
Dynamic formation of the
distributed micro clouds

- Ph. D. Thesis -

Novi Sad, 2021.

UNIVERSITY OF
NOVI SAD

FACULTY OF
TECHNICAL SCIENCES

Supervisor: Candidate:ff

Goran Sladić, PhD, full
professor

 Miloš Simić

Miloš Simić: Dynamic formation of the distributed micro
clouds

SERBIAN TITLE:
Dinamičko formiranje distribuiranog mikro okruženja u
računarstvu u oblaku

SUPERVISOR:
Goran Sladić, PhD, full professor

LOCATION:
Novi Sad, Serbia

DATE:
December 2021

UNIVERZITET U NOVOM SADU
OBRAZAC – 5a
FAKULTET TEHNIČKIH NAUKA

KLjUČNA DOKUMENTACIJSKA INFORMACIJA 1

Vrsta rada: Doktorska disertacija

Ime i prezime
autora:

Miloš Simić

Меntor (titula,
ime, prezime,
zvanje,
institucija)

dr Goran Sladić, redovni profesor, Fakultet tehničkih nauka

Naslov rada: Dinamičko formiranje distribuiranog mikro okruženja u
računarstvu u oblaku

Jezik publikacije
(pismo):

Engleski jezik, latinica

Fizički opis rada:

Stranica: 256
Poglavlja: 7
Referenci: 195
Tabela: 10
Slika: 30
Grafikona: 0
Priloga:0

Naučna oblast: Elektrotehničko i računarsko inženjerstvo

Uža naučna
oblast (naučna
disciplina):

Distribuirani sistemi

Ključne reči /
predmetna
odrednica:

distribuirani sistemi, računarstvo u oblaku, višestruko
računarstvo u oblaku, mikroservisi, softver kao servis, ivično
računarstvo, mikro računarstvo u oblaku, veliki podaci,
infrastruktura kao kod

 Autor doktorske disertacije potpisao je i priložio sledeće Obrasce: 1

 5b – Izjava o autorstvu;
 5v – Izjava o istovetnosti štampane i elektronske verzije i o ličnim podacima;
 5g – Izjava o korišćenju.
 Ove Izjave se čuvaju na fakultetu u štampanom i elektronskom obliku i ne koriče
se sa tezom.

Rezime na jeziku
rada:

U sklopu disertacije izvršeno je istraživanje u oblasti
distribuiranih sistema. Predstavili smo dinamičku
organizaciju geo-distribuiranih čvorova u mikro centre za
obradu podataka koji formiraju mikro okruženja računarstva
u oblaku kako bi pokrili bilo koje proizvoljno područje i
proširili kapacitet, dostupnost i pouzdanost. Koristili smo
organizaciju računarstva u oblaku kao inspiraciju, sa
adaptacijama za drugačije okruženje sa jasnom podelom
nadležnosti, i modelom aplikacija koji može da iskoristi
novoformirani sistem. Jasna podela nadležnosti, model
aplikacija i dinamička organizacijom čvorova, čine da se
predstavljeni model ponude kao i bilo koji drugi uslužni
servis. Takođe dajemo formalne modele za sve protokole
koji se koriste za stvaranje takvog sistema.

Datum
prihvatanja teme
od strane
nadležnog veća:

Datum odbrane:
(Popunjava
odgovarajuća
služba)

Članovi komisije:
(titula, ime,
prezime, zvanje,
institucija)

Predsednik: dr Milan Vidaković, redovni profesor, Fakultet
tehničkih nauka Novi Sad
Član: dr Silvia Gilezan, redovni profesor, Fakultet tehničkih
nauka Novi Sad
Član: dr Miroslav Zarić, vanredni profesor, Fakultet
tehničkih nauka Novi Sad
Član: dr Aleksandar Milosavljević, vanredni profesor,
Elektronski fakultet Niš
Mentor: dr Goran Sladić, redovni profesor, Fakultet
tehničkih nauka Novi Sad

Napomena:

UNIVERSITY OF NOVI SAD
FACULTY OF TECHNICAL SCIENCES

KEY WORD DOCUMENTATION 2

Document type: Doctoral dissertation

Author: Miloš Simić

Supervisor (title,
first name, last
name, position,
institution)

Goran Sladić, Ph.D., Full Professor, Faculty of Technical
Sciences

Thesis title: Dynamic formation of the distributed micro clouds

Language of text
(script):

English language, latin script

Physical
description:

Pages: 256
Chapters: 7
References: 195
Tables: 10
Illustrations: 30
Graphs: 0
Appendices: 0

Scientific field: Electrical and computer engineering

Scientific subfield
(scientific
discipline):

Distributed systems

Subject, Key
words:

distributed systems, cloud computing, multi cloud,
microservices, software as a service, edge computing, micro
clouds, big data, infrastructure as code

 The author of doctoral dissertation has signed the following Statements: 2

 5б – Statement on the authority,
 5в – Statement that the printed and e-version of doctoral dissertation are identical
and about personal data,
 5г – Statement on copyright licenses.
 The paper and e-versions of Statements are held at he faculty and are not included
into the printed thesis.

Abstract in
English language:

This thesis presents research in the field of distributed
systems. We present the dynamic organization of geo-
distributed edge nodes into micro data-centers forming micro
clouds to cover any arbitrary area and expand capacity,
availability, and reliability. A cloud organization is used as an
influence with adaptations for a different environment with a
clear separation of concerns, and native applications model
that can leverage the newly formed system. With the
separation of concerns setup, edge-native applications
model, and a unified node organization, we are moving
towards the idea of edge computing as a service, like any
other utility in cloud computing. We also give formal models
for all protocols used for the creation of such a system.

Accepted on
Scientific Board
on:

Defended:
(Filled by the
faculty service)

Thesis Defend
Board:
(title, first name,
last name,
position,
institution)

President: Milan Vidaković, PhD, Full Professor, Faculty of
Technical Sciences, Novi Sad
Member: Silvia Gilezan, PhD, Full Professor, Faculty of
Technical Sciences, Novi Sad
Member: Miroslav Zarić, PhD, Associate Professor, Faculty
of Technical Sciences, Novi Sad
Member: Aleksandar Milosavljević, PhD, Associate
Professor, Faculty of Electronic Engineering, Niš
Supervisor: Goran Sladić, PhD, Full Professor, Faculty of
Technical Sciences, Novi Sad

Note:

Acknowledgements

First of all, I would like to express my sincere gratitude to my mentor
professor Goran Sladić, for his unselfish help during the process of
writing this thesis and related papers.

My research would have been impossible without the aid and sup-
port of colleagues Ivan Prokić and Jovana Dedeić from Chair of Math-
ematics. Together we managed to finish our research and publish our
first paper to the journal, and we were invited to present our research
to eminent colleagues from the Imperial College in London. Before
working with them, I had a different view of what research is, and now
my view is changed for the better. I hope that we will continue to
collaborate in the future, publishing more great papers, and working
on interesting and challenging projects and ideas. I would also like
to thank all committee members for their helpful suggestions, making
this thesis better.

I am profoundly grateful to Dejan Mijić, who first introduced me
to formal models, and their importance in the research area of the
distributed systems. Before our talks, I had no idea how to actually
test, and prove my work. I would blindly try all scenarios that come
to my mind, and ultimately prove probably nothing.

I would like to thank all my friends, relatives and other people who
showed me how (not) to act, and how to be a better person. To my
university professors, teaching assistants and colleagues from Chair of
Informatics, and Chair of Applied Computer Science who pushed me
to reach my full potential, to evolve, and ultimately finish my PhD. I

would like to express my gratitude to Biljana Dudaš for all the good
deeds she has done over the years, Nataša Petrović and Vanja Bogićević
for doing proofreading of this thesis.

Special thanks for my MetaDoktor teammates Vladimir Ivančević,
Marko Knežević from Faculty of Technial Sciences and Danica Mandić
from Faculty of Medicine, our collaboration sparked my interest for
doing serious research. I have learned so much from you all, and
enjoyed the time we spent working on Dr Warehouse project were we
ultimately won best paper award.

In the end, I would like to dedicate this work to my grandparents,
answering their most interesting question — I have finished school
finally (Unless I decide to pursue post-doc)! The journey was hard,
and not so pleasant most of the time, I had much more those who
congratulate, than those who support. But, "if I have seen further it
is by standing on the shoulders of Giants."1.

1Sir Isaac Newton letter to Robert Hooke, 1675

Abstract

Cloud computing is facing some serious latency issues due to huge
volumes of data that need to be transferred from the place where data
is generated to the cloud. For some types of applications, this is not
acceptable.

One of the possible solutions to this problem is the idea to bring
cloud services closer to the edge of the network, where data origi-
nates. This idea is called edge computing, and it is advertised that it
dramatically reduces the network latency as a bridge that links the
users and the clouds, and as such, it makes the foundation for future
interconnected applications.

Edge computing is a relatively new area of research and still faces
many challenges like geo-organization and a clear separation of concerns,
but also remote configuration, well defined native applications model,
and limited node capacity. Because of these issues, edge computing
is hard to be offered as a service for future real-time user-centric
applications.

This thesis presents the dynamic organization of geo-distributed
edge nodes into micro data-centers and forming micro-clouds to cover
any arbitrary area and expand capacity, availability, and reliability.
We use a cloud organization as an influence with adaptations for a
different environment with a clear separation of concerns, and native
applications model that can leverage the newly formed system.

We argue that the presented model can be integrated into existing
solutions or used as a base for the development of future systems.

i

Furthermore, we give a clear separation of concerns for the proposed
model. With the separation of concerns setup, edge-native applications
model, and a unified node organization, we are moving towards the
idea of edge computing as a service, like any other utility in cloud
computing.

The first chapter of this thesis, gives motivation and problem are
that this thesis is trying to resolve. It also presents research questions,
hypotheses and goals based on these questions.

The second chapter gives an introduction to the area of distributed
systems, narrowing it down only the parts that are important for
further understanding of the other chapters and the rest of the thesis
in general.

The third chapter shows related work from different areas that are
connected or that influenced this thesis. This chapter also shows what
the current state of the art in industry and academia is, and describes
the position of this thesis compared to the related research as well.

The fourth chapter proposes a model that is influenced by cloud
computing architectural organizations but adapted for a different envi-
ronment. We present how we can separate the geographic area into
micro data-centers that are zonally organized to serve the local pop-
ulation, and form them dynamically. This chapter also gives formal
models for all protocols used for the creation of such a system with
separation of concerns, applications models, and presents limitations
of this thesis.

The fifth presents an implemented framework that is based on the
model described in chapter three. We describe the architecture, and in
detail every operation a framework can do, with all existing limitations.

The sixth chapter presents the usability of the proposed model,
with possible applications that could be implemented based on the
model. We also present one example of COVID-19 area trafic control
in the city of Milan, Italy.

The seventh and the last chapter concludes this thesis and presents
future work that should be done.

ii

Key words: distributed systems, cloud computing, multi cloud, mi-
croservices, software as a service, edge computing, micro clouds, big
data, infrastructure as code.

iii

iv

Rezime

Razvojem i različitom primenom softverskih i hardverskih sistema
menja se i način na koji ljudi komuniciraju, uče i realizuju svoje
aktivnosti. Kao posledica sve veće primene ovih sistema u različitim
oblastima obim obrade i količina podataka znatno su se povećali [1].
Ovo povećanje za posledicu je imalo sve veću upotrebu distribuiranih
sistema da bi se ti poslovi mogli obaviti uspešno.

Proširena stvarnost (AR), igre preko mreže, automatsko prepozna-
vanje lica, autonomna vozila ili internet stvari (IoT) proizvode izuzetno
velike količine podataka što značajno utiče na opterećenje kao i na
kašnjenje [1]. Ovakvi zahtevi su izvan onoga što se centralizovanim
računarskim modelima, poput računarstva u oblaku, može ponuditi [1].
Čak i mali problemi mogu dovesti do velikog zastoja u komunikaciji
aplikacija i uslugama od kojih ljudi zavise.

Primer koji se nedavno desio još jedan je u nizu otkaza na Amazon
Web Services (AWS) platformi [2]. Ovim je platforma bila nedostupna
korisnicima i aplikacijama, a kao rezultat nedostupnosti platforme
velika količina aplikacija i servisa, koji se izvršavaju preko interneta,
postaje potpuno nedostupna korisnicima i na kraju neupotrebljiva.

Da bi se razumelo kako je problem nastao, potrebno je objasniti šta
je zapravo računarstvo u oblaku, predstaviti organizaciju i definisati
arhitekturu ovog računarskog modela.

Računarstvo u oblaku definisano je kao skup računarskih resursa
koji se mogu ponuditi korisnicima kroz takozvani uslužni softver [3].
Hardver i softver u velikim centrima za obradu podataka pružaju

v

usluge svojim korisnicima preko interneta [4]. Resursi poput CPU-a,
GPU-a, skladišta podataka i mreže mogu se koristiti za nekakvu obradu
podataka, ili osloboditi i to na zahtev i po potrebi korisnika [5].

Prednost računarstva u oblaku su razni servisi koji su ponuđeni
korisnicima kao usluge ili uslužni softver [3]. Tradicionalnim modelom
računarstva u oblaku pružaju se ogromni procesni i skladišni resursi
i to po potrebi, na zahtev korisnika, kako bi se podržale različite
potrebe aplikacija. Ovo svojstvo odnosi se na sposobnost računarstva u
oblaku da dozvoli korisnicima alokaciju dodatnih resursa ili oslobađanje
postojećih, kako bi se podudarali sa radnim opterećenjima aplikacija [6].

Jedna od problema u ovakvim sistemima nastaje kada je potrebno
da se (veliki) podaci prebace sa svog izvorišta u oblak. Ovim dolazi do
velike latencije ili kašnjenja u sistemu [7]. Na primer, Boeing 787 gener-
iše pola terabajta podataka po jednom letu, dok autonomni automobil
generiše dva petabajta podataka tokom samo jedne vožnje [8].

Međutim, propusni opseg nije dovoljno veliki da bi podržao takve za-
hteve [8]. Prenos podataka nije jedini problem sa kojim se računarstvo u
oblaku susreće. Aplikacije kao što su autonomni automobili, bespilotne
letelice ili balansiranje opterećenja u električnim mrežama, zahtevaju
obradu podataka u realnom vremenu da bi se ispravno donosile odluke
i reagovalo na razne promene [8].

Centralizovana arhitektura računarstva u oblaku, sa ogromnim ka-
pacitetima centara za obradu podataka, stvara efikasno upravljanje
resursima. Ovom strategijom dolazi se do smanjenja administrativnih
troškova celokupnog sistema [9]. Međutim, kada takav sistem dođe do
svojih granica, centralizacija uzrokuje mnoge druge probleme [2, 10].
Uprkos svim prednostima ovog modela, servisi i usluge vremenom se
suočavaju sa ozbiljnom degradacijom kvaliteta odziva i performansi
usled velike propusnosti i kašnjenja [11]. To može dovesti do nesagledi-
vih posledica po poslovanje, ali potencijalno i teže efekte poput uticaja
na ljudske živote.

Razne organizacije koriste usluge računarstva u oblaku i oslanjaju se
na njega kako bi izbegle izuzetno velike infrastrukturalne investicije [12]

vi

poput pravljenja i održavanja sopstvenih centara za obradu podataka.
Oni koriste resurse koje su obezbedili drugi pružaoci usluga [13] i
plaćaju shodno tome koliko vremenski koriste usluge — a pay as you
go model.

Cilj ove teze je predstavljanje i upotreba formalnih modela na os-
novu kojih se mogu opisati, i formalno verifikovati protokoli, kao i
implementirati radni okvir za distribuirani sistem, koristeći geografski
rasprostranjena okruženja nalik računarstvu u oblaku. Opisani sistem
mogu koristiti ne samo obični korisnici, već ga i pružaoci usluga raču-
narstva u oblaku mogu integrisati u svoju platformu i svoje servise kako
bi se minimalizovao zastoj kritičnih sistemskih segmenata. Čitav sistem
se može posmatrati kao skup distribuiranih mikro oblaka ili sloj obrade
podataka, koji u oblak šalje samo važne podatke, smajujući troškove
korisnicima, ali i obezbeđujući veću dostupnost usluga računarstva u
oblaku.

Distribuirani softverski sistemi su prilično složeni za modelovanje i
implementaciju. Jedan od problema u ovakvim sistemima često nastaje
zbog problema u komunikaciji čvorova preko mreže koja nije sigurna
i pouzdana. Poruke mogu da kasne, mogu da stignu u različitom
redosledu ili da ne stignu. Takođe, čvorovi u sistemu mogu prestati
sa radom potpuno nasumično stvarajući dodatne komplikacije. James
Gosling i Peter Deutsch, kreirali su listu problema za mrežne aplikacije
poznate kao 8 zabluda distribuiranih sistema [14]:

(1) Mreža je pouzdana. Uvek će se nešto neplanirano desiti sa
mrežom koja je prilično nepouzdana - prekid napajanja, prekid
kabla, problemi u okruženju, itd.

(2) Kašnjenje ne postoji. Lokalno kašnjenje nije problem, ali se
situacija vrlo brzo pogoršava kada se komunikacija oslanja na
internet, i slučajeve gde se koristi izuzetno kompleksna mrežna
komunikacija računarstva u oblaku.

vii

(3) Propusnost je beskonačna. Iako se širina propusnog opsega
stalno povećava i sve je bolja i bolja, srazmerno tome raste i
količina podataka koja se prebacuje na obradu ili skladištenje.

(4) Mreža je sigurna. Trendovi internet bezbednosti pokazuju
izuzetno veliki rast napada, a ovo još više postaje problem u
računarstvu u oblaku javnog tipa.

(5) Topologija se ne menja. Mrežna topologija obično je izvan
kontrole korisnika, a topologija mreže stalno se menja usled
brojnih razloga - dodati ili uklonjeni novi uređaji, serveri, prekidi
u komunikaciji itd.

(6) Postoji samo jedan administrator. Danas postoje brojni
administrativi za veb servere, baze podataka, keš memoriju i
slično, ali, takođe, kompanije sarađuju sa drugim kompanijama
ili pružaocima usluga računarstva u oblaku.

(7) Troškovi transporta ne postoje. Ova tvrdnja nikako nije
tačna iz prostog razloga što moramo serijalizovati informacije i
podatke koje šaljemo što dodatno troši resurse i povećava ukupno
kašnjenje. Ovde nije problem samo u kašnjenju, već u tome što
svaka serijalizacija informacija zahteva dodatno vreme i dodatne
resurse.

(8) Mreža je homogena. Danas je homogena mreža izuzetak, a ne
pravilo. Postoje različiti serveri, sistemi, klijenti koji komunici-
raju. Implikacija ovoga je da, pre ili kasnije, mora se pretpostaviti
da je potrebna interoperabilnost između ovih sistema. Mogu se
koristiti i zaštićeni protokol koji nisu javno dostupni, koji mogu
dodatno trošiti vreme. Ovi protokoli mogu ostati bez podrške,
pa ih treba izbegavati.

Iako razvoj distribuiranih sistema traje već nekoliko decenija, prob-
lemi koji se javljaju prilikom njihovog razvoja su i dalje identični.

viii

Prilikom razvoja distribuiranih sistema, programeri i dizajneri često
zaboravljaju na definisane probleme, što neretko dovodi do izuzetno
velikih poteškoća. Način da se to u ranim fazama otkrije jeste ko-
rišćenje formalnih matematičkih metoda za opisivanje i modelovanje
ovih sistema. Ove metode sačinjavaju razne tehnike koje služe za
specifikaciju i verifikaciju kompleksnih sistema i koje su zasnovane na
matematičkim i logičkim principima.

