified by

calculating these values using combinatorial counting. Since n is big enough,
we are primarily interested in the case when k ≤ n. The minimum of this
function is reached when x = n.
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Proof of Observation 2.3.8: In this game, Mini is the player who wants
balanced partitions. Therefore, she can use Max’s strategy from Theorem
5.1.1 and make a Kn,n regardless of who plays first. Therefore,

s(2n, Sk,O) = 2n

(
n

k − 1

)
.

5.6 Tn is forbidden

In the following observation, we look at generalized saturation games where
the forbidden graphs are all spanning trees Tn. Note that at the end of the
game, the graph must be a disjoint union of two complete graphs Kr and
Kn−r.
We count the number of paths Pk, cycles Ck and stars Sk in Kr +Kn−r and
we get

k!

2

((
r

k

)
+

(
n− r

k

))
,

(k − 1)!

2

((
r

k

)
+

(
n− r

k

))
,

and
r

(
r − 1

k − 1

)
+ (n− r)

(
n− r − 1

k − 1

)
,

respectively. Each of these functions reaches its maximum for r = 1, and
its minimum for r = ⌊n2 ⌋. That can be verified by calculating these values
using combinatorial counting.

Proof of Observation 2.3.9:
In each of these games, Max wants to achieve K1 +Kn−1, while Mini wants
a union of two complete graphs on ≈ n

2 vertices. From the proof of Theorem
5.1.2 we know that Max has a strategy to make K2 + Kn−2 and Mini has
a strategy to prevent an isolated vertex at the end of the game. Therefore,

s(n, Pk, Tn) =
k!

2

(
n− 2

k

)
, s(n,Ck, Tn) =

(k − 1)!

2

(
n− 2

k

)
and

s(n, Sk, Tn) = (n− 2)

(
n− 3

k − 1

)
.

105



Chapter 5. Generalized saturation game

5.7 S4 is forbidden

In the following, we observe generalized saturation games where the forbid-
den graph is a star S4. Note that at the end of the game, the graph is a
union of disjoint cycles and possibly either one isolated vertex or an edge
(but not both).
First, we count the number of paths at the end of the game when both
players play optimally. As counting P2’s is the same as counting edges, that
has already been done in Theorem 5.1.3. Note that here the score of the
game is bounded from above by n. We say that a player closes a cycle
when he claims the edge that connects both ends of a path on at least three
vertices.
We give the following strategy that we will use later.

Path extension strategy :
If Max is the first player he plays an isolated K2, otherwise he completes
a P3 component. Then, if Mini closes a cycle, Max claims an isolated K2

(starts a new path). Otherwise, Max claims an edge such that the path is
by 2 vertices longer than it was after the last Max’s move.

Proof of Theorem 2.3.10: As we know the structure of the graph at the
end of the game, it is clear that
s(n, P3, S4) ≥ n− 2. Therefore, Max wants to finish the game without an
isolated vertex or an edge, while Mini wants an isolated edge or at least an
isolated vertex.
We give the score for this game when n ≤ 7, and for greater n we give the
strategy for Max which reduces the problem to the cases when n is small.
When n = 3, the score is s = 3.
When n = 4, we have s = 4. If Max is the first player he completes a P4

in his second move, otherwise, he completes a 2K2 in his second move, and
the graph at the end of the game is a C4.
When n = 5, if Max plays first s1 = 4. Mini completes a P3 in her first
move, and in the following move, she closes a cycle. Otherwise, if Max is the
second player he completes a 2K2 in his second move, and after his following
move he completes a P5, hence in this case s2 = 5.
When n = 6, if Max plays first s1 = 6. Max completes a triangle or 3K2

in his second move. Otherwise, if Max is the second player, Mini completes
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a P4 in her second move, and after her following move she closes a cycle,
hence in this case s2 = 5.
When n = 7, we have s = 7. Indeed if Max is the first player, he completes
a triangle or a 3K2 in his second move. Otherwise, if Mini plays first, after
Max’s second move, the graph is either a K3 +K2 or a C4.
When n ≥ 8, Max follows the Path extension strategy while there are at
least 7 isolated vertices after his move. When this condition is not satisfied
he chooses one of the following two options.