Kao odgovor na probleme koji mogu nastati kao posledica kašnjenja,
nedostupnosti usluga u računarstva u oblaku, malicioznih napada, ali i
usled kvara nekog od resursa na mreži [2], nastala je nova paradigma
tzv. ivično računarstvo (eng. edge computing - EC) [13].

EC je model u kome se procesne i skladišne mogućnosti računarstva
u oblaku prebacuju u blizini izvora podataka [13]. Kao posledicu toga,
računarstvo u oblaku prošireno je novim mogućnostima. Smanjuje se
kašnjenje što onda dovodi do novih mogućnosti za aplikacije buduće
generacije [15].

Tokom prethodnih godina, pojavili su se razni modeli koji spuš-
taju obradu i skladištenje podataka bliže izvorištu, poput fog raču-
narstva [16], cloudlet-a [12] i mobilnih ivičnih računara (MEC) [17]. U
ovoj disertaciji, svi pomenuti modeli se smatraju ivičnim računarstvom,
a njihovi cvorovi ivičnim čvorovima.

Svi pomenuti modeli koriste koncept prenosa skladišnih i procesnih
mogučnosti iz oblaka bliže izvorima podataka, [18] dok su zahtevnije
obrade i dalje zadržane u oblaku iz vrlo prostog razloga — dostupnost
znatno veće količine resursa [15]. EC modeli uvode male servere koji
se arhitekturalno nalaze između izvora podataka i oblaka. Tipično je
za ove servere da imaju manje mogućnosti u poređenju sa serverima u
oblaku [19].

Prednost malih servera je u tome što se oni mogu nalaziti na
različitim lokacijama, na primer u baznim stanicama [17], gradskim
centralama, restoranima, bolnicama, školama, kompanijama, ili mogu
biti rasprostranjeni po geografskim regionima, a sve to kako bi se
izbeglo kašnjenje i povećala propusnost [12].

ix

Oni mogu poslužiti kao zaštitni sloj [20] ili kao nivo obrade pre nego
što podaci budu poslati u oblak. Sa druge strane, korisnici dobijaju
jedinstvenu mogućnost dinamičke i selektivne kontrole informacija koje
bivaju poslate u oblak.

Još jednu prednost ovih servera predstavili su Aroca i saradnici [21].
Naime, njihovi rezultati su pokazali da mali serveri zadržavaju dobre
performanse prilikom pokretanja zahtevnih aplikacija i klasterskog
okruženja. Malo slabije performanse pokazali su u slučaju trenutno
dostupnih skladišta podataka, ali to može biti podsticaj da se polje
istraživanja skladišta podataka dopuni novim modelima, optimizovanim
za male servere.

Jedan model teško će odgovarati potrebama svih aplikacija u
budućnosti, tako da računarstvo u oblaku ne bi trebalo da bude naša
konačna granica i jedina opcija. Razni modeli, nastali na bazi malih
servera, pokazuju mogućnost da se obrada podataka može obaviti bliže
izvorištu, dok teški proračuni mogu ostati u oblaku zbog veće dostup-
nosti resursa. U oblak treba slati samo informacije koje su ključne za
druge usluge ili aplikacije [22], a ne sve kako predlaže standardni model
oblaka.

Ideja malih servera sa različitim računskim, skladišnim i mrežnim
resursima pokreće zanimljive istraživačke ideje i, kao takva, motivacija
je za ovu tezu. Korišćenje resursa, koji su organizovani lokalno kao
mikro oblaci, oblaci zajednice ili ivični oblaci, [23] predlažu Riden i
saradnici.

Usled problema koji mogu nastati u doglednoj budućnosti korišćen-
jem sve većeg broja računarskih sistema koji su povezani na inter-
net, kao i zbog ograničenja računarstva u oblaku u trenutnoj izvedbi,
akademska zajednica kao i industrija počele su da istražuju i razvijaju
održiva rešenja. Neka istraživanja više su usredsređena na prilagođa-
vanje postojećih rešenja zahtevima EC-a, dok druga eksperimentišu sa
novim idejama i rešenjima.

U svom radu [24] Greenberg i saradnici ističu da se mikro centri za
obradu podataka (µDCs) koriste prvenstveno kao čvorovi u mrežama

x

za distribuciju sadržaja i u drugim “loše distribuiranim” aplikacijama.
µDC su zanimljiv model u području brzih inovacija i razvoja. Autori
uvode koncept µDC-a kao centra za obradu podataka koji se nalazi u
blizini velike populacije, smanjujući pritom fiksne troškove tradicional-
nih centara za obradu podataka. Samim tim, minimalna veličina µDC-a
definisana je potrebama lokalnih korisnika [24, 25], pružajući agilnost
kao ključnu karakteristiku. Ovde agilnost podrazumeva sposobnost
dinamičkog rasta i smanjenja potrebe za resursima kao i upotrebe
resursa sa optimalne lokacije [24].

Satyanarayanan i saradnici u svom radu [20] pokazuju da µDC-ovi
mogu poslužiti kao zaštitni sloj. Simić i saradnici u svom radu [22]
opisuju takav sistem kao nivo obrade podataka na njihovom izvoru,
dok korisnici dobijaju jedinstvenu mogućnost dinamičkog i selektivnog
upravljanja informacijama koje se šalju u oblak.

Zonska organizacija malih servera, koju su predstavili Guo i sarad-
nici [26] u primeni kod pametnih vozila daje zanimljivu perspektivu
o EC-u. Autori su pokazali kako modeli koji dele oblast na zone
omogućavaju kontinuitet dinamičkih usluga i smanjuju primopredaju
veze. Takođe, pokazali su kako da se pokrivenost malim serverima
prenese na veću zonu, čime se proširuju računarska snaga i kapacitet
skladištenja podataka.

EC potiče iz peer-to-peer sistema, kako su to pretpostavili Lopez
i saradnici, ali ga proširuju u novim pravcima i pružaju mogućnost
integracije sa računarstvom u oblaku [10].

U svom radu, Kurniawan i saradnici [27] pokazali su vrlo lošu skala-
bilnost u centralizovanim modelima mreža za isporuku sadržaja(CDN) u
oblaku. Autori su predložili decentralizovano rešenje koristeći nano cen-
tre za obradu podataka koje čine mrežni uređaji u kući [27]. Ovi centri
za obradu podataka opremljeni su, takođe, sa nešto skladišnog prostora.
Pokazana je moguća upotreba nano centara za obradu podataka čak i
za neke velike primene sa jednom izuzetno bitnom prednošću - mnogo
manjom potrošnjom energije.

µDC-ovi sa zonskom organizacijom servera dobra su polazna osnova

xi

za izgradnju EC-a (koja može biti ponuđena kao servis korisnicima),
ali i mikro računarstva u oblaku jer se može relativno jednostavno
proširiti računarska snaga i skladišni kapacitet koji opslužuju lokalne
korisnike. Međutim, da bi se to postiglo, potreban nam je dostupniji i
elastičniji sistem sa manje kašnjenja.

Dizajn računarstva u oblaku je takav da svaki deo doprinosi ot-
pornijem i skalabilnom sistemu. Regioni ili centri za obradu podataka
izolovani su i nezavisni jedni od drugih, a takođe sadrže resurse koji su
potrebni aplikacijama za nesmetan rad. Regioni su sačinjeni od neko-
liko dostupnih zona [28] i ako neka od zona postane nedostupna, druge
zone preuzimaju opsluživanje korisničkih zahteve i time ceo sistem, kao
celina, nastavlja neometan rad. Po uzoru na ovakvu arhitekturu, EC
bi mogli koristiti vrlo sličnu strategiju formirajući model mikro raču-
narstva u oblaku (µC), gde se mali serveri ili čvorovi grupišu u klastere,
a više klastera u ve’cu logičku celinu nazvanu region, povećavajući
dostupnost i pouzdanost sistema i njegovih aplikacija.

U tom kontekstu, pod µC-om smatraju se geografski rasprostranjeni
distribuirani sistemi koji organizaciono liče na računarstvo u oblaku,
ali se nalaze u neposrednoj blizini korisnika i opslužuju njihove zahteve.
Ta razlika pruža drugačiju organizaciju nego u standardnom modelu
računarstva u oblaku.

Koncept regiona u računarstvu oblaka je fizički element [28], dok
se u µC-u pojam region može koristiti za opisivanje skupova klastera
čvorova preko proizvoljne geografske oblasti. Regioni se sastoje od
najmanje jednog klastera, ali mogu se sastojati i od više njih tako da
se postigne otporniji, skalabilniji i dostupniji sistem.

Da bi se osiguralo manje kašnjenje u sistemu, u normalnim okolnos-
tima treba izbegavati veliku udaljenost između klastera. U tradicional-
nom modelu računarstva u oblaku proširenje regiona zahteva fizičko
povezivanje novih modula sa ostatkom infrastrukture [29], što može
izazvati nedostupnost tog regiona neko vreme.

U µC-u regioni mogu prihvatiti nove ili osloboditi postojeće klastere.
Isto tako i klasteri mogu prihvatiti nove ili osloboditi postojeće čvorove

xii

dinamički bez direktnog povezivanja novih modula. Više regiona čine
novi logički sloj –– topologiju.

Topologija se sastoji od najmanje jednog regiona, a može se prosti-
rati i na više regiona. Prilikom dizajniranja topologije, posebno ako
regioni treba da dele informacije ili da na neki način sarađuju, poželjno
je izbegavati veliku udaljenost između regiona ako je to moguće, da bi
se smanjilo kašnjenje u sistemu.

Primenom klastera, regiona i topologije moguće je pokriti bilo koju
geografsku oblast sa sposobnošću da se smanje ili prošire postojeći
klasteri, regioni pa čak i topologije.

Organizacija klastera, regiona i topologija u µC-u isključivo je stvar
potrebe korisnika, i kao takva slična je modeliranju u sistemima velikih
podataka [30, 31]. Na primer, klasteri mogu obuhvatiti čitav jedan
grad ili manji koji obuhvataju uređaji u jednom domaćinstvu i sve
između ova dva ekstrema. Grad bi mogao predstavljati jedan region,
sa delovima grada koji su organizovani u klastere. Topologija grada
može se formirati tako što se grad podeli na više regiona koji sadrže
više klastera. Topologija države može se formirati tako što se kroz
prirodne i/ili administrativne regije definišu regioni, iako je i bilo koja
druga podela moguća.

Čvorovi unutar svakog klastera treba da izvršavaju neki od protokola
za održavanje definicije klastera odnosno pripadnosti čvorova klasteru.
Neki od Gossip protokola poput SWIM -a [32] mogu se koristiti u
saradnji sa mehanizmima replikacije podataka [33, 34, 35] čineći ceo
sistem otpornijim na potencijalne greške. Treba prihvatiti činjenicu
da će čvorovi u takvom sistemu iz raznih razloga biti nedostupni. To
se ne može izbeći, ali se sistem može projektovati tako da servisi ipak
budu ipak budu dostupni koristeći pritom neki od kopija servisa.

U modelu koji opisuje razne resurse kao usluge [36] EC i mikro
računarstvo u oblaku nalaze se između CaaS-a i PaaS-a, u zavisnosti
od potreba korisnika.

Prethodno definisan model µCmogao bi se ponuditi kao usluga koris-
nicima kao i bilo koji drugi resurs računarstva u oblaku. U slučaju kada

xiii

je potrebno više resursa na jednoj strani, moguće ih je reorganizovati
da se iskoriste gde su oni stvarno potrebni. Sa druge strane, kompanije
koje pružaju usluge računarstva u oblaku mogu integrisati predloženi
model u svoj postojeći sistem, skrivajući nepotrebnu složenost iza nekog
komunikacionog interfejsa ili predloženog modela aplikacije ili usluge.

Da bi se i EC modeli mogli iskoristiti na ovaj način potrebna je
jasna dinamička organizacija geografski raspoređenih čvorova, dobro
definisan model aplikacija i jasno razdvajanje nadležnosti u sistemu.
Kao takvi, bili bi jako složeni da se ponude kao usluga korisnicima.

EC sistemi obično postoje nezavisno jedni od drugih, rasuti bez
međusobne povezanosti i saradnje. Nude ih pružaoci usluga koji koris-
nike uglavnom ograničavaju na usluge unutar sopstvenog ekosistema,
često bez mogućnosti izbora servisa van njihovog kataloga usluga.

Grupisani čvorovi treba da budu organizovani lokalno, čineći sistem
kompletnim, a aplikacije dostupnijim i pouzdanijim, proširujući resurse
izvan pojedinačnog čvora ili male grupe čvorova. Takav sistem treba
da održava dobre performanse za izgradnju servera i klastera [21].

Da bi se postiglo takvo ponašanje, neophodno je imati dinamičko up-
ravljanje resursima i upravljanje uređajima. Potrebno je uvek imati dos-
tupne informacije o resursima, konfiguraciji i zauzetosti čvorova [37, 17]
i klastera u celini. Tradicionalni centri za obradu podataka predstavl-
jaju dobro organizovan i povezan sistem. Sa druge strane, µDC-ovi se
sastoje od različitih uređaja koji to nisu [38]. Ovaj problem dovodi nas
do problema kojim se bavi ova teza.

Da bi opisali fizičke usluge, Jin [39] i saradnici predlažu tri osnovna
koncepta i preciziraju njihove odnose. Ovi koncepti su: (1) uređaji,
(2) resursi i (3) servisi.

Podela nadležnosti bitan je deo svakog sistema, posebno ako se
stvara platforma koja se nudi korisnicima kao usluga. Model podele
nadležnosti, koji ova teza predlaže, zasnovan je na ovim konceptima,
prilagođen drugačijem slučaju korišćenja i podeljen u tri sloja :̌ (1)
uređaje, (2) resurse, i (3) servise.

Prvi sloj čine različiti uređaji odnosno kreatori podataka i korisnici

xiv

usluga odnosno servisa. Drugi sloj predstavlja resurse, koji imaju
prostorne karakteristike i ukazuju na mogućnosti za obradu odnosno
skladištenje podataka čvorova na kojima se izvršavaju [39]. Programeri
u bilo kom trenutku moraju znati iskorišćenost resursa kao i stanje i
dostupnost aplikacija.

Resursi predstavljaju EC čvorove i, da bi čvor bio deo sistema,
mora zadovoljiti četiri jednostavna pravila:

(1) Mora biti sposoban da pokrene operativni sistem sa sistemom
datoteka;

(2) Mora biti u mogućnosti da pokrene neki od dostupnih alata za
izolaciju aplikacija, na primer container ili unikernel ;

(3) Mora imati dostupne resurse za korišćenje (npr. CPU, GPU, disk
itd.);

(4) Mora imati internet vezu.

Treći sloj cine servisi koji pruzaju resurse aplikacijama putem
definisanog interfejsa i čine ih dostupnim preko interneta [39]. Oni
odmah odgovaraju na klijentske zahteve, ako je to moguće, ili mogu da
skladište pronađenu informaciju za neke buduće korisničke upite [40, 41].
Servisi koji se izvršavaju u oblaku treba da budu u stanju da prihvate
unapred obrađene podatke i odgovorni su za obradu i skladištenje
podataka čiji kapacitet prevazilazi mogućnosti EC čvorova. Ovi servisi
takođe treba da budu zamenska opcija u slučaju da prethodno definisani
sistem bude nedostupan iz bilo kog razloga.

Razdvajanjem nadležnosti modela i objedinjenjem organizacije
čvorova, teži se ka pristupu EC-a kao usluge i mogućnosti dinamičkog
formiranja distribuirnaih mikro oblaka koji bi mogli da obrade podatke
na samom njihovom izvoru.

Međutim, infrastruktura za takav sistem neće biti potpuno efikasna
sve dok proces konfigurisanja i korišćenja ne bude značajno pojed-
nostavljen [40]. Ručno podešavanje čvorova predstavlja naporan i

xv

dugotrajan proces, naročito kada se uzme u obzir geografska raspros-
tranjenost dostupnih čvorova.

Model koji se predlaže u ovoj tezi rešava gorepomenuti problem po-
moću dinamičkog podešavanja i formiranja klastera, regiona i topologija
i oslanja se na četiri protokola:

(1) Provera stanja čvora - protokol obaveštava sistem o stanju
svakog čvora;

(2) Formiranje klastera - protokol formira nove klastere, regione i
topologije;

(3) Provera idempotencije - protokol proverava da li klaster, re-
gion ili topologija postoje, i da li je potrebno pokrenuti protokol
za formiranje;

(4) Pregled detalja - protokol prikazuje trenutno stanje sistema
korisniku kroz razne nivoe detalja.

Za formalni opis server ili čvorovi (u disertaciji ovi pojmovi se ko-
riste naizmenično) u sistemu, korišćena je teorija skupova. Prethodno
definisane protokole moguće je formalno modelirati upotrebom [42]
proširenje multiparty asynchronous session types (MPST) [43] - klasa
tipova ponašanja formirana za opisivanje distribuiranih protokola oslan-
jajući se na asinhrone komunikacije.

Ova matematička terorija se može iskoristitit i za verifikaciju,
da li definisani protokoli zadovoljavaju MPST sigurnost (nema dos-
tupnog stanja greške) i napredak (akcija se na kraju izvršava, pod
pretpostavkom poštenja).

Proces modelovanja odvija se u dva koraka:

(1) Prvi korak u modeliranju komunikacija sistema pomoću MPST
teorije predstavlj definisanje globalnog tipa, što predstavlja glob-
alni opis celokupnog protokola sa neutralne tačke posmatranja.

xvi

(2) Drugi korak u modeliranju komunikacija sistema pomoću MPST
teorije je pružanje sintaksičke projekcije protokola na svakog
učesnika u komunikaciji iskazane kao lokalni tip, koji se zatim
koristi za proveru tipa i implementacije krajnje tačke.

Na osnovu prethodno opisanih ideja i mogućnosti, definiše se prob-
lem koji ova teza obrađuje kroz sledeća tri istraživačka pitanja:

(1) Kako se može definisati formalan proširiv model sa jasnom pode-
lom nadležnosti, po ugledu na organizaciju računarstva u oblaku,
koji bi bio prilagođen drugačijem okruženju izvršavanja sa jasnim
aplikativnim modelom koji će moći da iskoristi novu, prilagođenu
arhitekturu?

(2) Kako je moguće ovako organizovane čvorove predstaviti kao us-
lugu korisnicima za razvoj budućih aplikacija, po poznatom mod-
elu naplate po utrošku (eng. pay as you go)?

(3) Kako se može definisati formalno ispravan model koji će biti lak
za proširenje?

Ako su prethodna istraživačka pitanja potvrdna, onda proširenje
nalik na oblak proširuje resurse van granica pojedinačnog čvora što
čitav sistem, kao i same aplikacije koje bi se izvršavale u njemu, čini
dostupnijim i pouzdanijim.

Na osnovu prethodno definisanih istraživačkih pitanja i motivacija,
definisane su sledece hipoteze:

(1) Hipoteza: Moguće je organizovati čvorove na standardni način,
zasnovan na arhitekturi računarstva u oblaku i prilagođen dru-
gačije rasprostranjenom geografskom okruženju pružajući koris-
nicima mogućnost da na najbolji mogući način organizuju čvorove
i klastere po raznim geografskim oblastima kako bi opsluživali samo
lokalne korisnike u neposrednoj blizini — model distribuiranog
mikro okruženja računarstva u oblaku.

xvii

(2) Hipoteza: Model distribuiranog mikro okruženja računarstva u
oblaku se može iskoristiti za upravljanje infrastrukturnim resur-
sima u blizini korisnika. Ako je potrebno više resursa na jednoj
strani, može se uzeti određena količina resursa i reorganizovati u
skladu sa potrebama sistema, ili se mogu reorganizovati na bilo
koji drugi željeni način.

(3) Hipoteza: Moguće je predstaviti jasnu podelu nadležnosti za
budući sistem, koji bi se pružio korisnicima kao usluga, i us-
postaviti dobro organizovan sistem u kojem svaki deo ima intu-
itivnu i jasnu ulogu.

(4) Hipoteza: Moguće je predstaviti objedinjeni model, koji podržava
heterogene čvorove, sa jasnim setom tehničkih zahteva koje budući
čvorovi moraju ispuniti ako žele da postanu deo sistema.

(5) Hipoteza: Moguće je predstaviti jasan aplikativni model, intu-
itivan korisnicima, kako bi se mogao iskoristiti puni potencijal
predstavljenog rešenja.

Iz prethodno definisanih hipoteza izvode se primarni ciljevi ove teze
pri čemu očekivani rezultati uključuju sledeće:

(1) Definisanje formalnog proširivog modela sa jasnom podelom nadležnosti,
po ugledu na organizaciju računarstva u oblaku, koji bi bio pri-
lagođen okruženju gde se obrada i skladištenje vrše bliže koris-
nicima sa jasnim aplikativnim modelom koji će moći da iskoristi
novu prilagođenu arhitekturu. Ovaj cilj odnosi se na prvo istraži-
vačko pitanje, a definisano je kroz poglavlje 4.

(2) Definisani model je dostupniji i elastičan sa manje kašnjenja u
poređenju sa pojedinačnim malim serverima i može se koristiti
kao bilo koja druga usluga u oblaku. Ovaj cilj odnosi se na prvo
istraživačko pitanje, a definisano je kroz poglavlja 4 i 6.

xviii

(3) Implementacija i verifikacija prototipa kojim bi se potvrdila prak-
tična primenljivost navedenog modela i identifikovale sve njegove
prednosti i eventualni nedostaci. Ovo se odnosi na treće istraži-
vačko pitanje i tema je poglavlja 4 i 5.

Ovim istraživanjem predstavlja se jedno moguće rešenje za organizaciju
geografski rasprostranjenog µC-a sa EC čvorovima, zasnovano na or-
ganizaciji računarstva u oblaku, prilagođeno obradi i skladištenju po-
dataka u blizini korisnika, a organizovano kroz tri koncepta: topologiju,
region i klaster.

Primenom ovih koncepata moguće je opisivanje bilo kog geografskog
područja u cilju dobijanja dostupnijeg i pouzdanijeg sistema. Organi-
zacija i reorganizacija ovih elemenata vrši se dinamički, opisom željenog
stanja sistema, a veličina regiona, klastera i topologija određuje se
prema potrebama klijenata koje se opslužuje.

Ishod istrazivanja je proširenje nalik na računarstvo u oblaku koje
proširuje resurse van granica pojedinačnog čvora što čitav sistem kao i
same aplikacije koje bi se izvršavale u okviru njega čini dostupnijim
i pouzdanijim. Primarna primena jeste u organizaciji geografski dis-
tribuiranih računarskih resursa na efikasan način tako da opslužuje
korisnike u neposrednoj blizini.

Prototipsko rešenje bazirano na prethodnom modelu se razvija kao
alat otvorenog koda tako da je njegova primena moguća u različitim
sistemima od strane drugih istraživačkih ili razvojnih timova. Takođe,
može se koristiti kao samostalno rešenje tamo gde se kasnije mogu
dodati potrebni podsistemi, ali takođe pruža mogućnost integracije u
postojeća rešenja.

Predstavljeno rešenje se može koristiti kao pomoć računarstvu u
oblaku prilikom obrade velike koričine podataka, kao sloj koji bi vršio
preliminarnu obradu na samom izvorištu podataka. Skladištenje i
obrada se vrši samo za podatke od značaja, što je jako bitno za tipove
aplikacija koje bi se izvršavale u realnom vremenu zato što sistem
lokalno može da reaguje znatno brže nego udaljeni sistem računarstva
u oblaku.

xix

Predstavljeno je preslikavanje računarstva u oblaku na EC, i prikazan
je formalni model sistema sa jasnom podelom nadležnosti i modelom
aplikacije za budući EC koji bi bio ponuđen korisnicima kao usluga.
Dati su primeri domena gde bi sistem mogao da se koristi zajedno sa
primerima aplikacija od kojih bi korisnici imali benefit.
Teza je organizovana u pet poglavlja.

U poglavlju 1 dat je opis motivacije sa jasno definisanim istraži-
vačkim pitanjima i hipotezama na koje želimo da odgovorimo ovom
tezom.

U poglavlju 2 predstavljen je kratak uvod u temu distribuiranih
sistema, sa fokusom na područja koja su važna za razumevanje ove
teze i svih njenih delova.

Pokazano je šta su distribuirani sistemi ili kako neki sistem možemo
opisati ili posmatrati kao distribuirani sistem. Predstavili smo probleme
koje ovi sistemi stvaraju i zašto ih je tako teško implementirati, koristiti
i održavati.

Takođe, predstavljeno je nekoliko primera distribuiranih računarskih
aplikacija koje možemo primeniti za efikasno iskorišćavanje velikog
broja čvorova u distribuiranom sistemu. Dalje, pokazano je šta je
skalabilnost i zašto je ona važna za distribuirane sisteme sa nekoliko
primera organizacionih mogućnosti, poput peer-to-peer i master-slave
sistema, kao i protokola za opis grupa ili zajednica čvorova koji sarađuju,
a koji su važni u distribuiranom okruženju iz različitih razloga. Dati su
primeri raznih varijanti računarstva u oblaku koje možemo iskoristiti
za svoje potrebe.

Zatim, pokazano je nekoliko tehnika virtuelizacije koje se mogu ko-
ristiti i raspoređivanje kako aplikacija, tako i infrastrukture. Prikazane
su razne tehnike bitne za raspoređivanje aplikacija i infrastrukture
u okruženju računarstva u oblaku, ali i razliku između distriburanih
sistema i nekoliko modela koji se često smatraju distribuiranim poput
paralelnog i decentralizovanog računarstva.

Poglalvje poglavlju 3 daje pregled relevatne literature iz oblasti
disertacije.

xx

Prikazali smo različite platforme, gde autori menjaju ili prilagođavaju
postojeća rešenja (kao što su Kubernetes ili OpenStack) da rade u
oblastima poput ivičnog računarstva i mobilnog računarstva. Dalje
smo predstavili implementacije nekoliko platformi koje koriste čvorove,
a koje su korisnici ponudili na dobrovoljnoj bazi, da bi se izvršila
nekakva obrada ili skladištenje podataka na njima, kao na primer drop
computing i Nebule između ostalih.

Pokazali smo kako čvorovi mogu biti organizovani po geografskim
područjima na zone, ali i kako mikro centri za obradu podataka mogu da
pomognu računarstvu u oblaku da prihvata zahteve lokalnih klijenata
koji koriste resurse u neposrednoj blizini. Dalje smo opisali različite
tehnike kako se zadaci sa mobilnih uređaja mogu prebaciti na ivične
čvorove, ali takođe i različite modele primene koji bi mogli iskoristiti
ove tehnike.

Na kraju ovog poglavlja dato je poređejne rezultata i doprinosa
istrazivanja ove teze u odnosu na slicna istraživanja.

Poglavlje 4 čini srž ove teze. U ovom poglavlju razdvojili smo
sve najvažnije aspekte koje treba da zadovoljimo kako bi se omogućilo
rešavanja problema kao što su kašnjenje i obrada podataka, posebno u
doba mobilnih uređaja i IoT-a.

Predloženi model zasnovan je na µDC-ima koji su zonski orga-
nizovani i koji će opsluživati lokalne korisnike ili korisnike u blizini.
Predstavili smo model koji se zasniva na računarstvu u oblaku, ali je
prilagođen za drugačiji scenario i slične slučajeve korišćenja.

Pokazali smo kako možemo dinamički formirati nove klastere, re-
gione i topologije i kako ih možemo koristiti zajedno sa mobilnim
uređajima i aplikacijama poput internet stvari (IoT). Ovaj novoformi-
rani sistem oslanja se na jasan model podele nadležnosti, usvojen
iz postojećih istraživanja i prilagođen za novu troslojnu arhitekturu.
Formirani model može da služi kao sloj za obradu podataka na samom
izvorištu ili skoro na samom izvorištu, kao sloj za zaštitu privatnosti
korisnika i kontrolu sadržaja koji se šalje u oblak. Predstavljeni sis-
tem izuzetno je prilagodljiv i podložan proširivanju prema različitim

xxi

dimenzijama, odnosno potrebama i zahtevima.
Predstavljeni model može da obhvata veće ili manje geografske

regione. Predstavili smo kako programeri mogu iskoristiti novu in-
frastrukturu i koji sve modeli aplikacija mogu postojati, ali i kako
administratori mogu rasporediti razvijene servise na novoformiranu in-
frastrukturu koristeći opisni ili deskriptivni model, umesto eksplicitnog
slanja komandi i koraka sistemu.

Pred kraj ovog poglavlja, prikazano je kako se isti može koris-
titi kao sastavni deo postojećih sistema (kao skladište informacija o
čvorovima) ili se može koristiti kao novi model u kom možemo razviti
nove podsisteme. Predstavili smo protokole za stvaranje takvog sistema
i modelirali ih koristeći formalne matematičke metode ili, konkretno,
teoriju asinhronih tipova sesija.

U poglavlju 5 pokazali smo implementirani zasnovan na prethodno
predstavljenom modelu. Ovde smo takođe detaljno opisali operacije
koje se mogu obaviti u prototipu, ali i kako se implementirani model
uklapa i gde mu je mesto u prethodno opisanom modelu podele
nadležnosti.

Dalje smo izneli rezultate naših eksperimenata u kontrolisanom
okruženju kao i ograničenja implementiranog radnog okvira u trenutnoj
fazi razvoja. Takođe, opisali smo moguće primene ovog sistema, ali i
to gde bi ovaj model mogao da se koristi kada bi ušao u upotrebu.

Poglablje 6 prikazuje upotrebljivost predloženog modela, sa mogućim
scenarijima primene. Predstavljen je i jedan konkretan primer kontrole
saobraćaja i usmeravanje ambulantih vozila i medicinskog osoblja do
najbliže bolnice u gradu Milanu, Italija, zahvaćenim COVID-19 viru-
som, i kako bi predloženi sistem mogao da se iskoristi da pomogne
medicinskom osoblju pri lečenju pacijenata, ali i istraživačima u boljem
razumevanju samog virusa.

Poglavlje 7 predstavlja poslednje poglavlje ove teze. U ovom
poglavlju sumirali smo doprinose ove teze, dali smo ograničenja pred-
loženog modela i ,ujedno, ove teze, ali i svega onoga čega moramo biti
svesni ako ako takva tehnologija bude korišćena u realnim situacijama.

xxii

Na samom kraju poglavlja dali smo pregled šta se može uraditi u
pogledu budućih pravaca istraživanja.

Ključ reči: distribuirani sistemi, računarstvo u oblaku, višestruko
računarstvo u oblaku, mikroservisi, softver kao servis, ivično raču-
narstvo, mikro računarstvo u oblaku, veliki podaci, infrastruktura kao
kod.

xxiii

xxiv

Table of Contents

Abstract i

Rezime v

List of Figures xxix

List of Tables xxxi

Listings xxxiii

List of Equations xxxv

List of Abbreviations xxxvii

1 Introduction 1
1.1 Problem area . 2
1.2 Motivation and Problem Statement 3
1.3 Research Hypotheses, and Goals 6
1.4 Structure of the thesis 7

2 Distributed computing 9
2.1 Distributed systems . 10

2.1.1 Scalability . 12
2.1.2 Cloud computing 17

2.1.2.1 Multi-cloud and sky computing 20
2.1.3 Membership protocol 21

xxv

2.1.4 Mobile computing 24
2.2 Distributed programming 25

2.2.1 Big Data . 25
2.2.2 Microservices 27

2.2.2.1 Distributed Queries 33
2.2.3 Observability 35

2.3 Distribution Models . 37
2.3.1 Peer-to-peer . 37
2.3.2 Master-slave . 39
2.3.3 Replication . 40

2.4 Similar computing models 41
2.4.1 Parallel computing 41
2.4.2 Decentralized systems 42

2.5 Transactions . 43
2.5.1 Distributed transactions 43
2.5.2 Sagas . 44

2.6 Garbage collection . 45
2.7 Virtualization techniques 46
2.8 Deployment . 48
2.9 Infrastructure as software 53

2.9.1 Infrastructure as code 54
2.10 Development roles . 55
2.11 Concurrency vs parallelism 57

2.11.1 Actor model . 57

3 Research review 59
3.1 Nodes organization . 59
3.2 Platform models . 61
3.3 Task offloading . 65
3.4 Application models . 66
3.5 Infrastructure management 68
3.6 Thesis position . 70

4 Micro clouds 71

xxvi

4.1 Configurable Model Structure 72
4.2 Separation of concers 78
4.3 Applications Model . 80

4.3.1 Execution models 82
4.3.2 Packaging options 84

4.4 As a service model . 85
4.5 Immutable infrastructure 86

4.5.1 Deployment in micro clouds 88
4.6 Formal model . 90

4.6.1 Multiparty asynchronous session types 91
4.6.2 Health-check protocol 93
4.6.3 Cluster formation protocol 99
4.6.4 Idempotency check protocol 107
4.6.5 List detail protocol 114

4.7 Long-lived transactions in micro clouds 118
4.7.1 Garbage collection in micro clouds 119

4.8 System observability 120
4.9 Access pattern . 121
4.10 Auto scaling micro clouds 122
4.11 User data flow in micro clouds 123
4.12 Extendability . 124
4.13 Repercussion . 125

5 Proof of concept 127
5.1 Platform implementation 127

5.1.1 Technologies . 131
5.1.2 Node daemon 133
5.1.3 Separation of concerns details 136
5.1.4 Long-lived transactions details 136
5.1.5 Garbage collection details 137
5.1.6 Limitations . 137

5.2 Operations . 138
5.2.1 Query . 138
5.2.2 Mutate . 140

xxvii

5.2.3 Queueing . 143
5.2.4 List . 145
5.2.5 Logs . 146

5.3 Experimental Results 146
5.3.1 Experiment . 147

5.4 The existing solutions enhancement 148

6 Model usability 151
6.1 Applications . 151
6.2 Area traffic control example 152

7 Conclusion 155
7.1 Contributions of the thesis 155
7.2 Limitations . 158

7.2.1 Discussion . 159
7.3 Future work . 160

Bibliography 165

xxviii

List of Figures

2.1 Difference betweeen scaling vertically (left) and horizon-
tally (right) . 13

2.2 Difference between cloud options and on-premises solution. 15
2.3 Difference between cloud options and on-premises solution. 18
2.4 Direct and indirect ping in SWIM protocol. 23
2.5 V’s of Big Data. 26
2.6 CQRS pattern diagram. 34
2.7 API Compossition pattern diagram. 35
2.8 RequestX path through the processes in a distributed

system. 36
2.9 P2P network and client-server network. 38
2.10 Handling requests master-slave and peer-to-peer 40
2.11 Architectural difference between DC and parallel com-

puting. 41
2.12 Saga transactions separated in sub-transactions. 44
2.13 Architectural differences between VMs, containers and

unikernels. 48
2.14 Difference between mutable and immutable deployment

models. 52
2.15 Reconciliation loop diagram. 55

4.1 Three tier architecture, with the response time and
resource availability . 77

4.2 ECC as a service architecture with separation of concerns. 80

xxix

4.3 µC applications model tides traditional clouds and edge
computing applications 81

4.4 Rolling update flow chart 89
4.5 Recreation strategy update flow chart 89
4.6 Canary update 1:4 ration update chart 90
4.7 Low level health-check protocol diagram. 94
4.8 Low level cluster formation communication protocol

diagram. 100
4.9 Low level view of idempotency check communication. . 109
4.10 Low level view of list operation communication. 115
4.11 State diagram for cluster formation message 119
4.12 New worker addition to the system, with reconcile loop. 125

5.1 Proof of concept implemented system. 130
5.2 Low level communication protocol diagram of query

operation. 139

6.1 Conceptual architecture model for COVID-19 area traffic
control example . 154

xxx

List of Tables

2.1 Differences between horizontal and vertical scaling. . . 13
2.2 Downtime for different classes of nines. 16
2.3 Comparison of public, private and hybrid cloud capabil-

ities. 19
2.4 Common examples of SaaS, PaaS, and IaaS. 20
2.5 Differences between the monolith and microservices ar-

chitecture. 28
2.6 Idempotent and non-idempotent operations. 31
2.7 Idempotent and non-idempotent operations. 32
2.8 Differences between DevOps and SREs. 56
2.9 Differences between actor model and CSP. 58

4.1 Similar concepts between cloud computing and ECC. . 73

xxxi

xxxii

Listings

5.1 Actor system hierarchy. 134
5.2 Daemon configiration file 135
5.3 Structure of stored key-value element. 140
5.4 Example of mutate file using YAML. 142
5.5 Structure of stored key-value element. 144

xxxiii

xxxiv

List of Equations

2.1 Availability percentage formula 15
2.2 Availability class formula. 16
2.2 Commutative formula. 17
2.2 Associative formula. 17
2.2 Idempotent formula. 17
2.3 Idempotency law formula 32
4.1 Cluster size limits . 75
4.2 Position od micro clouds. 76
4.3 Function composition. 83
4.4 Global type construction 92
4.5 Local type representation syntax. 93
4.6 Extending free servers set. 96
4.7 Extending label set. 97
4.7 Health-check global protocol. 98
4.7 Health-check global protocol projection. 99
4.8 Query selector formation. 102
4.11 Server selector. 103
4.12 Extending task queue set. 103
4.12 Cluster formation global protocol. 105
4.12 Cluster formation global protocol projection. 107
4.13 Idempotency structure. 108
4.13 Idempotency check global protocol. 112
4.13 Idempotency check global protocol projection. 114
4.13 List detail global protocol. 117
4.13 List detail global protocol projection. 118

xxxv

xxxvi

List of Abbreviations

API Application programming interface

AWS Amazon Web Services

c12s Constellations

CC Cloud computing

CDN Content delivery networks

CQRS Command Query Responsibility Segregation

CRDTs Conflict-free replicated datatypes

CSP Communicating Sequential Processes

CaaS Container as a service

DBaaS Databae as a service

DCs Data centers

DC Distributed computing

DHT Distributed Hash Table

DNS Domain Name System

DSL Domain specific language

xxxvii

DS Distributed systems

Dp Distributed programmig

ECC Edge-centric computing

EC Edge computing

ES Edge servers

GC Garbage collection

IaC Infrastructure as code

IaS infrastructure as software

IaaS Infrastructure as a service

IoT Internet of Things

k8s Kubernetes

LLTs Long-lived transactions

LLT long-lived transaction

MANETs Mobile Ad-Hoc Networks

MA Evolutionary Memetic Algorithm

MCC Mobile cloud computing

MEC Mobile edge computing

MPST Multiparty asynchronous session types

NaCl Native Client

NoSQL Not Only SQL

xxxviii

OS Operating system

P2P Peer-to-peer

PaaS Platform as a service

QoE Quality of experience

QoS Quality of service

RAID Redundant Array of Inexpensive Disks

REST Representational state transfer

RPC Remote procedure call

SDN Software-defined networks

SEC Strong Eventual Consistency

SPOF Single Point of Failure

SRE Site Reliability Engineering

SaaS Software as a service

SoC Separation of concerns

TTL Time to live

VANETs Vehicular Ad-Hoc Networks

VM Virtual machine

XaaS Everything as a Service

µCs Micro clouds

µDCs Micro data-centers

xxxix

xl

Chapter 1

Introduction

Various software systems have changed the way people communicate,
share information, learn, and run businesses. The interconnected
computing devices have numerous positive applications in everyday
life. In the past decade or so, the volumes of data that is collected,
stored, and computed have grown dramatically [1].