1. There are 5 isolated vertices.

• If Mini closes a cycle, the game is reduced to Max as the first
player on 5 vertices.

• If Mini claims an isolated K2, Max closes a cycle and reduces
the game to Max as the first player on 5 vertices. If that is not
possible (the graph is a disjoint union of cycles, 2K2, and three
isolated vertices), the game is reduced to Max as the first player
on 7 vertices.

• If Mini adds a new vertex to the path, Max closes a cycle and
reduces the game to Max as the second player on 4 vertices.

2. There are 6 isolated vertices.

• If Mini closes a cycle, the game is reduced to Max as the first
player on 6 vertices.

• If Mini claims an isolated K2, Max closes a cycle and reduces
the game to Max as the first player on 6 vertices. If that is not
possible (the graph is a disjoint union of cycles, 2K2, and four
isolated vertices), Max completes a P4 connecting two isolated
edges, and after his following move he turns it into either a C4+K2

or a C5 and the game is reduced to Max plays first on 4 vertices
or Max plays first on 3 vertices, respectively.

• If Mini adds a new vertex to the path, Max closes a cycle and
reduces the game to Max as the second player on 5 vertices.

It is clear that Max can follow the Path extension Strategy. Considering
this strategy, we conclude that the number of isolated vertices is decreased
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by 2 per round, except the first one (the move of Mini followed by the move
of Max). Therefore, Max finishes following this strategy when there are 5 or
6 isolated vertices and it is Mini’s turn to play. At that moment except for
isolated vertices, the graph contains disjoint cycles and one path. For the
same reason, if Max applied Case 2 that means he is the first player and n
is even or he is the second player and n is odd. As we can see in this case
the score is n regardless of Mini’s choice, and that proves the second part of
the theorem. If Max applied Case 1, s ≥ n− 1 and the assertion is proved.

Proof of Theorem 2.3.11:
In this game, informally speaking, Max desires “big cycles” Cl where l ≥ 4,
while Mini wants triangles. The idea of the proof is the same as in the
previous theorem.
Cases n = 4 and n = 5 are the same.
When n = 6, the score is s = 4. If Max is the first player Mini completes a P3

in her second move and in his following move she closes a cycle. Therefore,
the best scenario for Max is that the graph at the end of the game is C4+K2.
Otherwise, if Max is the second player, Mini completes either a triangle or
3K3 in her second move, whereas in the latter case, Mini completes a C4

in her following move. Hence, again for Max the best option is the graph
C4 +K2 at the end of the game.
When n = 7, the score is s = 4. Mini’s strategy is analog to the previous
case.
Now, we give a strategy for Max when n ≥ 8. First, we consider the case
where Max is the first player. He follows the Path extension Strategy while
there are at least 7 isolated vertices after his move.

1. There are 5 isolated vertices.

• If Mini closes a cycle, the game is reduced to Max as the first
player on 5 vertices.

• If Mini claims an isolated K2, Max closes a cycle and reduces
the game to Max as the first player on 5 vertices. If that is not
possible (the graph is a disjoint union of cycles, 2K2, and three
isolated vertices), the game is reduced to Max as the first player
on 7 vertices.
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• If Mini adds a new vertex to the path, Max closes a cycle and
reduces the game to Max is the second player on 4 vertices.

2. There are 6 isolated vertices.

• If Mini closes a cycle, the game is reduced to Max as the first
player on 6 vertices.

• If Mini claims an isolated K2, Max closes a cycle and reduces
the game to Max as the first player on 6 vertices. If that is not
possible (the graph is a disjoint union of cycles, 2K2, and four
isolated vertices), Max completes a P4 connecting two isolated
edges, and after his following move, he turns it into either C4+K2

or P6. The game is reduced to Max plays first on 4 vertices in
the first case, or in the latter case, he plays any legal move until
the end of the game.