New age applications that might include augmented reality, massive
online gaming, face recognition, autonomous drones and vehicles, or
the Internet of Things (IoT) produce enormous amounts of different
kinds of data.

Such workloads require that latency is below a few tens of mil-
liseconds [1], or even less. These requirements fall just right outside
of what a standard centralized model like cloud computing (CC), for
example, could offer [1]. Even the smallest problems can contribute to
largely unplanned downtime of applications and services people and
other services may depend on. A most recent example is yet another
outage that happened to the Amazon Web Services (AWS), and as a
result, a large amount of internet becomes unavailable [2].

This thesis aims to provide formal models based on which we can
model and implement distributed systems (DS) for organizing cloud-
like geo-distributed environments for users or CC providers. We can
look at the whole system as a micro clouds (µCs) or pre-processing

1

CHAPTER 1. INTRODUCTION

layer. The responsibility of such a system is sending only necessary
and data to the cloud. This strategy reduces cost for users and ensures
the availability of CC services. Such a system could lead to lowering
the downtime of critical services. Here we can give a formal definition
of geo-distributed environments like:

Definition 1.0.1. Geo-distribution represent organizing processing
and storage resources in proximity to some large populations, where
µCs are formed dynamically, serving users requests locally first.

The section starts by describing the general problem area that our
work addresses in Section 1.1. Section 1.2, specifies the exact problem
that our work addresses, and Section 1.3 describes our hypothesis and
research goals. Section 1.4 presents the structure of the thesis.

1.1 Problem area

To lower the administration cost, cloud providers create an effective
economy of scale [9] by housing data-centers (DCs) with huge capacities.
However, such a model does not come without the cost. When such a
system grows to its physical limits, a centralized model brings more
harm than good [2, 10].

Despite all the benefits that centralization can provide, it is in-
evitable for the CC services to suffer from serious problems [11]. Over
time, and due to the high bandwidth and latency, these services face
degradation that we cannot overlook. This serious services degrada-
tion can have an enormous consequence on the human business and
potentially lives as well [44].

To avoid large investments [12], like creating and maintaining their
own DCs, organizations use cloud services created by others [13]. They
consume resources and pay for their usage time. This model is known
as — pay as you go model.

CC requires data transfer to the DCs from data sources. This oper-
ation is problematic because it creates a high latency in the system [7].

2

CHAPTER 1. INTRODUCTION

We can observe some examples like data collection from planes and
autonomous cars. Boeing 787s per single flight generates half a terabyte
of data, while a self-driving car generates two petabytes of data per
single drive. On the other hand, bandwidth is not large enough to
support such requirements [8].

Data transfer is not the only problem CC is facing. Some appli-
cations require real-time processing for proper decision-making [8].
For example, self-driving cars, delivery drones, or power balancing in
electric grids. Such applications might face serious issues if a cloud
service becomes unavailable due to whatever reason [2].

Over the years, research led to new computing areas and models
in which computing and storage utilities are in proximity to data
sources [13]. To overcome cloud latency issues centralized CC model is
enhanced with some new ideas [15].

1.2 Motivation and Problem Statement

In their work [24] Greenberg et al. point out that micro data-centers
(µDCs) are used primarily as nodes in content distribution networks
and other “embarrassingly distributed” applications.

One size rarely suits all needs, so the CC should not be our final
computing shift. Various models presented in 2.1.4 show a promising
possibility of how computing could be done closer to the data sources,
to lower the latency for its clients by contacting the cloud only when
needed, while the heavy computation could remain in the cloud, because
of more available resources. Send to the cloud only information that is
crucial for other services or applications [22]. Not ingest everything as
the standard cloud model proposes.

A zonally-based organization of servers combined with µDCs shows
a great possibility for building µCs and EC as a service. To achieve
such a behavior, a few more abstractions and layers are needed, to
make the whole system more available, resilient, and with less latency.
By their nature, EC originates from P2P systems [10] as suggested by

3

CHAPTER 1. INTRODUCTION

López et al., but expands it into new directions and blends it with the
CC.

This is very interesting, because there is much research and knowl-
edge available for P2P systems that could be used for inspiration. One
extension of the P2P system leads to geo-distributed deployments, and
going from node to node is a time-consuming process. Satyanarayanan
et al. stated that infrastructure deployment will not happen until the
whole process is relatively easy [40].

Assuming that we have a well-defined system, and so that infras-
tructure can be easily deployed and operated with, we have a system
that could be offered like any other resource in the CC – as a service.
Such a system or service could be offered to various types of users,
from researchers to developers to create new types of applications. A
well-defined system that is easy to operate with, will be able to move
resources from one place to another with no problem. Some cloud
providers, though, might choose to integrate the system into their
existing CC platform to reduce the load or avoid bottlenecks and single
points of failure [45].

The idea of small-scale servers introduced by edge computing (EC),
with heterogeneous, compute, storage, and network resources, raise
interesting research ideas and it is the main motivation for this thesis.
Taking advantage of resources organized locally as µCs, community
clouds, or edge clouds [23, 46] suggested by Ryden et al., to help power-
hungry servers reduce traffic [47]; contactacting the cloud only when
needed [22]; sending to the cloud only information that is crucial for
other services or applications; not ingesting everything as the standard
CC model proposes.

To achieve such behavior, dynamic resource management, and
device management is essential. At any given time, available resources,
configuration, and utilization of the system must be known [37, 17].
Traditional DCs is a well organized and connected system, built upon
years of experience. On the other hand, these µDCs consist of various
devices, including ones presented in 2.1.4 that are not [38]. This idea

4

CHAPTER 1. INTRODUCTION

brings us to the problem this thesis addresses.
Currently, existing EC and µDCs models lack dynamic, well defined

geo-organization structure, native applications model, and a clear
separation of concerns model. As such they cannot be offered as a
service to the users, and it is hard to form µCs on them. Usually, these
systems exist independently from one another, scattered without any
communication between them. Providers who build and maintain these
systems, usually lock users in their ecosystem, frequently integrate
tightly with their cloud services, giving users small or even no other
options. Nearby EC nodes could be organized locally, making the whole
system more available and reliable, but at the same time extending
resources beyond the single node or group of nodes, maintaining good
performance to build servers and clusters [21].

This cloud extension strengthens our understanding of not just
DS but also CC as a system and field of research. With EC native
applications model, separation of concerns well defined, and a unified
node organization strategy, we are moving towards the idea of EC as a
service and µCs [46].

Based on this, the problem this thesis is trying to solve is defined
by the three research questions:

(1) Can geo-distributed EC nodes be organized in a similar way to
the cloud, but adopted for the different environment, with clear
separation of concerns and familiar applications model for users
forming µC a model?

(2) Can these organized nodes (µCs) be offered as a service based on
the cloud pay as you go model, to the developers and researchers
so that they can develop new human-centered applications?

(3) Can a model be made in such a way that is formally correct, easy
to extend, understand and reason about?

This µC model makes both system and applications more available and
reliable, while resources are extended further beyond the single node or

5

CHAPTER 1. INTRODUCTION

even µDCs. In their work [20] Satyanarayanan et al. shows that µDCs
can serve as firewalls, while users get a unique ability to dynamically
and selectively control their information that will be uploaded to the
cloud. Simić et al., in [22] uses a similar idea as a pre-processing tier
for the cloud. Years after its inception, EC is no longer just an idea [20]
but a must-have tool for novel applications to come.

1.3 Research Hypotheses, and Goals

Based on research questions presented on the page 5, and the motivation
presented in section 1.2, the hypothesis around which this thesis is
based, is derived. They can be summarized as follows:

(1) Hypothesis: It is possible to organize EC nodes in a standard
way based on cloud architecture, adapted for EC geo-distributed
environment – µCs. Giving users the unique ability to orga-
nize nodes, descriptively, in the best possible way to serve the
population nearby.

(2) Hypothesis: It is possible to offer a newly formed µC model to
researchers and developers as a service based on the cloud pay
as you go model to create new human-centered applications, but
sustain the ability to rearrange resources as needed.

(3) Hypothesis: It is possible to form a clear separation of concerns
for the future µC model (EC as a service model) and establish a
well-organized system with an intuitive role for every part.

(4) Hypothesis: It is possible to present a unified model that will
be able to support heterogeneous small-scale servers (EC nodes).
This unified model will rely on a set of technical requirements that
nodes must fulfill to join the system.

6

CHAPTER 1. INTRODUCTION

(5) Hypothesis: It is possible to present a clear and familiar ap-
plication model so that users can use the full potential of newly
created infrastructure but familiarly and intuitively.

From the previously defined hypotheses, the primary goals of this thesis
can be derived, where the expected results include:

(1) The construction of a model with a clear separation of concerns
for the model influenced by cloud organization, with adaptations
for a different environment, and with a model for EC applications
utilizing these adaptations. This addresses the first research
question and is the topic of Chapter 4.

(2) The constructed model is more available, resilient with less latency,
and as such it can be offered to the general public as a service
like any other service in the cloud. This addresses the second
research question and is the topic of Chapters 4 and 6.

(3) The constructed model is described formally well, using solid
mathematical theory, but also easy to extend both formally and
technically, easy to understand and reason about. This addresses
the third research question and is the topic of Chapters 4 and 5.

1.4 Structure of the thesis

Throughout this introductory Chapter 1, the motivation for this work
is defined, with problems that this thesis addresses. The rest of the
thesis is outlined here.

Chapter 2 presents the necessary background details, informations,
and areas for understanding and supporting the rest of the thesis.

Chapter 3 presents the literature review, where different aspects
of existing systems and methods important for the thesis are exam-
ined. Existing organizational abilities for nodes in both industry and
academia frameworks are analyzed, as well as solutions to address the

7

CHAPTER 1. INTRODUCTION

first research question. Platform models from industry and academia
tools and frameworks are examined further to address the second re-
search question. And last but not least, current strategies to offload
tasks from the cloud are examined. All three parts address the third
research question.

Chapter 4 details the model, how it is related to other research and
where it connects to other existing models and solutions. The solution,
as well as protocols required for such a system to be implemented
formally are further described.

Chapter 5 presents implementation details of a framework imple-
mented to test defined hypotheses, and answer research questions.
The framework is implemented based on the protocols formally de-
scribed in chapter 4. This chapter also shows results after conducting
experiments.

Chapter 6 presents usability of the proposed model, and possible
applications that could benefit from such a system. There are also
examples of how existing infrastructure could be used, as well as familiar
application model for developers.

Chapter 7 is the final chapter, and it concludes the work of this
thesis. It summarizing the contributions of this thesis, presenting the
limitations of the proposed model, and outlines the opportunities and
directions for further research and development in this area.

8

Chapter 2

Distributed computing

An overview of the distributed computing (DC) topics that are of
significant importance for the rest of the thesis is going to be given in
this section, since the thesis is heavily based on these topics.

Sections 2.1 and 2.2 describe the theoretical background behind the
problem, where we examine distributed systems (DS) and distributed
programming (DP), focusing on design details, communication patterns,
and organizational structure. Section 2.4 describes similar models that
might be a source of confusion, and how they are different than DS or
DC, and how some concepts can fit in the bigger picture. Section 2.5
describes different transaction models used for different applications.
Section 2.6 describes basics of garbage collection techniques and why it
is important. Section 2.7 describes different virtualization methods that
are used in CC for systems and/or applications. Section 2.8 describes
different architecture and application model and how deployment can be
done in large DS. Section 2.9 describes infrastructure as software model
that allows abstracting infrastructure to software level. Section 2.10
describes different development roles in the modern complex software
environment, with focus on technical roles, while Section 2.11 describes
the difference between concurrency and parallelism and introduces an
actor system, that will be used later on in the thesis.

9

CHAPTER 2. DISTRIBUTED COMPUTING

2.1 Distributed systems

There are various definitions of DS, but we can think of DS as a system
where multiple entities can communicate to one another in some way,
but at the same time, they can perform some operations. In [48, 49]
Tanenbaum et al. give two interesting assumptions about DS:

(1) “A computing element, which we will generally refer to as a node,
can be either a hardware device or a software process”;

(2) “A second element is that users (be they people or applications)
believe they are dealing with a single system. This means that
one way or another the autonomous nodes need to collaborate”.

These two assumptions are useful and powerful when talking about
DS. As such, in this thesis, we will adopt and use them rigorously.

Three significant characteristics of distributed systems are [49]:

(1) Concurrency of components, refers to the ability of the DS
that multiple activities are executed at the same time. These
activities take place on multiple nodes that are part of a DS;

(2) Independent failure of components, this property refers to
a nasty feature of DS that nodes fail independently. They can
fail at the same time as well, but they usually fail independently
for numerous reasons;

(3) Lack of a global clock, this is a consequence of dealing with
independent nodes. Each node has its notion of time, and as such
we cannot assume that there is something like a global clock.

In [48] authors give formal definition “distributed system is a collection
of autonomous computing elements that appears to its users as a single
coherent system”.

When talking about DS, we usually think about computing systems
that are connected via network or over the internet. But DS is not

10

CHAPTER 2. DISTRIBUTED COMPUTING

exclusive to the domain of computer science. They existed before
computers started to enrich almost every aspect of human life. DS have
been used in various different domains such as: telecommunication
networks, aircraft control systems, industrial control systems
etc. DS are used anywhere where the number of users is growing
rapidly so that a single entity cannot respond to the demands in (near)
real-time.

Distributed systems (in computer science) consist of various algo-
rithms, techniques, and trade-offs to create an illusion that a set of
nodes act as one. Algorithms and techniques used in the DS may in-
clude the following: (1) replication, (2) consensus, (3) communication,
(4) storage,(5) processing, (6) membership, (7) scheduling etc.

DS are hard to implement because of their asinchroninis and faulty
nature. James Gosling and Peter Deutsch both fellows at Sun Microsys-
tems at the time created a list of problems for network applications
known as 8 fallacies of Distributed Systems [14]:

(1) The network is reliable; there will always be something that
goes wrong with the network — power failure, a cut cable, envi-
ronmental disasters, etc.;

(2) Latency is zero; locally latency is not an issue, but it dete-
riorates very quickly when you move to the internet and CC
scenarios;

(3) Bandwidth is infinite; even though bandwidth is constantly
getting better and better, the amount of data we try to push
through it rise as well;

(4) The network is secure; Internet attack trends are showing
growth, and this becomes a problem even more in public CC;

(5) Topology doesn’t change; network topology is usually out
of user control, and network topology changes constantly for
numerous reasons — added or removed new devices, servers,
breaks, outages, etc.;

11

CHAPTER 2. DISTRIBUTED COMPUTING

(6) There is one administrator; nowadays there are numerous
administrators for web servers, databases, cache and so on, and
companies collaborate with other companies or CC providers;

(7) Transport cost is zero; we have to serialize information and
send data over the wire, which takes resources and adds to the
total latency. The problem here is not just latency, but that
information serialization takes time and resources;

(8) The network is homogeneous; today, a homogeneous network
is the exception, rather than a rule. We have different servers,
systems, clients that interact. The implication of this is that we
have to assume interoperability between these systems sooner
or later, which we must be aware of. We might also have some
proprietary protocols that might also take time to send on and
they may stay without support, so we should avoid them.

These fallacies were introduced over a decade ago, and more than
four decades since we started building DS, but the characteristics
and underlying problems remain pretty the same. Because of these
problems, DS are hard to implement correctly and they are hard to
maintain and test properly.

2.1.1 Scalability

Scalability is the property of a system to handle a growing amount
of work by adding resources to the system [50]. When talking about
computer systems, scalability can be represented in two ways:

• Scaling vertically means upgrading the hardware that com-
puter systems are running on — adding mode CPU, RAM, stor-
age. Vertical scaling can increase performance to what the latest
hardware can offer, and here we are limited by the laws of physics
and Moor’s law [51]. A typical example that requires this type

12

CHAPTER 2. DISTRIBUTED COMPUTING

of scaling is a relation database server. These capabilities are
insufficient for moderate to big workloads;

• Scaling horizontally means that we scale our system by adding
more and more computers, rather than upgrading the hardware
of a single one. With this approach, we are (almost) limitless
on how much we can scale. Whenever performance degrades we
can simply add more computers (or nodes). These nodes are not
required to be some high-end machines.

Figure 2.1 show difference betweeen scaling vertically and horizontally.

Figure 2.1: Difference betweeen scaling vertically (left) and horizontally
(right)

Table 2.1 summarizes differences between horizontall and verticall
scaling.

Feature Scaling vertically Scaling horizontally
Scaling Limited Unlimited
Managment Easy Comlex
Investments Expensive Afordable

Table 2.1: Differences between horizontal and vertical scaling.

13

CHAPTER 2. DISTRIBUTED COMPUTING

Scaling horizontally is a preferable way for scaling DS. Not because
we can scale easier, or because it is significantly cheaper than vertical
scaling (after a certain threshold) [50], but because this approach comes
with few more benefits that are especially important when talking about
large-scale DS. Adding more nodes gives us two important properties:

• Fault tolerance means that applications running on multiple
places at the same time are not bound to the fail of a node, cluster,
or even DCs. As long as there is a copy of the application running
somewhere, the user will get a response back. As a consequence
of running multiple copies of a service and on multiple places,
we have that service is more available, than running on a single
node no matter how high-end that node is. Eventually, all nodes
are going to break, and if we have multiple copies of the same
service we have a more resilient and more available system to
serve user requests;

• Low latency refers to the idea that the world is limited by the
speed of light. If a node running application is too far away, the
user will wait too long for the response to get back. If the same
application is running in multiple places, the user request will
hit the node that is closest to the user.

Nodes are usually organized into clusters of machines. Buyya et al.
describes a cluster as a processing system, which consists of a collection
of interconnected stand-alone computers cooperatively working together
as a single, integrated computing resource. [52].

But despite all the obvious benefits, for a DS to work properly, we
need the writing software in such a way that is able to run on multiple
nodes, as well as that it accepts the failure and deals with it.
This turns out to be not an easy task. For example, users need to
be aware when using DS which of them is related to distributed data
storage systems. Storage implementations that rely on vertical scaling
to ensure scalability and fault tolerance, have one nasty feature.

14

CHAPTER 2. DISTRIBUTED COMPUTING

This nasty feature is represented in theorem called CAP theo-
rem presented by Eric Brewer [53], and proven after inspection by
Gilbert et a. [54]. The CAP theorem states that it is impossible for a
distributed data store to simultaneously provide more than two out of
three guarantees shown in Figure 2.2.

Figure 2.2: Difference between cloud options and on-premises solution.