• If Mini adds a new vertex to the path, Max closes a cycle and
reduces the game to Max as the second player on 5 vertices.

Analogously to the proof of Theorem 2.3.10, the Path extension Strategy
ends when there are 5 or 6 isolated vertices. At that moment the graph
is a disjoint union of cycles on more than three vertices and one path (it
cannot be a P3, because the path is on an even number of vertices after
Max’s move). Now it is clear that Max can follow his strategy until the end
of the game and ensures that s1(n, P4, S4) ≥ n− 3.

Now we suppose that Max is the second player. In his first move he completes
a 2K2, then depending on the move of Mini there are two cases for his second
move:

1. If Mini claims an isolated K2, Max claims the edge such that the graph
is P4 +K2 after his second move, and proceeds to Stage 1.

2. Otherwise, Max completes a P5 in his second move and then follows
the same strategy as in the case when Max is the first player to the
end of the game.

Stage 1: While there are at least 5 isolated vertices after Max’s move, he
follows these rules:
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a) If Mini closes a C4, the problem is reduced to Max as the second player
(with 4 vertices less).

b) If after Mini’s move, the graph is P4 + 2K2, Max claims an edge such
that the graph is C4 + 2K2 after his move and the problem is again
reduced to Max as the second player (from his second move and on 4
vertices less).

c) Otherwise, Max completes a P7 and then follows the same strategy as
in the case when Max is the first player to the end of the game.

If Max at any moment of the game proceeds to the strategy when Max is
the first player, the graph at that moment contains a number of C4 and
one path, and the game has been finished with the same score as there, i.e
s2(n, P4, S4) ≥ n− 3.
If that is not the case, Stage 1 has been finished after the move of Max when
there are 3 or 4 isolated vertices. The reason for this is that the only possible
rules that have been applied during this stage were a), b), or 1, and after
each of them there were two isolated vertices less than after the previous
round. Additionally, the graph at that moment is a disjoint union of C4 and
either 2K2 or P4 +K2.
For each of these cases, we can prove that the score is at least n− 3, these
proofs are similar to those from the previous case (Max is the first player),
so we omit them. Hence, s2(n, P4, S4) ≥ n− 3.

Proof of Theorem 2.3.12: In this game, Max wants big cycles Cl where
l ≥ 5, while Mini wants a disjoint union of triangles and C4’s. Without
making difference in who is the first player, we give a strategy for Mini.
Stage 1: We look at the graph and observe the set S of nontrivial connected
components that are not cycles. While there is at least one isolated vertex,
before each of her moves Mini chooses the first satisfied of the following three
rules:

1. There is a Pi component in S, where i ∈ {3, 4}. Mini closes a Ci.

2. S is a disjoint union of isolated edges. Mini tries to claim an isolated
K2. If that is not possible, Mini connects one isolated edge with an
isolated vertex creating a P3.
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3. S = ∅. Mini plays an isolated K2.

Stage 2: There is no isolated vertex. Mini chooses one of the following op-
tions depending on the type of connected components that are contained in
the graph. Except for cycles and a number of K2 the remaining components
are:

1. One P3 and one P4. Here Mini closes a C4 and after the following
Max’s move the game is reduced to one of the cases: 1, 4 or 5.

2. One P3. Mini closes a triangle and then until the end of the game she
closes a C4.

3. One P4. Until the end of the game Mini closes a C4.

4. One P5. Mini closes a C5 and then the game is reduced to 3.

5. None. Mini connects two isolated edges and completes a P4 and then
until the end of the game, she closes a cycle. If there are two paths,
she closes one arbitrarily.