(1) Consistency, which means that all clients will see the same data
at the same time, no matter which node they are connected to.
Clients may not be connected to the same node since data could
be replicated on many nodes in different locations;

(2) Availability, which means that any client issued request will get
a response back, even if one or more nodes are down. DS will not
interpret this situation as an exception or error. Availability is
represented in percentage, and it describes how much downtime
is allowed per year. This can be calculated using formula:

Availability =
uptime

(uptime+ downtime)
(2.1)

15

CHAPTER 2. DISTRIBUTED COMPUTING

The industry is using measuring availability in “class of nines”.
Availability class is the number of leading nines in the availabil-
ity figure for a system or module [55]. This metric relates to
the amount of time (per year) that service is up and running.
Table 2.2 show different classes of nine and their availability
and unavailability in minutes per year (min/year) for some
examples [55].

Type Availability Unavailability
Unmanaged 90% 50,000
Managed 99% 5,000
Well-managed 99.9% 500
Well-managed 99.9% 500
Fault-tolerant 99.99% 50
High-availability 99.999% 5
Very-high-availability 99.9999% 0.5

Table 2.2: Downtime for different classes of nines.

We can calculate availability class if we have system availability
A, the system’s availability class is defined as [55]:

elog10
1

(1−A) (2.2)

It is important to notice that even a 99% available system gives
almost four days of downtime in a year, which is unacceptable for
services like Facebook, Google, AWS, etc. And when the service
is down, companies are losing customers;

(3) Partition tolerance, which means that the cluster must continue
to work despite any number of communication breakdowns be-
tween nodes in the system. It is important to state that in a
distributed system, partitions cannot be avoided.

16

CHAPTER 2. DISTRIBUTED COMPUTING

Years after CAP theorem inception, Shapiro et al. prove that we can
alleviate CAP theorem problems, but only in some cases, and offers
Strong Eventual Consistency (SEC) model [56]. They prove
that if we can represent our data structure to be:

• Commutative a ∗ b = b ∗ a

• Associative (a ∗ b) ∗ c = a ∗ (b ∗ c)

• Idempotent (a ∗ a) = a

where ∗ is a binary operation, for example: max, union, or we can
rely on SEC properties,

2.1.2 Cloud computing

Vogels et al. describe CC as an “aggregation of computing resources as
a utility, and software as a service” [3]. Big DCs provide hardware and
software services for their users over the internet [4]. Cloud providers
offer various resources like CPU, GPU, storage, and network as utilities
that can be used and released on-demand [5].

The key strength of the CC is reflected in the offered services [3].
To support the various application needs, the traditional CC model
provides enormous computing and storage resources elastically. This
property refers to the cloud ability to allow services to allocate ad-
ditional resources or release unused ones to match the application
workloads on-demand [6].

Services usually fall in one of three main categories:

• Infrastructure as a service (IaaS) allows businesses to pur-
chase resources on-demand and as-needed instead of buying and
managing hardware themselves;

• Platform as a service (PaaS) delivers a framework for devel-
opers to create, maintain and manage their applications. All
resources are managed by the enterprise or a third-party vendor;

17

CHAPTER 2. DISTRIBUTED COMPUTING

• Software as a service (SaaS) delivers applications over the
internet to its users. These applications are managed by a third-
party vendor.

Figure 2.3 shows the difference in control and management of resources
between different cloud options and on-premises solutions.

Application

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

On-premises

Application

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

IaaS

Application

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

PaaS

Application

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

SaaS

More Control Less

User manage Service provider manage

Figure 2.3: Difference between cloud options and on-premises solution.

The user can choose a single solution, or combine more of them if such
a thing is required depending on preferences and needs.

By the ownership, CC can be categorized into three categories:

• Public cloud is a type where CC is delivered over the internet
and shared across many many organizations and users. In this
type of CC, architecture is built and maintained by others. Users
and organizations pay for what they use. Examples include AWS
EC2, Google App Engine, Microsoft Azure, etc.;

18

CHAPTER 2. DISTRIBUTED COMPUTING

• Private cloud is a type where CC is dedicated only to a single
organization. In this type of CC, architecture is built by an
organization that may offer their solution or services to the users
or other organizations. These services are in the domain of
what the organization does, and that organization is in charge of
maintenance. Examples include VMWare, XEN, KVM, etc.;

• Hybrid cloud is such an environment that uses both public and
private clouds. Examples include IBM, HP, VMWare vCloud,
etc.

Table 2.3 shows comparison of public, private and hybrid cloud capa-
bilities.

Capabilities Public cloud Private cloud Hybrid cloud
Data control IT enterprise Service Provider Both
Cost Low High Moderate
Data security Low High Moderate
Service levels IT specific Provider specific Aggregate
Scalability Very high Limited Very high
Reliability Moderate Very high Medium/High
Performance Low/Medium Good Good

Table 2.3: Comparison of public, private and hybrid cloud capabilities.

In the rest of the thesis, if not stated differently when CC term is used
it denotes public cloud.

CC has been the dominating tool in the past decade in various
applications [13]. It is changing, evolving, and offering new types of
services. Resources such as container as a service (CaaS), database as
a service (DBaaS) [57] are newly introduced. The CC model gives us a
few benefits. Centralization relies on the economy of scale to lower the
cost of administration of big DCs. Organizations using cloud services
avoid huge investments, like creating and maintaining their own DCs.

19

CHAPTER 2. DISTRIBUTED COMPUTING

They consume resources usually created by others [13] and pay for
usage time — pay as you go model.

Centralization gives us a few really hard problems to solve. As
already stated in section 1.1 data is required to be moved to the cloud
from data sources, which introduces a high latency in the system [7].

There are a few notable attempts to help data ingestion into the
cloud. Remote Direct Memory Access (RDMA) protocol makes it
possible to read data directly from the memory of one computer and
write that data directly to the memory of another. This is done by
using specialized hardware interface cards, switches, and software as
well, and operations like read, write, send, receive, etc. do not go
through the CPU. With these characteristics, RDMA has low latencies
and overhead, and as such reaches better throughputs [58]. This
new hardware may not be cheap, and not every CC provider uses
them for every use-case. This may not be enough, especially with the
ever-growing amount of IoT devices and services.

Over the years there are more service options available, forming
everything as a service (XaaS) model [36]. This model proposes
that any hardware or software resource can be offered as a service to
the users over the internet.

Table 2.4 shows common examples of SaaS, PaaS, and IaaS appli-
cations.

Platform Common Examples
IaaS AWS, Microsoft Azure, Google Compute Engine
PaaS AWS Elastic Beanstalk, Azure, App Engine
SaaS Gmail, Dropbox, Salesforce, GoToMeeting

Table 2.4: Common examples of SaaS, PaaS, and IaaS.

2.1.2.1 Multi-cloud and sky computing

In recent years there has been one extension of CC from a series
standpoint called multi-cloud [59, 60] or sky computing [61] (terms

20

CHAPTER 2. DISTRIBUTED COMPUTING

are going to be used interchangeably).
It is such an environment where an enterprise uses more than one

cloud platform, with at least two or more public cloud providers that
each delivers a specific application or service.

A multi-cloud can be comprised of any model presented on the
page 19. This model relies on the possibility that if one cloud provider
fails for whatever reason, the next one will be able to serve user requests.

This strategy allows creation of a single heterogeneous architecture,
allowing distribution of cloud assets and workloads across multiple
providers (active-active), or deploy a single workload on one provider,
with a backup on another (active-passive) [62].

CC gives a user an illusion that he is using a single machine, while
the background implementation is fairly complicated and consists of
various elements that are composed of countless machines. CC is a
typical example of a horizontally scalable system presented in 2.1.1.

2.1.3 Membership protocol

At the beginning of this section DS were introduced, and two interesting
assumptions by Tanenbaum et al. were presented [48, 49]. If one more
look is taken at (2) assumption, we will see that users of the DS
whether they are users or applications perceive DS as a single unit.
Inside this single unit, nodes need to collaborate, so that they are able
to do various kinds of tasks.

The most basic of all these tasks is that nodes need to know which
group they belong to, and who are their peers in the group they will
collaborate with. This might sound like a trivial idea, but when we
include 8 fallacies of the DS 2.1 into the equation, things start to be
not so trivial after all. In the setup where nodes are connected over
the local network or internet, and they need to communicate, things
will go wrong for various reasons.

To resolve the problem who their group peers are, a membership
protocol comes to help. These protocols need to ensure that each
process of one group updates its local list of non-faulty members of

21

CHAPTER 2. DISTRIBUTED COMPUTING

the group, and when a new process joins or leaves the group, the local
list for every process needs to be updated. This is the most basic idea
behind membership protocols.

Processes in the group of nodes will ping each other in different
ways, and using different strategies to figure out which nodes are dead
and which are alive. There are a few existing algorithms that do this
job, and they are (usually) based on the way epidemics spread or how
gossip is spread in a human population. Because of this feature, these
algorithms are usually called Gossip style protocols.

Every membership protocol has some properties that will ensure
efficiency and scalability:

(1) Completeness, this property must ensure that every failure in
the system is detected;

(2) Accuracy, in an ideal world, there should be no mistakes when
detecting failures, but In a real-life scenario, we need to reduce
false positives as much as we can;

(3) Failure detection speed, all failures needs to be treated as
fast as possible, in order to remove the node from the group and
reschedule the tasks from the dead node to alive ones;

(4) Scale, with this property we must ensure that the network
load that is generated should be distributed equally between
all processes in the group.

The easiest idea to implement this protocol would be heartbeating
technique where process Pi will send a heartbeat message to all his
peers in the group or multicast. After some time if process Pj did
not receive a heartbeat message from Pi, it will mark him as failed.
This idea is easy to understand, and implement but the downsides are
that its process is not that scalable, especially for large groups, and
this will introduce huge network traffic.

22

CHAPTER 2. DISTRIBUTED COMPUTING

To resolve this problem, Das et al. [32] introduced Scalable Weakly-
consistent Infection-style Process Group Membership protocol
(SWIM for short). This protocol divides the membership problem
into two parts:

(1) Failure detection, this component works so that one node will
select a random node in the group, and it will send it ping
message, expecting ack message in return — direct ping. If
such message is not received, it will pick n nodes to probe through
a ping − req message — indirect ping. If this fails, the node
will be marked as suspected, and it will be marked as dead after
some timeout. If the node gets alive, it will ping some other node
and it will get back into the group. Figure 2.4 show message
passing in direct (left), and indirect (right) ping in SWIM
protocol;

(2) Information dissemination, with previous strategy, informa-
tion can be disseminated by piggybacking the data on multiple
messages (ping, ping − req and ack), and avoid using the multi-
cast solution.

Figure 2.4: Direct and indirect ping in SWIM protocol.

Over the years, researchers found ways to improve the protocol, for
example Dadgar et al. presented Lifeguard protocol [63] for more

23

CHAPTER 2. DISTRIBUTED COMPUTING

accurate failure detection, and there are other implementations to
fine-tune the SWIM, but the base idea is still there. Today SWIM
or SWIM-like protocols are standard membership protocols whenever
some node clustering is done.

2.1.4 Mobile computing

The first idea that introduced task offloading from the cloud [64, 65]
was Mobile cloud computing (MCC). Mobile devices run small client
software and interact with the cloud over the internet, while heavy
computation remains in the cloud.

The cloud is usually far away from end devices because DCs are
built on specific locations in the world to target as many users nearby as
possible. This sparse deployment will most likely lead to high latency,
and bad quality of experience (QoE) [65] for most users. Latency-
sensitive applications especially will have a hard time. As a model,
MCC is not much different from the standard CC model. The good
thing is that the cloud has been relaxed a little bit, and a small number
of tasks has been moved from the cloud. But this model opens the
door for the next-generation models.

The development led to new computing areas like EC, osmotic
computig [66, 67], sky computing [61], etc. EC is a next-generation
model where computing and storage resources are in proximity to
data sources [13]. This idea might overcome cloud latency issues and
known MCC problems. The main strength of the EC lays in the
CC enhancements with new processing ideas, for the next-generation
use-cases [15].

EC has brought a few different models over the years. Models
like fog [16], cloudlets [12], and mobile edge computing (MEC) [17]
emerged. This thesis will refer to all these models as edge computing,
and nodes used by them as edge nodes. Different EC models rely on
the concept of data and computation offloading from the cloud closer
to the ground [18]. Only heavy computation remains in the cloud
because of more available resources [15], compared to edge nodes.

24

CHAPTER 2. DISTRIBUTED COMPUTING

EC models introduced small-scale servers that operate between
data sources and the cloud. These small-scale servers have much fewer
capabilities compared to the cloud servers [19]. To avoid latency and
huge bandwidth [12], EC nodes can be dispersed in various locations,
for example, base stations [17], restaurants, or over arbitrary geographic
regions.

2.2 Distributed programming

DP can be defined as the use of a DS to solve one large problem,
by breaking it down into several smaller parts, where each part is
computed in the individual node of the DS and coordination is done
by passing messages to one another [49]. Computer programs that
use this strategy and run on top of the DS are called distributed
programs [68, 69].

Similar to CC in Section 2.1.2, to a normal user, DC systems appear
as a single system similar to one the user uses every day on his/her
personal computer. DC shares the same fallacies to DS presented
in 2.1.

2.2.1 Big Data

Term big data means that the data is unable to be handled, processed,
or loaded into a single machine [70]. That means that traditional
data mining methods or data analytics tools developed for centralized
processing may not be able to be applied directly to big data [71].

New tools and methods that have been developed rely on DS and
one specific feature data locality. Data locality can be described as
a process of moving the computation closer to the data, instead of
moving large data to computation [72]. This simple idea minimizes
network congestion and increases the overall throughput of the system.

25

CHAPTER 2. DISTRIBUTED COMPUTING

Two examples of how huge generated data could be have already
been given in 1.1, and when other IoT sensors and devices are included
these numbers will just keep getting bigger and bigger [73].

Contrary to relational databases that mostly deal with structured
data, Big Data is dealing with various kinds of data [70, 71, 72]:

• Structured data is a kind of data that have some fixed structure
and format. A typical example of this is data stored inside a table
of some database. Organizations usually have no huge problem
extracting some kind of value out of the data;

• Unstructured data is a kind of data where there is not any kind
of structure at all. These data sources are heterogeneous and
may contain a combination of simple text files, images, videos,
etc. This type of data is usually in raw format, and organizations
have a hard time deriving the value out;

• Semi-structured data is the kind of data that can contain both
previously mentioned types of data. An example of this type of
data is XML files.

Big Data have recognizable feature called V’s of Big Data [74], shown
in Figure 2.5. Name is derived from initial letters of the big Data
features.

Volume

Variety Velocity

Veracity

Value Variability

The amount of data.

Types of data.
Speed of which

data is trusted.

of data.

They ways in which

Big Data

data is generated.

Degree of which

data can be used.

The business value

Figure 2.5: V’s of Big Data.

26

CHAPTER 2. DISTRIBUTED COMPUTING

Processing in big data systems can be represented as [75, 76]:

• Batch processing represents a data processing technique that
is done on a huge quantity of the stored data. This type of
processing is usually slow and requires time;

• Stream processing represents a data processing technique that
is done as data get into the system. This type of processing is
usually done on a smaller quantity of the data at the time [77],
and it is faster;

• Lambda architectures represents a processing technique where
stream processing and handling of massive data volumes in a
batch are combined in a uniform manner, reducing costs in the
process [76].

Big data systems, are not processing and value extracting systems.
Big data systems can be separated into several categories: (1) data
storage, (2) data ingestion, (3) data processing, and analytics. All
these systems aid to properly analyze ever-growing requirements [78].

Despite a promise that big data offers to derive value out of the
collected data, this task is not easy to do and requires a properly set
up system filtering and removing data that contains no value. To aid
this idea, data could be filtered and a little bit preprocessed on close
to the source [22], and as such sent to data lakes [79].

2.2.2 Microservices

There is no single comprehensive definition of what a microservice is.
Different people and organizations use different definitions to describe
it. A working definition is offered in [80] as “a microservice is a cohesive,
independent process interacting via messages”. Despite the lack of a
comprehensive definition, all agree on a few features that come with
microservices:

27

CHAPTER 2. DISTRIBUTED COMPUTING

(1) They are small computer programs that are independently de-
ployable and developed;

(2) They could be developed using different languages, principles,
and using different databases;

(3) They communicate over the network to achieve some goal;

(4) They are organized around business capabilities [81];

(5) They are implemented and maintained by a small team.

The industry is migrating much of their applications to the cloud
because CC offers to scale their computing resources per their usage [82].
Microservices are small loosely coupled services that follow UNIX
philosophy “do one thing and do it well” [83], and they communicate
over well defined API [80].

This architecture pattern is well aligned to the CC paradigm [82],
contrary to previous models like monolith whose modules cannot be
executed independently [80, 84], and are not well aligned with the CC
paradigm [84]. Table 2.5 summarizes differences between the monolith
and microservices architecture.

Feature Monolith Microservices
Structure Single unit Independent services
Management Usually easier Add DS complexity
Scale/Update Entire app Per service
Error Usually crush entire app App continue to work

Table 2.5: Differences between the monolith and microservices archi-
tecture.

Since its inception, microservices architecture has gone through adap-
tations, and modern-day microservices are extended with two new
models, each with its unique abilities and problems:

28

CHAPTER 2. DISTRIBUTED COMPUTING

• Cloud-native applications are specially designed applications
for CC. They are distributed, elastic, and horizontally scalable
systems by their nature, and composed of (micro)services that
isolate state in a minimum of stateful components [85]. These
type of applications are self-contained, could be deployed indepen-
dently, and they are composed of loosely coupled microservices
that are packaged in lightweight containers. They have Improved
resource utilization, and they are centered around APIs;

• Serverless applications is a computing model, where the de-
velopers need to worry only about the logic for processing client
requests [86]. Logic is represented as an event handler that only
runs when a client request is received, and billing is done only
when these functions are being executed [86]. Cold start is one
of the features of serverless computing, and we can define it as
user requests need to wait until a new container instance is up
and running before it can do any processing at all. Most providers
have 1–3 second cold starts, and this is important for certain
types of applications where latency is a concern. Cold start is
only happening when there are no warm containers available for
the request, meaning there is no single instance to server request.
Other features include: (1) simplified services development, (2)
faster time to market, (3) and lower costs;

• Service Mesh is designed to standardize the runtime operations
of applications [87]. As a part of the microservices ecosystem,
this dedicated communication layer can provide several benefits,
such as: (1) observability, (2) providing secure connections, or
(3) automating retries and backoff for failed requests. With
these features, developers only focus on the implementation of
business logic, while operators gain out-of-the-box traffic poli-
cies, observability, and insights from the services. Advocates

29

CHAPTER 2. DISTRIBUTED COMPUTING

of the microservice movement, nowadays recommend using ser-
vice mesh architecture when running microservices in production
environments.

Previous models are not explicitly different, they all can be viewed as
cloud-native applications. The enumeration is given for the sake of
pointing out their different models and aspects of working.

Microservices communicate over a network to fulfill some goal using
message passing techniques and technology-agnostic protocols such as
HTTP. They can be implemented as:

• Representational state transfer (REST) services [88], is an ar-
chitectural style with a set of constraints that users can create
web services and interoperability between computer systems on
the internet. It is based on HTTP routs to define resources and
use HTTP verbs to represent operations over these resources. It
relies on textual based communications, and payload could be
represented using JSON , XML, HTML, etc.;

• Remote procedure calls (RPC) represent an architectural way
to design services that can call subroutines that are located in
different places, usually on another machine. The client calls
these operations like they are located locally in his address space;

• Event-driven services are services where communication between
services is done using events. Events are sent on some channel
and other read messages that are received on another channel.
These channels could be implemented either like message queues
or message topics. Services connect to message queue or subscribe
to the specific topic, and when messages arrive, they can act
according to the message type.

They are well aligned with text-based protocols like HTTP/1 us-
ing JSON for example, or binary protocols such as HTTP/2 using
protobuf and gRPC for example, and even new faster version like

30

CHAPTER 2. DISTRIBUTED COMPUTING

HTTP/3 over new QUIC protocol, designed by Google. HTTP/3 is
the latest version of the conventional and trusted HTTP protocol. It
is very similar to HTTP/2, but it also offers a few important new
features.

Table 2.6 shows important difference between versions of HTTP
protocol.

Feature HTTP/1 HTTP/2 HTTP/3
Transport text binary binary
Parallelism No Yes Yes
Protocol TCP TCP QUIC
Space OS level OS level User level
Server push No Yes Yes
Compression Data Data/Headers Data/Headers

Table 2.6: Idempotent and non-idempotent operations.

To ensure a wider range of devices that can communicate with the rest
of the systems, developers usually have a gateway into the system that
is REST service, and other services could be implemented differently.

It is important to point out, that all flavors of microservices ap-
plications rely on continuous delivery and deployment [89]. This is
enabled by lightweight containers, instead of virtual machines [90],
and orchestration tools such Kubernetes [91]. These concepts will be
described in more detail in Section 2.7.

Microservices architecture is a good starting point especially for
being built as a service applications model, and applications that should
serve a huge amount of requests and users, especially with the benefits
of CC to pay for usage, and the ability to scale parts of the system
independently. They are not necessarily easy to implement properly,
and there is more and more critique to the architecture model [92].
Microservices are rely upon and use parts of the DS, and as such, they
inherit almost all problems DS has.

31

CHAPTER 2. DISTRIBUTED COMPUTING

One particular thing that users need to be aware of is idempo-
tency. In microservices applications, developers are dealing with
inconsistencies in the distributed state, and their operations should
be implemented as idempotent. An operation is idempotent if it will
produce the same results when executed over and over again. It is a
strategy that means that operations with side effects like creation or
deletion can be called any number of times while guaranteeing that
side effects only occur once. Idempotency is a term that comes from
mathematics, and can be represented by simple idempotency law for
operation ∗ like [93]:

∀x, x ∗ x = x (2.3)

Not all Create, Read, Update, Delete (CRUD) operations are idempo-
tent by default. Developers need to make effort to make all of them
idempotent, to prevent bad outcomes and inconsistent states.

Table 2.7 shows list of idempotent and non-idempotent for standard
CRUD operations:

Operation Idempotent Non-idempotent
Create x
Read x
Update x
Delete x

Table 2.7: Idempotent and non-idempotent operations.

Crate operation is not idempotent by default, but to make it idempotent
there are multiple strategies how to do so. The most common way is to
create idempotency key that will be sent in the request, and based
on that request server can decide if this operation is already invoked
or not. If a server has already “seen” specified idempotency key than
the operation is already done and we can return just the response that
the operation is done but no operation will be done over the state of

32

CHAPTER 2. DISTRIBUTED COMPUTING

the service or application. If the server sees the idempotency key for
the first time, that is the signal that this request is a new one, and it
should be done.

Idempotency key could be stored in any kind of storage, it is not
uncommon that these keys are stored in cache storage with some time
to live (TTL) policy that will automatically remove the key after a
specified time.

Another option that is commonly used is hashing user specified
actions. It is useful to know which part of the action set is already
done and which is not. This strategy is used in scenarios where we
must preserve the order of actions.

2.2.2.1 Distributed Queries

Applications built using microservices architecture propose different
strategies for data storage. One common and recommended technique
is database per service patter [94].

The result of this technique is that overall state of the system will
be distributed across multiple data stores, accessible only from their
own microservices. This creates two important topics to think about:
(1) transactions that span over multiple services can be implemented
using Sagas for example (see page 44), and (2) the complex queries
which require data from multiple databases.

The complex queries will involve data available in multiple databases,
and a client can access all these microservices and aggregate data, how-
ever, this is not the recommended solution because the client does not
have full understanding how the system manages the data.

In microservices archtiecture, there are two standard ways to solve
this problem [94]:

1. Command Query Responsibility Segregation (CQRS) sep-
arates responsibility for modifying data (command), and reading
the data (query), making the logic clearer and easier to optimize

33

CHAPTER 2. DISTRIBUTED COMPUTING

different parts of the system [94, 95]. This increases the com-
plexity of entire system, but it supports multiple denormalized
views that are scalable and performant [94]. When the data in
one service is modified, the service emits the event, which will
change the service responsible for complex query. The service
that will serve the queries will keep the read-only replica of the
data. Figure 2.6 shows an example diagram for CQRS pattern;

Service A

Service B

Service C

Change

Change

ChangeQuery CQRS
Service

Aggregated

View

Figure 2.6: CQRS pattern diagram.

2. API composition is a simple way to query data in a microser-
vice architecture [94, 96], alternative and more lightweight solu-
tion than CQRS. The main difference between CQRS is that this
patterns does not have its own data storage. When a request
comes in, it accesses every single microservice containing data,
combines the results, and then returns the combined result to
the client. Making it easier to implement, because database does
not need to be refreshed every time when some change occurs in
the system. On the other hand, it may yield a slower response,
depending on how many services we need to contact for the
information, their availability, and time to merge and prepare
data in memory. Figure 2.7 shows an example diagram for API
Compossition pattern.

34

CHAPTER 2. DISTRIBUTED COMPUTING

Service A

Service B

Service C

Query

Query

QueryAPI
Composer

Query

Figure 2.7: API Compossition pattern diagram.

The best chance to succeed when implementing a microservices archi-
tecture is to simply follow existing patterns and use existing solutions
with proven quality.

2.2.3 Observability

Observability is an integral part of any real-world computing system,
and especially in the DS where observing what is happening in a
network of processes is difficult [97], due to the its nature.

In case of errors, fails or misbehavior of the system, some insight
can be gained into what causes failure or which set of parameters in
which circumstances. The three pillars of the observability are: (1)
logs aggregation, (2) distributed tracing, and (3) alerting.

The logging operation, gives developers ability to store various
arbitrary informations, that will provide more details for those who
are investigating the failure. One thing we must be aware of is not to
store any sensitive pieces of information in the log because this can
cause a bunch of problems. Another thing we must be aware of is that
we do not log too much and too often to slow down the business logic
and execution of the function.

In monolithic applications logging and monitoring is a little bit
easier to implement, because we have the whole application state in one
place. When we come to the field of DS and microservices, our state is

35

CHAPTER 2. DISTRIBUTED COMPUTING

scattered across multiple elements or services. In DS, the monitoring
involves interactions among concurrently executing processes [98].

The solution to this problem is to use a centralized logging service
– logs aggregation, that collects logs from each service [99]. This is
beneficial because users can search and analyze the logs as a whole
state of the system. To do this properly the log must be stored very
reliably [100]. Users can then configure the log server for some alerts
that are triggered when certain messages appear in the logs. The log
of DS usually does not contain enough information to regenerate the
timeline of execution, and this is one reason that logs in DS are so
hard to interpret [99].

To resolve this problem of DS execution timeline, Google developed
a new technique called tracing [101]. The trace represents a single
execution timeline or execution of one request. Trace will create a
tree, and the tree is used to establish order. Every node in the tree
represents a unit of work and it is called span. A tree unites all the
elements needed to carry out an originating request. In every span
or unit of work, we can attach more details about that particular
execution element. Figure 2.8 shows the simple example of RequestX
path through the processes in a distributed system, where each service
call could be RPC, HTTP or some other request.

(user)

A

B
C

D
E

(Backend)

(Middle Tier)

(Frontend)

RequestX ReplayX

call1 call2

call3 call4

Figure 2.8: RequestX path through the processes in a distributed
system.

36

CHAPTER 2. DISTRIBUTED COMPUTING

And last, but not the least option is alerting. Alerting of a monitored
system can be represented as a set of rules that performs actions based
on changes in specific metric. Alerting enables a system to notify users
when something important happens or (probably) is going to happen.

DS logging, tracing and alerting represents the important role of
any system, and as such, it should not be neglected especially in the
DS environment. Every user request should be traced and logged from
an infrastructure perspective, but we should allow users to store logs
from their applications.

2.3 Distribution Models

The role of distribution models is to determine the responsibility for
the request, or to answer the fundamental question “who is in charge”
for a specific request. There are two ways to answer this question: (1)
all nodes in the system, or (2) single node in the system.

2.3.1 Peer-to-peer

Peer-to-peer (P2P) communication is a networking architecture model
that partitions tasks or workloads between peers [102]. All peers are
created equally in the system, and there is no such thing as a node
that is more important than others.

Every Peer has a portion of system resources, such as processing
power, disk storage, or network bandwidth, directly available to other
network participants, without the need for central coordination by
servers or stable hosts [102]. P2P nodes are connected and share
resources without going through a separate server computer that is
responsible for routing.

Figure 2.9 shows difference in network topology between P2P net-
works (left) and client-server architecture (right).

37

CHAPTER 2. DISTRIBUTED COMPUTING

Figure 2.9: P2P network and client-server network.

Peers are creating a sense of virtual community. This community of
peers can resolve greater tasks, beyond those that individual peers can
do. Yet, these tasks are beneficial to all the peers in the system [103].
When a request comes to such a network, a node that accepts the
request is usually called coordinator, because it then is trying to find
the right peer to send a request to.

Based on how the nodes are linked to each other within the overlay
network, and how resources are indexed and located, we can classify
networks as [104]:

• Unstructured do not have a particular structure by design, but
they are formed by nodes that randomly form connections [105].
Their strength and weakness at the same time is the lack of
structure. These networks are robust when peers join and leave
the network. But when doing a query, they must find more
possible peers that have the same piece of data. A typical example
of this group is a Gossip-based protocol like [32];

• Structured peers are organized into a specific topology, and the
protocol ensures that any node can efficiently search the network
for a resource. The famous type of structured P2P network is a
Distributed Hash Table (DHT). These networks maintain lists
of neighbors to do a more efficient lookup, and as such, they are
not so robust when nodes join or leave the network. DHT is
commonly used in resource lookup systems [106], and as efficient
resource lookup management and scheduling of applications, or as

38

CHAPTER 2. DISTRIBUTED COMPUTING

an integral part of distributed storage systems and NoSQL[107]
databases;

• Hybrid combine the previous two models in various ways.

P2P networks are a great tool in many arsenals, but because of their
unique ability to act as a server and as a client at the same time, we
must be careful and pay more attention to security because they are
more vulnerable to exploits [108].

2.3.2 Master-slave

In the master-slave architecture, there is one node that is in charge –
master. This node accepts requests, and we usually do not commu-
nicate to the rest of the nodes or slaves. The master node is usually
better and more expensive or even specialized hardware such as redun-
dant array of inexpensive disks (RAID) to lower the crash probability.
The cluster can also be configured with a standby master, and this
node is continually updated from the master node.

But no matter how specialized hardware master runs on, it is prone
to fail for various reasons, so it is a single point of failure (SPOF).
If crush happens, then standby master could continues to the server as
a master, or new leader election protocol [109] is initiated to pick a
new master node.

The master node is responsible for processing any updates to that
data. If the master fails, then the slaves can still handle read requests.
Failure of the standby master node to take over from the master node
is a real problem if we want to achieve a high-availability system.

Figure 2.10 shows difference between mater-slave (left) and peer-
to-peer (right) request handling.

39

CHAPTER 2. DISTRIBUTED COMPUTING

Master

Node

Node Node

Request

Node

Node

NodeNode

Request

Standby
Master

Figure 2.10: Handling requests master-slave and peer-to-peer

Using the right distribution model usually depends on the business
requirements. High availability requires a P2P network because of no
SPOF. If we could manage data using batch jobs that run in off-hours,
then the simpler master-slave model might be the solution.

2.3.3 Replication

Replication is a technique used to ensure the availability of redundant
resources closer to the place where it is accessed, with a goal to improve
reliability, fault-tolerance, or accessibility [48, 49].

On the other hand, replication leads to better performance by
balancing the load between components [48]. This is of importance,
especially in geo-distributed systems, because it can lower down the
communication latency. Users can access a copy of data nearby [49].

Replication requires information about replication factor. The
replication factor tells us the number of nodes to replicate the data.
Replication could be implemented inside a single cluster or multiple
regions, increasing the overall availability of the system further.

Storing data in several places requires that system deals with the
consistency of stored data. The users can access different replicas at
different times, leading the data to an inconsistent state. Consistency is
tunable parameter, and user can choose between strong and eventual
consistency.

40

CHAPTER 2. DISTRIBUTED COMPUTING

2.4 Similar computing models

In this section, we are going to shortly describe models that are similar
to the DS, and as such, they may be the source of confusion.

2.4.1 Parallel computing

DC and parallel computing seem like models that are the same, and
that may share some features like simultaneously executing a set of
computations in parallel. Broadly speaking, this is not far from the
truth [68].

Differencies between the two can be presented as follows: in parallel
computing, all processor units have access to the shared memory and
have some way of the faster inter-process communication, while in
DS and DC all processors have their memory on their machine and
communicate over the network to other nodes which are significantly
slower.

These models are similar, but they are not identical, and the kinds
of problems they are designed to work on are different. Figure 2.11
visually summarizes the architectural differences between DC (up) and
parallel computing (down).

Processor

Memory

Processor

Memory

Processor

Memory

Network

Processor

Memory

Processor

Memory

Network

NetworkNetwork

Distributed computing Parallel computing

ProcessorProcessor

Figure 2.11: Architectural difference between DC and parallel comput-
ing.

41

CHAPTER 2. DISTRIBUTED COMPUTING

Parallel computing has often used the strategy with problems that due
to their nature or constraints must be done on multi-core machines
simultaneously [110]. It is often that some big problems are divided
into smaller ones, which can then be solved at the same time.

Several tasks require parallel computing like simulations, computer
graphics rendering, or different scenarios in scientific computing.

2.4.2 Decentralized systems

Decentralized systems are similar to DS. But if we take a closer look,
these systems should not be owned by a single entity. CC, for example,
is a perfect example of DS, but it is not decentralized by its nature.
It is a centralized system by the owner like AWS, Google, Microsoft,
or some other private company because all computation needs to be
moved to big DCs [7].

By modern standards, when we are talk about decentralized systems,
we usually think of blockchain or blockchain-like technology [111], since
here we have distributed nodes, that are scattered and there is no single
entity that owns all these nodes. But even if this technology is run in
the cloud, it is loses the decentralized feature. This is the caveat we
need to be aware of. These systems are facing different issues because
any participant in the system might be malicious and they need to
handle this case.

Nonetheless, CC can and should be decentralized in the sense that
some computation can happen outside of cloud big DCs, closer to the
sources of data. These computations could be owned by someone else,
and big cloud companies could give their solution to this as well to
relax centralization and problems that CC will have especially with
ever-growing IoT and mobile devices.

42

CHAPTER 2. DISTRIBUTED COMPUTING

2.5 Transactions

Transactions are keeping data consistent even in the presence of highly
concurrent data accesses and despite all sorts of failures [112]. Trans-
actions are trying to resolve this problem in a generic way, in such a
way that is invisible to the application logic.

The main goal of transactions is to maintain system integrity in the
consistent state, by ensuring that all operations on the system are either
all completed successfully or all canceled successfully. Transactions
are typically used in systems that needs to preserve some state (e.g.
database or some filesystems).

In their book Gray et al. make a good parallel with the contract law,
saying that transactions give us the ability to clean up the situation, if
something does not work right. [113].

Transactions guarantee following four properties: (1) atomicity,
(2) consistency, (3) isolation, and (4) durability, also known as ACID
properties [114].

2.5.1 Distributed transactions

Because of the nature of DS, more network hosts are involved which
significantly complicates the transaction mechanism. Distributed trans-
actions are required to have all four ACID properties. This might
not be so easy to achieve amongst other due to CAP theorem (see
page 15).

In their book, Morgan et al. claim that here exists no distributed
commit protocol that can guarantee independent process recovery in
the presence of multiple failures (e.g., network partitionings) [112].

Distributed transactions include few protocols such as two-phase
commit (2PC), three-phase commit (3PC), Paxos, and various other
approaches to quorum giving programmers facade of global serializabil-
ity [115].

43

CHAPTER 2. DISTRIBUTED COMPUTING

Avoiding distributed transactions allows a much simpler, more
robust and efficient solution.

2.5.2 Sagas

In 1987, Molina et al. presented Sagas [116] and their work in the
area of long-lived transactions (LLTs), types of transactions that hold
resources for long periods, and as such delay shorter and more common
transactions.

These transactions are increasingly relevant and important in the
current technological landscape with the distribution of components
and microservices architectures.

The saga transaction is composed of sub-transactions, executed in
an atomic way so that either all or none of the sub-transactions take
effect. However, no isolation is necessarily guaranteed between the
sub-transactions of different sagas.

One transaction T is composed of multiple sub-transactions T1, . . . , Tn,
and every sub-transaction Ti has an associated compensating transac-
tion Ci or how the effects of the transaction can be rolled back. The
saga transaction executes sub-transactions sequentially.

Figure 2.12 shows an example of one transaction separated into
multiple sub-transactions where green arrows represent success path,
while red arrows represent rollbacks, structure of the saga transaction
and at least the previous and next element in the chain.

T1 T2 Tn...

C1 Cn-1

...

Figure 2.12: Saga transactions separated in sub-transactions.

44

CHAPTER 2. DISTRIBUTED COMPUTING

Sagas can be implemented using two patterns: (1) orchestration where
one centralized element is responsible for all the coordinating, or (2)
choreography, where each service trigger local transactions in other
services.

This isolation can be added in the application layer [114] i.e. se-
mantic lock. This strategy will change state so that some data are in
process and should be treated differently.

For example, an order can be in one of the following states: (1)
PENDING, (2) COMPLETED, or (3) CANCELED state. Other trans-
actions will not make use the data if status is not set to COMPLETED.

2.6 Garbage collection

Most modern programming languages nowadays allow programmers to
allocate and free memory. This process can be in total responsibility
of the programmer, or language can handle this process for the pro-
grammer. When there is some automatic process involved to release
unused resources, that process is called garbage colection or GC.

In [117], Jones, et al. describe garbage collection as the auto-
matic management of dynamically allocated storage. However, the
term garbage collection is not exclusive to programming languages.
It is widely used to refer to all forms of automatic management of
dynamically allocated resources.

Even with the rapid growth of memory sizes, and lowering the
overall cost of memory is not inexhaustible. Like any other limited
resources, it requires careful consideration and recycling. Even tools
like Kubernetes, have some form of garbage collection that is used to
remove unused items and their references in the system.

Over the years, different algorithms are used to do reference counting
and tracing methods, to discover unused resources, and to free them.
One of the most common algorithms for garbage collection is mark-
sweep algorithm [118] developed in 1960. The variety on the topic

45

CHAPTER 2. DISTRIBUTED COMPUTING

exists today, but the essence of the algorithm remains widely used
today.

Traditional automated garbage collection is usually seen as slow,
and disruptive to executing programs. Modern implementations of
the garbage collection substantially reduced the overhead of the sys-
tem [117].

2.7 Virtualization techniques

Virtualization as a technique started long ago in time-sharing systems,
to provide isolation between multiple users sharing a single system like
a mainframe computer [119].

In [120] Sharma et al. virtualization is described as technologies
that provide a layer of abstraction of the physical computing resources
between computer hardware systems and the software systems running
on them.