Now we prove that Mini can follow her strategy. It is clear that she can
follow rules 1 and 2 from Stage 1. If it is Mini’s turn to play by rule 3 and
there is just one isolated vertex, all the remaining components are cycles, so
the game is over. Therefore, it is clear that Mini can follow Stage 1.
After the last Mini’s move played in Stage 1 the graph is a disjoint union
of the following components, a number of C3, a number of C4, a number of
K2, and at most one P3. Since a cycle cannot be connected to any other
component, each possible scenario before the first Mini’s move in Stage 2 is
shown in the five cases given above.
If Mini applies one of the rules 2 or 3, it is clear that she can close the cycle
and after that, only the pairs of isolated edges can be connected into one
component, hence the only possible move for Max is to complete a P4, and
then Mini closes a C4 and these moves will be repeated to the end of the
game. Here the graph at the end of the game does not contain a P5, hence
the score is s = 0.
If Mini applies rule 4, the score is s = 5.
If Mini applies rule 5, that is the only possible move for her and after that,
Max can complete another P4 component or create a P6. In both of these

111



Chapter 5. Generalized saturation game

cases, Mini will close a cycle in her following move. If she closes a C6 (that
is possible just once), the game is reduced to 3. Otherwise, Mini closes a
C4 and repeats closing a cycle such that at the end of the game the graph
contains at most one C6 and all the remaining cycles have at most 4 vertices.
Therefore, the score of the game is s ≤ 6.
This proves the first part of the theorem.

Now we look at Max’s strategy when he is the second player and n = 4k or
n = 4k + 1. The game stops at the moment when the first cycle on at least
5 vertices is made, showing that the score is at least 5.
While there is no cycle in the graph:

1. If there is a Pi component, where i ≥ 5, Max closes a Ci and the game
is over.

2. If Mini plays an isolated K2, Max does the same.

3. Else, if Mini plays in a component that is a Pi after her move, Max
adds one isolated edge to this path, making a Pi+2, or if there is no
isolated edge he adds an isolated vertex, making a Pi+1.

When Max has to apply rule 3 for the first time, Mini has completed either
a P3 or a P4 component. In case this component is a P3, there has to be at
least one isolated edge because the first round has been finished with two
isolated edges. Otherwise, if the component is a P4 there must be either an
isolated edge or vertex. Therefore, after this move of Max, there must be a
Pi component, where i ≥ 5, so the game will be over in the next round with
s2 ≥ 5.
If the graph is matching and there is at most one isolated vertex, it must
be Mini’s turn (because of the condition for n). Therefore, Mini has to
complete either a P3 or P4, and in his following move, Max completes a Pi

where i ≥ 5, following rule 3, so the game will be finished in the next round
with s2 ≥ 5.

Before proving Theorem 2.3.13, we prove the following lemma.
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Lemma 5.7.1. s(n, P6, S4) = 0.

Proof. In this game, Max desires big cycles Cl where l ≥ 6, while Mini wants
a disjoint union of triangles, C4’s and C5’s. Without making a difference in
who is the first player, we give a strategy for Mini.
We look at the graph and observe just the set S of nontrivial connected
components that are not cycles. Before each of her moves, Mini chooses the
first satisfied of the following three rules:

1. There is a Pi component in S, where i ∈ {3, 4, 5}. Mini closes a Ci.

2. S = 2K2. Mini completes a P4, connecting these isolated edges.

3. S = K2. Mini completes a P3, connecting one isolated vertex to K2.

4. S = ∅. Mini plays an isolated K2.

The only possible cases where Mini cannot answer using her strategy are
rules 3 and 4, but then the game is over because S = K2 and there is no
isolated vertex or S = ∅ and there is at most one isolated vertex and all the
remaining connected components are cycles on 3,4 or 5 vertices. Therefore,
when Mini cannot follow this strategy, the game is over. At the moment
when Mini has finished her move, the graph contains, a number of C3, a
number of C4, a number of C5, and at most one component from the set
{K2, P3, P4}. Therefore, after the Max’s move the set S is exactly one of
the {∅,K2, 2K2, P3, P4, P5, P3 +K2, P4 +K2}. Following her strategy, Mini
ensures that there is no cycle on more than 5 vertices in the graph. Hence,
s(n, P6, S4) = 0.

Proof of Theorem 2.3.13: In the proof of Lemma 5.7.1 we saw that Mini
has a strategy to finish the game without a cycle on more than 5 vertices in
the graph. That proves the assertion.

Before we prove Theorem 2.3.14 we give several lemmas.

Lemma 5.7.2. s(n,C3, S4) ≤ 1.

Proof. In this game Mini’s strategy is to avoid a triangle. In the game where
we count a P4 strategy of Max is also to avoid triangles. Therefore, we can
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use Max’s strategy from the Theorem 2.3.11. If Max is the first player, Mini
follows the strategy when Max is the second player from the Theorem 2.3.11
and vice versa. At the end of the game, there will be at most one triangle
and our assertion is proven.

Lemma 5.7.3. s(n,C4, S4) ≤ 1.

Proof. Mini’s goal in this game is to avoid a C4, i.e. she does not want to
complete a P4 component. We give Mini’s strategy which is divided into
two stages and works both if Max is the first or the second player.
Stage 1. We look at the graph and observe just the set S of all nontrivial
connected components that are not cycles. Here we denote by P2 an isolated
edge and by P0 an empty set. Before each of her moves, Mini chooses one
suitable of the following five rules:

1. S = ∅. Mini claims an isolated P2.

2. S = Pk, where k = 2 or k ≥ 4. Mini tries to complete a Pk+1 by
adding one isolated vertex to the path. If this is not possible Mini
proceeds to Stage 2.

3. S = P3. Mini closes a C3.

4. S = Pk +Pj +Pr, where k ≥ 3, j ∈ {2, 3} and r ∈ {0, 2}. Mini claims
an edge that connects two of the longest paths making a Pk+j + Pr.

5. S = 2P2. Mini tries to claim an edge such that after her move S =
P3 + P2. If this is not possible Mini proceeds to Stage 2.

Stage 2. Mini repeatedly plays any legal move to the end of the game.

If Mini cannot fulfill rule 1, that means all connected components are cycles
and there is at most one isolated vertex, so the game is over. Hence, Mini
can follow her strategy. After each of her moves during Stage 1 in the set
V \S, there is no C4 and the remaining nontrivial connected components in
S can be one of the following, Pk where k ≥ 2 and k ̸= 4 or Pk + P2 where
k ≥ 3 and k ̸= 4. Then, after the move of Max one of the 5 rules given
above will be satisfied, and because there is no P4 component, she cannot
make a C4. If Stage 2 is triggered, that means either S = Pk and there is no
isolated vertex, hence Mini plays the last move and closes the cycle Ck, or

114



5.8. Concluding remarks and open problems

S = 2P2, and Mini has to complete a P4 component in her following move.
Therefore, at the end of the game, the graph contains at most one C4 and
the assertion of the theorem is proven.

Lemma 5.7.4. s(n,C5, S4) ≤ 1.

Proof. In this game, Mini’s strategy is to avoid a C5. Therefore, we can use
Mini’s strategy from the Theorem 2.3.12 and finish the game with at most
one C5. That proves the assertion.

Lemma 5.7.5. s(n,Ck, S4) = 0, where k ≥ 6.

Proof. Following Mini’s strategy from the Lemma 5.7.1 this game can be
finished without making any component that is a cycle on more than 5
vertices. Therefore, the score is s(n,Ck, S4) = 0, when k ≥ 6.

Proof of Theorem 2.3.14: Combining lemmas 5.7.2, 5.7.3, 5.7.4 and 5.7.5
the proof of this theorem goes directly.