Modern virtualization differentiates several different tools. Some
of them are used as an integral part of the infrastructure for some
flavors like IaaS, while others are used in different CC flavors as well as
microservices packaging and distribution format, or are new and still
are looking for their place. These options are:

• Virtual machines (VM) are the oldest technology of the three.
They are described as a self-contained operating environment
consisting of guest operating system and associated applications,
but independent of the host operating system [120]. VMs enable
us to pack isolation and better utilization of hardware in big
DCs. They are widely used in IaaS environment [121, 122] as
a base where users can install their own operating system (OS)
and require software tools and applications;

• Containers provide the almost same functionality to VMs, but
there are several subtle differences that make them a go-to tool

46

CHAPTER 2. DISTRIBUTED COMPUTING

in modern development. Instead of the guest OS running on top
of host OS, containers use tools that are in a Linux kernel like
cgroups that limit process resource usage so that single process can
not starve other processes and use all the resources for itself, and
namespaces to provide isolation and partitions kernel resources
so that single process sees node resources like it only exists there.
Containers reduce time and footprint from development to testing
to production, and they utilize even more hardware resources
compared to VMs and show better performance compared to
the VMs [123, 90]. Containers provide an easier way to pack
services and deploy and they are especially used in microservices
architecture and service orchestration tools like Kubernetes [91].
Google has stated several times in their online talks that they
have used container technology for all their services, they even
run VMs inside containers for their cloud platform. Even though
they exist for a while, containers get popularized when companies
like Docker and CoreOS developed user-friendly APIs;

• Unikernels is the newest addition to the virtualization space.
Unikernels are defined as small, fast, secure virtual machines
that lack operating systems [124]. Unikernels are comprised of
source code, along with only the required system calls and drivers.
Because of their specific design, they have a single process and
they contain and execute what it absolutely needs to nothing more
and nothing less [125]. They are advertised as new technology
that will save resources and that they are green [126], meaning
they save both power and money. When put to the test and
compared to containers they give interesting results [125, 127].
Unikernels are still a new technology and they are not widely
adopted yet. But they give promising features for the future,
especially if properly ported to ARM architectures, and various
development languages. Unikernels will probably be used as
a user application and function virtualization tool, because of

47

CHAPTER 2. DISTRIBUTED COMPUTING

their specific architecture, especially for serverless applications
presented in 2.2.2.

With every virtualization technique, the ultimate goal is to pack as
many applications on existing hardware as possible, so that there are
no resources that are left not used – we are trying to achieve high
resource utilization.

Figure 2.13 represents architectural differences between VMs, con-
tainers, and unikernels.

Hardware Hardware Hardware

VM

OS

App

VM

OS

App

OS/Hypervisor OS/Hypervisorkernel

libs

App

libs

App

Unikernel

libs

App

kernel

Unikernel

libs

App

kernel

ContainerContainer

Figure 2.13: Architectural differences between VMs, containers and
unikernels.

2.8 Deployment

Over the years different approaches evolved how to deploy infrastructure
and applications. The difference just gets more amplified, when CC
and microservices get into the picture, where frequent deployment is
very common.

Deployments in such complex environment can be separated by
how they handle changes on existing infrastructure or applications on:

• A mutable model is a model where we have in place changes
which mean that the parts of the existing infrastructure or appli-
cations get updated or changed to do an update. In place change
can produce some problems, and has:

48

CHAPTER 2. DISTRIBUTED COMPUTING

(1) More risk because in-place change may not finish, which
puts our infrastructure or the application in a possible bad
state. This is especially a problem if we have a lot of services
and multiple copies of the same service. The possibility that
our system is not on is a lot higher;

(2) High complexity, this is a direct implication of the previ-
ous feature. Since our change might not get fully done, it
cannot be guaranteed that our infrastructure or application
is transitioned from one version to another – change is not
discrete, but continues since we might end up in some
state in between where we are now and where we want to
be.

• An immutable model is a model where no in-place changes
on existing infrastructure or application are done whatsoever. In
this model, the previous version is replaced completely with a
new version that is updated or changed compared to the pre-
vious version. The previous version gets discarded in favor of
the new version. Compared to the previous model, immutable
deployment:

(1) Has less risk, since the existing infrastructure or the appli-
cation, is not changed, but a new one is started and the
previous one is shut down. This is important especially in
DS where everything can fail at any time;

(2) Has less complexity of the mutable deployment model. This
is a direct implication of the previous feature since the
previous version is shut down and fully replaced with the
new one. This is a discrete version change and atomic
deployment with deferring deployments with fast rollback
and recovery processes;

(3) Requires more resources [128], since both versions must be
present on the node for this process to be done. The second

49

CHAPTER 2. DISTRIBUTED COMPUTING

problem is the data that the application has generated
should not be lost. The problem is solved by externalizing
the data. We should not rely on local storage but store
that data elsewhere, especially when the parts of the system
are volatile and changed often. The key advantage of this
approach is avoiding downtime experienced by the end-user
when new features are released.

Immutability is a simple concept to understand and simplifies a lot
especially in DS [128]. Write down some data, and ensure that it never
changes. It can never be modified, updated, or deleted [129]. When this
is combined with the promise that downtime can be avoided especially
in complex DS, it is clear why the immutable model is gaining more
and more popularity (especially with the arrival of containers).

Immutable infrastructure deployment offers several benefits on how
to deploy changes. Even in production, it is easier to switch to a whole
new version. These strategies include:

• Blue-Green deployment, this strategy requires two separate
environments: (1) Blue current running version, and (2) Green
is the new version that needs to be deployed. When there is
satisfaction that the green version is working properly, the traffic
can be gradually rerouted from the old environment to the new
one, for example by modifying the Domain Name System (DNS).
This strategy offers near-zero downtime;

• A canary update is a strategy where a small subset of requests
is directed to the new version — the canary, and the rest of them
are directed to an old version. If the change is satisfactory, the
number of requests can be increased, and it should be monitored
how the service is working with increasing load, if there are errors,
etc.;

• Rolling update strategy updates large environments, a few
nodes at the time. The setup is similar to blue-green deployment,

50

CHAPTER 2. DISTRIBUTED COMPUTING

but here there is a single environment. With this strategy, the
new version gradually replaces the old one. If for whatever reason
the new version is not working properly on the larger number of
nodes, rolling back to the previous version can always be done.

With mutable infrastructure, these strategies would be hard to im-
plement, and maybe it is not possible at all. Besides infrastructure
deployment, there is another side that we must be considered, and that
is how to describe these deployments. Two different strategies can be
considered here:

• Imperatively, with this option users have to write code or
specific instructions step by step what the specific tool needs
to do so that the application or infrastructure is properly set
up. In this approach, we have a smart user who describes dumb
machine what is needed to be done and in what order to achieve
the desired state;

• Declaratively, with this option a user has to describe the end
state or what is his desired state, and the tool needs to figure out
the way how to do this. Here we have a smart system that will
find a way how to achieve the desired state, and we have a user
whodoes not care in what order actions need to be done — that is
what the system needs to do. Users do not need to worry about
timing, this simplifies the whole process and the code always
represents the latest state. With this type of deployment, we can
offer users, two different models:

(1) Using existing platform independent formats that users are
familiar with, like JSON, YAML, XML, etc.;

(2) Using a domain-specific language (DSL) that users need to
learn, but we might be able to optimize description.

So far, the first option is preferred by many companies, because users
are already familiar with these formats, and does not require developers

51

CHAPTER 2. DISTRIBUTED COMPUTING

time to develop new DSL. If the platform becomes too complicated
then it makes sense to develop DSL for this purpose.

Figure 2.14 summarizes the difference between mutable and im-
mutable deployment models.

Time / Update App

Immutable

Reboot

Destroy

Create

APP v1.0

OS v1.0

APP v1.0

OS v1.0

APP v1.1

OS v1.0

V2V1

V2

V1
APP v1.0

APP v1.1

OS v1.0

Instance A Instance B

Instance A Instance B

Infrastructure

Mutable

Infrastructure

Figure 2.14: Difference between mutable and immutable deployment
models.

With the introduction of LinuxKit, Linux subsystems are based around
very secure containers. With LinuxKit, every part of the Linux subsys-
tem runs inside the container, so a Linux subsystem can be assembled
with services that are needed. As a result, systems created with Lin-
uxKit have a smaller attack surface [130] than general-purpose systems.

This is important not only from the security point of view but also
for infrastructure deployment as well. Specific OSs can be created,
based on the containers for a different purpose. They can be updated,
changed, and adapted for every machine or purpose needed.

Deployment is based on changing parts of the OS, and services that
run inside the containers. As a result, everything can be removed or
replaced. It’s highly portable and can work on desktops, servers, IoT,
mainframes, bare metal, µDCs at the edge, and virtualized systems.

52

CHAPTER 2. DISTRIBUTED COMPUTING

2.9 Infrastructure as software

The infrastructure needs to be constantly deployed and maintained, so
it would be beneficial to view the infrastructure as software (IaS) [131].
The benefit of this approach lies in the already available tools, principles,
and techniques (e.g. reuse, testing, modeling, and evaluation) that can
equally be used for the infrastructure definitions [132, 131].

In his work [132], Osterweil et al. argue that software and software
processes share some similar characteristics: (1) both are executed, (2)
both have requirements that need to be understood, (3) both benefit
from being modeled, and (4) both can be guided by measurement.

Fitzgerald et al. [131] argue that process programming, defined
by Osterweil [132] et al., is applicable in the infrastructure domain.
The authors claim that it is useful to extend the “software process as
software” paradigm to include infrastructure as software (IaS). The
move towards multi-tier systems that involve cloud and cyber-physical
systems will only stimulate the connection between software and reliable
infrastructure systems.

Looking at the infrastructure configuration as the software allows
application developers to venture into the “infrastructure program-
ming” [131], allowing platforms and infrastructure to be managed in a
similar way as the software is.

In a cloud environment, it is an essential technique to properly
implement continuous deployment, giving us tools to automate the
configuration and provisioning process of infrastructure using cloud
instances [133]. Wittig et al. describe it as a process of managing and
provisioning computer data centers through machine-readable defini-
tion files, rather than physical hardware configuration or interactive
configuration tools [134].

53

CHAPTER 2. DISTRIBUTED COMPUTING

2.9.1 Infrastructure as code

In modern cloud and microservices era, a new strategy to manage
and deploy complicated infrastructure elements – Infrastructure as
code (IaC). In his book [134] Wittig et al. describe it as a process of
managing and provisioning computer data centers through machine-
readable definition files, rather than physical hardware configuration
or interactive configuration tools.

IaC has grown in popularity in recent years because it applies the
same kind of version control and repeatability to the orchestration of
the infrastructure as developers use for applications source code [135].
The second benefit is that configuration is decoupled from the system,
it can more readily be deployed on a similar system elsewhere.

IaC is a continuation of earlier works of Osterweil et al. [132],
and Fitzgerald et al. [131], trying to move infrastructure to level of
software, keeping existing tools, best practices and techniques. It relys
on the reconciler pattern [136], widely used in scheduling systems
like Kubernetes.

This pattern enables tracking of resources using two simple states:

(1) Expected state represents the desired state provided by the
user. This is the state that must be (if possible) achieved at any
give point in time;

(2) Current state refers to the actual system state. This state
must be refreshed periodically, so that system know should it be
corrected or not.

The reconciler pattern runs a reconciliation loop that ensures that
the current state remains the same as the expected state.

Figure 2.15 presents reconciliation loop diagram.

54

CHAPTER 2. DISTRIBUTED COMPUTING

Reconciliation
Expected state Current state

ObservedUser-declared

loop

Take actions

Observe the world

Figure 2.15: Reconciliation loop diagram.

Every node must provide its current state regularly, and when some
state is divergent from the desired state, the system must act to ensure
that this situation is corrected automatically. The node can send its
state over existing channels e.g., health-check pings to minimize load
and data transferred over the network, or a dedicated channel just for
this purpose may exist.

Extension of such system can be done just by writing new controller
that will react on changes for newly added kind of workload.

2.10 Development roles

In our modern internet-connected world of applications, we have several
distinctive development roles. Each of them plays an important role so
that modern software runs smoothly, and with less downtime. These
development roles could be separated into a few categories (focus is on
the technical roles):

• A developer is usually a person responsible for developing
software for the user. A developer is responsible for maintaining
existing, and/or developing new features. There could be different
sub-roles, dealing with specific parts of the complex software
systems;

• DevOps role represents a multidisciplinary organizational effort
to automate application deployments through continuous delivery

55

CHAPTER 2. DISTRIBUTED COMPUTING

of new software updates [137]. It combines software development
with technology operations [138] to shorten the development life
cycle;

• Site Reliability Engineer (SRE) role is responsible for avail-
ability, latency, performance, efficiency, change management,
monitoring, emergency response, and capacity planning [139].
It is a software engineering role and needs to have an under-
standing of the fundamentals of computing [140], applied to the
infrastructure and operations problems.

DevOps and SREs seem to be similar roles, they are both trying to
bridge the gap between development and operations. As such they
have a very large conceptual overlap in how they operate [141], but
also have some differences.

Table 2.8 sums the differences between the DevOps and SREs.

Feature DevOps SREs
Task Scaling, uptime,

robustness Development pipeline

Essence Practices and metrics Mindset and culture
Team structure Wide range of roles:

QA, developers, SREs
etc.

SREs with operations
and development skills

Focus Development and
delivery continuity

System availability and
reliability

Goal Bridge the gap between
development and operation

Table 2.8: Differences between DevOps and SREs.

In modern complex software development, SREs should keep things
running smoothly, while DevOps principles should be used to improve
processes.

56

CHAPTER 2. DISTRIBUTED COMPUTING

So it is not either/or, but it seems that a combination of approaches
may provide the best results. However, in some smaller organizations,
these roles can overlap.

2.11 Concurrency vs parallelism

People usually confuse these two concepts. Even though look similar,
they are a different way of doing things. In his speech, Rob Pike [142]
gives a great explanation and examples on this topic. He also gives
great definitions of these concepts like:

• Concurrency is composition of independently executing things.
Concurrency is about dealing with a lot of things at once;

• Parallelism is the simultaneous execution of multiple things.
Parallelism is about doing a lot of things at once.

These things are important, especially when building applications and
systems that should achieve very high throughput. They must be built
with a good structure and a good concurrence model. These features
enable possible parallelism, but with communication [142]. These ideas
are based on Tony Hoare work of Communicating Sequential Processes
(CSP) [143].

2.11.1 Actor model

An actor model, the main idea is based around actors which are small
concurrent code, that communicate independently by sending messages,
removing the need for lock-based synchronization [144]. This model
proposes a similar idea to Tony Hoare’s in his work with CSP [143],
and actors are often confused with CSP.

Table 2.9 gives differences between an actor model and CSP.
Actors do not share a memory, and they are isolated by a nature. An
actor can create another actor/s and even watch on them in case they

57

CHAPTER 2. DISTRIBUTED COMPUTING

Feature CSP Actor model
Fault tolerance Distributed queue Supervisors hierarchy
Process identity Anonymus Concrete
Composition Not applicable Applicable
Communication Queue Direct
Message passing Sync Async

Table 2.9: Differences between actor model and CSP.

stop unexpectedly. When an actor finished its job, and it is not needed
anymore, it disappears. These actors can create complicated networks
that are easy to understand, model, and reason about, and everything
is based on a simple message passing mechanism.

Every actor has a designated message box. When a message arrives,
the actor will test the message type and do the job according to the
message type he received. In this way, we are not dependent on lock-
based synchronization that can be hard to understand, and it can cause
serious problems.

The actor model is fault-tolerant by design. It supports crush to
happen because there is a “self-heal” mechanism that will monitor
actor(s), and when the crash happens it will try to apply some strategy,
in most cases just restart actor, but other strategies could be applied.
This philosophy is useful because it is hard to think about every single
failure option.

58

Chapter 3

Research review

In this chapter, we present the the results of the research reviews
addressing issues and limits of CC discussed earlier are presented –
both academia, and the industry researching and developing viable
solutions to help cloud in the future.

Few directions are feasible: (1) focusing on adapting existing so-
lutions to fit EC model, (2) experiment and develop new ideas and
solutions to maybe fit more the nature of EC, and (3) try to combine
both ideas to cover more research area.

Existing nodes organizational abilities are reviewed in Section 3.1.
Section 3.1 reviews platform models from both academia and industry.
Section 3.3 reviews cloud offloading techniques, whereas section 3.4
reviews some application models. Section 3.5 reviews some models
used in cloud infrastructure management. Section 3.6 concludes this
chapter, and gives the position of this thesis, compared to research
previously reviewed.

3.1 Nodes organization

Guo et al. [26], gives a promising model based on a zone-based organi-
zation of edge nodes in the smart vehicles application. The authors

59

CHAPTER 3. RESEARCH REVIEW

show how zone-based nodes organization enables continuity of dynamic
services and reduces the connection handovers. They prove it is possible
to enlarge the coverage of edge servers to a bigger zone, but at the same
time, the computing power and storage capacity of edge servers could
be expanded. EC could be based on the geo-distributed workloads,
and this zone-based organization could benefit the EC model in various
ways.

In their research [145], Baktir et al. explored the capabilities of
software-defined networks (SDN) from a programming standpoint.
Their findings show that SDN can be used to simplify the management
of the network in a cloud-like environment. Networking in such a
complex environment is not an easy task to achieve. The authors show
how SDN hides the complexity of the heterogeneous environment from
the end-users. As such, SDNs represent a good candidate for networking
tasks in complex, cloud-like environments. In [146] Sherwin et al.
investigate the programmatic control over the resources and functions
of a network to make the network more dynamically configurable.

Sayed et al. in their work [44] show that EC systems will perform ac-
tions before connecting to the cloud and how they are easier to integrate
with other wireless networks like mobile ad-hoc networks (MANETs),
vehicular ad-hoc networks (VANETs), intelligent transport systems
(ITSs) and the IoT to mitigate network-related and computational
problems.

Content delivery networks (CDN) in centralized delivery models
like CC have bad scalability, as Kurniawan et al. [27] argue in their
research. To overcome these centralized problems and bad scalability,
the authors proposed a different solution, a decentralized solution. To
achieve such tasks, authors were using a network of gateways equipped
with some storage as well, for internet services at home [27] forming
even smaller DCs – nano DCs (nDCs). Authors present a possible
usage for these nDCs in some large scale applications with much less
energy consumption than traditional DCs.

In their paper [147], Ciobanu et al. introduce an interesting idea

60

CHAPTER 3. RESEARCH REVIEW

called drop computing. The authors show the possibility for ad-hoc EC
platform composition using a decentralized model over multilayered
social crowd networks. This idea gives us the ability for collaborative
computing that can be formed dynamically. The authors present an
idea that we can form a computing group ad-hoc by employing the
nearby devices in the mobile crowd, that is fully capable of quick and
efficient access to resources, instead of sending requests to the cloud.
Crowd nodes could also be an interesting idea for backup nodes, in
case more computing power or storage is needed and there no more
available resources to use. Forming platforms from crowd resources
and ad-hoc, raises a few concerns: (1) crowd nodes availability, and
(2) offered resources.

Greenberg et al. [24] introduce the idea of µDCs as DCs that operate
in proximity to a big population compared to nDCs that serve a lot
smaller population, for example, a single household. µDCs are an
interesting model and area of rapid innovation and development, and
because they are close to some population, they are minimizing the
costs and the latency for end-users [24], Their minimum size is defined
by the needs of the local population [24, 25], as such, they are reducing
traditional DCs fixed costs. The main feature that µDCs are relying on
is agility. The authors describe agility as µDCs ability to dynamically
grow and shrink resources to satisfy the resource demands and usage
from the most optimal location [24]. In [148] Shao et al. present a
possible µDCs structure serving only the local population, in the smart
city use-case.