5.8 Concluding remarks and open problems

Here we introduced generalized saturation games and found very interesting
results for the score of several different games. We observed the games where
the forbidden graph is one of the following, a cycle, a tree, a path on five
or four vertices, and a star on four vertices. Therefore, all the remaining
games are still open. Particularly, we are interested in finding the score of
the game where the forbidden graph is a star on k vertices, and we count
the number of stars on l vertices at the end of the game, where l < k.
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Concluding remarks

Throughout this thesis, we studied Combinatorial games on graphs and
paid special attention to their subvariants, positional games, and saturation
games. From a wide range of positional games, we were particularly inter-
ested in strong games. As we could see from the previous sections this thesis
is divided into three major parts, strong Avoider-Avoider games, achievement
number in Maker-Maker games, and generalized saturation games. Here, we
provide concluding observations for each of these parts, along with open
problems interesting for further study.
First, we studied strong Avoider-Avoider F games played on the edge set
of the complete graph Kn. As we could already see, these games are often
mentioned in the literature, and a lot of questions were asked about them,
but only a few of them have been answered. The reasons for their inacces-
sibility lie in the lack of mathematical tools as well as in the fact that both
players have the same goal, resulting in a small margin by which a game is
won. It was previously known that Blue has a winning strategy in only two
games of this type. In this thesis, we provide two new results, by giving the
existence of a winning strategy for Blue.
We proved our results by using strategy stealing to verify that Blue can
win. It would be interesting to develop other new mathematical tools that
can be used for this kind of game. As we saw earlier, the outcome of four
different games is known up to now, so finding the outcome for any other
strong Avoider-Avoider F game would be interesting. In particular, is it true
that Blue has a winning strategy in a strong Avoider-Avoider F game, where
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the forbidden graph F is: a triangle, a path on k vertices Pk, a cycle on k
vertices Ck or a tree on k vertices Tk? Additionally, it would be interesting
to either find a game of this kind where Red can win or to prove that Blue
can always win.
We also introduced strong CAvoider-CAvoider F games, as a variant of the
above-mentioned games, which were created as their natural extension. We
prove that Blue can win in three different games of this kind, which means
that all the remaining games still stay open.

Secondly, we observed the achievement number in strong Maker-Maker games
played on the edge set of the complete graph Kn. More precisely, we wanted
to find the smallest integer a(F ) such that Red can win this game played
on the complete graph on a(F ) vertices. Since we know that a(F ) ≤ R(F )
holds, where R(F ) is the Ramsey number, it is interesting to determine for
which graphs F we have a(F ) < R(F )?
We gave a Red’s winning strategy in the strong Maker-Maker game played
on a(F ) isolated vertices, for some small graphs F . Then, we found the
achievement number for several particular graphs, such as paths, cycles,
and perfect matchings. We also gave an upper bound for the achievement
number for the star Sn, which is 2n − 3. As for the lower bound, we know
that it is greater than n, and it would be interesting to find the exact value
of the star achievement number, or at least to improve these bounds.
Moreover, we were interested in finding the achievement number for trees,
and we managed to get an upper bound, whereas the lower bound is n,
which has been reached for paths and one particular class of trees. We
believe that the upper bound can be improved for a class of trees with a
bounded maximum degree. Furthermore, Harary’s conjecture is still open,
and the response to this question requires more analysis of the achievement
number for stars.

Finally, we studied generalized saturation games, and managed to find the
score in several different games. We observed the games where the forbidden
graph is one of the following, a cycle, a tree, a path on five or four vertices,
and a star on four vertices, and we found their scores.
Taking into account that saturation games are a special case of the gener-
alized saturation games (where H = K2), as well as the games studied in
this thesis, all the remaining games are still open. One of the open problems
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that looks particularly enticing is finding the score of the game where the
forbidden graph is a star on k vertices, while the graph we count at the end
of the game is a star on l vertices, where l < k.
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_______________________________________________________________________

_______________________________________________________________________

5.4. Навести лиценцу под којом ће прикупљени подаци бити архивирани.

_______________________________________________________________________

6. Улоге и одговорност

Национални портал отворене науке – open.ac.rs



6.1. Навести име и презиме и мејл адресу власника (аутора) података

_______________________________________________________________________

6.2. Навести име и презиме и мејл адресу особе која одржава матрицу с подацимa

_______________________________________________________________________

6.3. Навести име и презиме и мејл адресу особе која омогућује приступ подацима  
другим истраживачима

_______________________________________________________________________
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