3.2 Platform models

Kubernetes (k8s) [91] is a system originally developed by Google in-
fluenced by their orchestrator platform called Borg [149]. Various
other companies joined in developing this system, and now it is de
facto standard in the cloud environment for microservices and cloud-
native applications. By design, k8s is not intended to operate in

61

CHAPTER 3. RESEARCH REVIEW

a geo-distributed environment, because it operates on a single clus-
ter [91, 149, 150]. As such it might not be best suited for EC and
geo-distributed µCs. Nonetheless, it is a super valuable tool in the
CC because it enables health checking, restarting, and orchestration at
scale. Another potential problem with k8s is its relatively complicated
deployment concept that might be too complicated for EC workloads.
It is developed to connect microservices across the CC environment. It
could be used as it is, a cloud-native orchestrator to run the master
process for EC and µCs and also cloud-native applications that will
accept streams coming from µC applications. K8s relies upon a lot to
work properly. Existing technologies and ideas worth exploring, such
as loosely coupling elements with labels and selectors, should not be
ignored.

In their research, Rossi et al. [150] present a solution based on k8s.
Authors adapted k8s for workloads that are geo-distributed and they
had used reinforcement learning (RL) techniques, to learn a suitable
scaling policy from past experience. There are potential downsides to
this approach. The first might be that machine learning implementation
could be potentially slow due to the required model training, but also
we need to somehow describe what a good decision, and what a bad
decision is, in order to enable some algorithm to learn this. This might
be a problematic thing, especially in urgent situations. The second
potential problem is that, even though k8s is a promising solution and
de-facto standard in the CC environment, as previously stated, it might
not be the best proposal for EC and geo-distributed µC environment.
Despite all these potential problems, researchers show great work in
adapting k8s architecture to work for geo-distributed workloads.

Ryden et al. [23] present a platform for distributed computing, that
is more oriented towards user-based applications. Compared to other
similar systems, their goal was not to develop a solution that will
do resource management policy, on the contrary, their focus is more
oriented to give flexibility to the users for application development.
Users can develop their applications using exclusively the Javascript

62

CHAPTER 3. RESEARCH REVIEW

programming language, with some embedded native code for a more
efficient solution. The authors rely on a bunch of volunteer nodes to run
all the tasks and applications, similar to work presented in [147]. The
main difference between these two solutions is that Ryden et al. make
a split on which nodes are storage nodes, and which nodes are used
for calculation and processing tasks. Their application environment
is protected from malicious code, using sandboxing techniques. This
presents an interesting work to show how users can develop applications
and run them in an EC environment.

In [151] Lèbre et al. show an interesting solution based on extending
and adopting the OpenStack system. OpenStack is a free and open
standard cloud computing IaaS platform for CC use cases in both
public and private clouds. The authors tried to manage both cloud and
edge resources using a NoSQL database. Massively distributed multi-
site IaaS, using OpenStack is a challenging task [151] to implement,
because the communication between nodes of different sites can be
subject to important network latencies [151]. On the other hand, if it
could be done properly we would gain one major advantage that users
of the IaaS solution can continue using the same familiar infrastructure
for both cloud and edge/fog use-cases.

Based on the literature survey, the Ning et al. presents current open
issues of EC platforms [15]. In their work, authors focus on different
aspects of EC systems, and they outline the importance of EC and CC
tight collaboration. The CC needs to be unloaded and EC nodes could
provide data pre-processing. On the other hand, EC needs massive
storage and a strong computing capacity of CC. The authors illustrate
the usage of edge computing platforms to build specific applications
and conclude that with CC and EC integration, both sides will benefit.

In [130] the de Guzmán et al. present solution based on k8s that
use k8s Deployment Manifests to reuse successful principles from k8s
by creating a virtual machine for each Pod using Linuxkit. Their
solution is based on the immutable infrastructure pattern, and instead
of containers, they use the virtual machines as the unit of deployment.

63

CHAPTER 3. RESEARCH REVIEW

Authors prove that the attack surface of their system is reduced since
Linuxkit only installs the minimum OS dependencies to run containers.
It represents interesting usage of LinuxKit to deploy OS dependencies
and immutable infrastructure patterns, but VMs might be a bit problem
for small devices, and ARM nodes as well as the complex flow of the
k8s application model. Nonetheless, it is an interesting extension of the
k8s framework and proves that LinuxKit can be used for immutable
infrastructures with custom OS.

In [152] Sami et al. show an interesting platform for dynamic
services distribution over Fog nodes using volunteer nodes. Their
platform is tuned for container placement with relevance and efficiency
on volunteering fog devices, near users with maximum time availability
and shortest distance. They do this on the fly with improved QoS.

Besides academy efforts, the industry as well introduced a few
interesting platforms and frameworks for EC. For example, Amazon
introduced their framework Greengrass [153] that can run on various
hardware to do some processing. Amazon turns to the option that their
framework is deeply connected to the rest of the AWS cloud ecosystem.
KubeEdge [154] is a lightweight extension of the k8s framework, to
operate in an EC environment. The same as regular k8s, all workloads
are done in the domain of a single cluster which might not be the best
solution for geo-distributed µCs. Both Greengrass and KubeEdge are
frameworks that are mainly used for user-based applications. On the
other hand, there is General Electric with its Predix [155] platform.
Predix is a scalable platform used for industrial IoT applications.

Osmotic computing is a relatively new infrastructure paradigm
aiming to decompose applications into services dynamically tailored
for the smart environments exploiting resources in edge and cloud
infrastructures [66]. The applications developed for this computing
paradigm are deployed in the cloud and edge systems equalizing the
microservices concentrations on both sides. This thesis can serve as a
base for osmotic computing, allowing dynamic and efficient management
of µC infrastructure to avoid application breakdown and degradation

64

CHAPTER 3. RESEARCH REVIEW

of QoS.

3.3 Task offloading

As already mentioned in 2.1.4, EC nodes rely on the concept of data
and computation offloading from the cloud closer to the ground [18],
while heavy computation remains in the cloud because of resource
availability [15].

Offloading is an effective strategy when using cloud services. Rely-
ing only on cloud services may be prone to introducing long latency,
which some applications cannot tolerate. On the other hand, mobile
devices and sensors do not have sufficient battery energy for task of-
floading [156]. The computation performance may be compromised
due to insufficient battery energy for task offloading, so these devices
might send their data to nearby EC nodes.

In literature, there are few platforms proposing task offloading [157,
18, 19, 65, 38, 156] to the nearby edge layer. These offloading techniques
are based on different parameters, options, and techniques to put tasks
to different sets of nodes in such a way that it won’t drain mobile
devices and sensors battery. After the computation is done, this edge
layer sends pre-processed data to the cloud for further analysis, storage,
etc.

When using task offloading techniques, it is very important to have
good QoS that users can rely on. In [152] authors used Evolution-
ary Memetic Algorithm (MA) to solve their multi-objective container
placement optimization problem to achieve better QoS.

One of the key challenges in the area of computation offloading is
in the mismatch between how devices demand and access computing
resources and how cloud providers offer them [157]. For example, it
takes around 27 seconds to start single VM instance on the AWS, but
the leasing time for the single VM instance is one hour. On the other
hand, execution delay is stable in the CC, while in the EC is not due
to the computational and transmission delay [158].

65

CHAPTER 3. RESEARCH REVIEW

3.4 Application models

Sayed et al. in their work [44] describe that EC follows a decentralized
architecture model and that data processing is at the edge of the
network, thus it enables nodes to make autonomous decisions. So
the applications written for EC can perform actions locally before
connecting to the cloud at all. This will have some benefits like
reducing network overhead issues as well as the security and privacy
issues.

As already mentioned on page 62, Ryden et al. [23] present an
interesting user-oriented platform for distributed computing called
Nebula. In this section, their research is going to be dissected, but from
a different angle. Nebula allows users to develop their applications using
Javascript exclusively, due to the usage of Google Chrome Web browser-
based Native Client (NaCl) sandbox [159] that can run Javascript code
only. Restriction on a single language might be a problem for some
users and use-cases even though Javascript is a popular language at the
moment. On the other hand, virtual machines tend to be too resource-
demanding packing stuff that might not be needed, so a solution using
containers or unikernels might provide better resource utilization and
pack more services per node than virtual machines.

In [40] Satyanarayanan et al. represent an interesting view on
cloudlets as a “data center in a box”. They give an example that
cloudlets should support a wide range of users, with minimal constraints
on their software. They put emphasis on transient VM technology. The
emphasis on transient VMs is because cloudlet infrastructure is restored
to its pristine software state after each use, without manual intervention.
At the time when they conducted their research, containers might not
have been working solution or it might have been hard to use them.
By modern standards, containers may even fit better, and pack more
user software on the same hardware. This may be the case for the
unikernels, once they reach a wider adoption rate and stable products.

Various k8s variants like [154, 150], give users the possibility to run

66

CHAPTER 3. RESEARCH REVIEW

different applications like web servers and databases even on smaller
devices creating green DC [21].

Satyanarayanan et al. [20] propose the concept of edge-native ap-
plications that will separate space into 3 layers or tiers. Tier (1)
represents various mobile, IoT devices autonomous vehicles, etc, and
these devices produce a lot of data. Tier (2) represents applications
running in cloudlets or other EC models, that will be able to do some
pre-processing, or data filtering before it goes further. Finally, tier
(3) represents classic cloud applications that will accept pre-processed
and filtered data from the previous tier, do more processing, react on
some values, or store for future use. This idea represents an interesting
concept and gives wide space for users and application development.

In [160] Beck et al. argue that applications should use message
bus, streams, or topics because most mobile or edge applications are
expected to be event-driven. The message bus system is an interesting
proposition because the virtualized applications can subscribe to mes-
sage streams, i.e., topics, and act only when data arrive. Applications
might not be alive the whole time. And if for some reason mobile edge
applications cannot reach a close EC server, it can always send data
to the cloud. So cloud applications should be changed so slightly, just
to cover this edge case.

In [45], Jararweh et al. show how integration between EC with CC
principles will create more complex services and applications at the
edge of the network opening new possibilities for applications to reduce
the load on the centralized cloud model but also avoid bottlenecks and
single points of failure.

In [161], authors propose solution that relies on the modularity of
the microservices: (1) one application instance is at the edge, making
the system robust to network partitions (local requests can still be
satisfied), and (2) collaboration can be programmed with service mesh.

67

CHAPTER 3. RESEARCH REVIEW

3.5 Infrastructure management

In the era of distributed systems, cloud computing, and microservices
the open-source community and different companies provided various
tools for the purpose of abstracting infrastructure at the level of soft-
ware [133, 131]. These tools can be separated into two subgroups,
based on how users send instructions to the systems on (1) declarative,
and (2) imperative [133].

Newly created tools like Terraform, Polumni, or CFEngine are
representative of the declarative movement, using platform-independent
language to specify configuration, policies, security, and much more.
Users specify their intentions usually through some existing formats
like JSON or YAML, while others use their domain-specific language
to achieve the same goal.

In both cases, users do not specify explicit commands that the
system needs to execute. Instead, they declare what they want to
achieve, and leave it for the system to determine the optimal way of
achieving it [133]. The main difference between an existing format, and
a domain-specific language is how verbose specification is. Existing
formats may be a little bit more verbose, but users are most likely
already familiar with them. Developing domain-specific language takes
more time and requires users to learn them from scratch, but the final
outcome is usually a more concise, expressive and optimized set of
instructions.

These tools are turning out to be very important in a multi-cloud
environment [61]. The users need to specify artifacts, independently
from the cloud provider, and let the system deal with the cloud provider
specifics.

On the other hand, already existing and well-known tools like Chef,
Ansible, and Puppet usually rely on some specific language, and the
user needs to code the instructions that must be done to achieve the
same or similar job [133].

68

CHAPTER 3. RESEARCH REVIEW

This is more prone to error, since users may introduce a bug in the
system that might be hard to debug and find. At the same time, these
tools have existed for a long time, and there are existing best practices
and a lot of available examples for users to utilize.

Every major cloud provider offers a proprietary solution, deeply
integrated into their ecosystem. AWS offers CloudFormation, a config-
uration tool that allows users to code their infrastructure to automate
deployments.

Microsoft Azure offers a Resource Manager that allows users to
define the infrastructure and dependencies in templates, and organize
dependent resources into groups that can be deployed or deleted in a
single action, access control, and more.

Google Cloud offers a Deployment Manager that offers many fea-
tures to automate cloud infrastructure stack. Users can create templates
using YAML or Python programming language. They can preview
changes before deployment, in a console user interface, and much more.

In terms of adoptability in µDCs on the edge, already existing tools
might be used to set up infrastructure in both places, in the cloud
and at the edge, if they allow extensibility. Declarative tools would
be harder to adopt since they are built with different goals in mind.
While imperative tools might be easier to utilize, they may introduce
unnecessary complications to the system.

On the other hand, a newly created IaC system can communicate
with existing tools via some standard interfaces to set up the cloud in-
frastructure, while a new, custom made engine could handle organizing
geo-distributed nodes into µDCs [162].

With this strategy, we are getting the best of both worlds. The
new user application model would be based on the existing cloud
application model, offering users a fast and elegant way to develop new
human-centered applications.

IaC has grown in popularity in recent years because it applies the
same kind of version control and repeatability to the orchestration of
the infrastructure as developers use for applications source code [135].

69

CHAPTER 3. RESEARCH REVIEW

The second benefit is that configuration is decoupled from the system,
it can more readily be deployed on a similar system elsewhere.

3.6 Thesis position

In the previous sections different aspects of EC and integration with
the CC, influential research, interesting concepts, and implementations
were described.

The focus of this thesis is to make the connection between CC
and EC stronger, represented as a system that can descriptively and
dynamically organize geo-distributed nodes that already exist over an
arbitrary vast area into one coherent system — µCs, that could be
offered to users as a service. This approach is not fully addressed in
the other solutions.

This thesis is influenced by the organization of CC and their big
DCs, but adapted for a different environment such as EC and µCs.

Adaptations that are required for such tasks must be followed by a
clear Separation of concerns (SoC) model and intuitive applications
model so that users can fully use new-formed infrastructure properly.

All these adaptations made to traditional CC model will make
it possible to push the whole solution more towards EC as a service
and µC model that can help CC with latency issues with new-age
applications.

70

Chapter 4

Micro clouds

In this section, the core idea of this thesis will be presented. We will
introduce the model of distributed µCs and show how such a system
could be dynamically formed and formally described. The µCs is based
on the traditional CC organizational model but adapted for different
environments, allowing the creation of distributed clouds.

Throughout this section, we are going to rely on the research
presented in Chapters 1 and 3, and make a connection with the existing
CC model.

In Section 4.1 we present a high overview of the system – an ar-
chitecture that is influenced by the standard CC model but adapted
for a different environment. Section 4.2 introduces the separation of
concerns model for previously defined system architecture. Section 4.3
presents a possible application model and how users can utilize newly
created architecture fully. Application models are based on existing
development models, so that transition is fairly easy. Possibilities how
this system could be offered as a service, and which options can be of-
fered to the potential users for developing their applications is discussed
in Section 4.4. Section 4.5 presents the desired option for infrastructure
and application deployment, and discusses why immutability is impor-
tant in a µC geo-distributed environment. Section 4.6 discusses the
importance of formal models in computer science, and DS in particular.

71

CHAPTER 4. MICRO CLOUDS

This Section also presents formal models for all protocols used for the
proper system formation and operation. Section 4.7 shows transactions
that appear in such complex system, and garbage collection done on
resources that are not used anymore. Section 4.8 shows system observ-
ability mechanisms important for geo-distributed environments like
µCs. Section 4.9 shows access patterns that could be used in µCs and
geo-distributed environments. Section 4.10 presents the possibility how
micro clouds could be scaled automaticaly, while Section 4.11 presents
flow of user data in micro clouds model. This chapter is concluded with
Section 4.13 which presents repercussion of the proposed model, and
how it can be used as a stand-alone model where other features could
be implemented on top of that or used as service for other, existing,
systems.

4.1 Configurable Model Structure

In their work [20] Satyanarayanan et al. propose a new architecture
pattern and separation into the three tiers, where every tier or layer has
a distinct role. This idea is a very powerful one because applications
can now be split into parts and optimized for the specific role in the
global picture. On the other hand, too many moving parts mean more
problems, and the whole system is potentially more prone to errors
and failures.

If the previous model is taken and combined with µDCs and a
zonally based server organization, a good starting point for building
µC infrastructure, and EC as a service is achieved. This extension is
an interesting move because the computing power and storage capacity
that serves the nearby population can then be extended. This base
model is just a starting point that is promising, but to make a fully
functional model, it needs to be made more available and resilient
with less latency. To achieve such behavior, these concepts have to
be extended and adapted for different usage scenarios, but a geo-
distributed idea from our vision should not be lost.

72

CHAPTER 4. MICRO CLOUDS

To extend the system in a new direction, we can look for some
inspiration in existing systems that are proven and working. This is
especially important in DS, so we want to lower down the complexity
and avoid known problems by sticking to existing models and algo-
rithms. When the CC design is observed, it can be seen that every
single part in that system contributes to a more resilient and scalable
system. On the high level, the CC architecture is separated into few
building blocks that make the whole system lot easier to understand,
maintain and operate.

The first building block of CC architecture is a cluster, and a cluster
can be defined as a set of nodes or servers that operate as a single
unit to achieve some goal. This is where resources are, and this is
where user applications are running on. The next building block that
consists of multiple clusters is called Regions (or DCs). Regions are
isolated and independent from each other, and they contain resource
application needs. These resources come in form of clusters. Regions
are usually composed of a few availability zones [28]. These zones are
the defense against the fail. If for whatever reason, one zone fails or
goes offline, there are still more of them to serve user requests, there is
a better availability, scalability, and resilience.

If we now observe µCs as geo-distributed systems with dispersed
users [163], we can use a similar model with some adaptations. Rely
on a similar proven strategy, do not build the entire model, but adapt
the existing one for the different use-case.

Table 4.1 presents similar concepts between CC and edge-centric
computing (ECC) concepts. The accent is here put on the difference
between the physical logical concepts in the two models.

Edge centric computing Cloud computing
Topology (logical) Cloud provider (logical)
Region (logical) Region (physical)
Cluster (physical) Zone (physical)

Table 4.1: Similar concepts between cloud computing and ECC.

73

CHAPTER 4. MICRO CLOUDS

Since we are talking about geo-distributed systems, our scenario is a
little bit different than the one used in the standard CC model. We
can still combine multiple EC nodes into clusters, that is what µDCs
already propose. If we want to go a little bit further, we can define a
cluster as a:

Definition 4.1.1. A µC cluster is a group of nodes that are virtually
and/or geographically separated, that works together to provide the same
service to clients.

Multiple node clusters could be combined into the next bigger logical
concept of region. A region will increase the availability and reliability
of both the system and applications.

But the region in CC and ECC is not fully the same thing. In the
standard CC model, the region is a physical thing or element of the
existing infrastructure [28], while in the ECC a region could be viewed
differently, not as a physical element but rather as a logical element.A
formal definition of a region in ECC can now be given as:

Definition 4.1.2. In a geo-distributed environment like ECC and µCs,
a concept of region is used to describe a set of clusters (that could be)
scattered over an arbitrary geographic region. Regions are fully capable
to accept or release clusters in the same way that clusters can accept
or release nodes.

In µDCs, a cluster is as big as the population nearby that is using it [24].
If this is combined with the previous definition, then the minimum size
of an ECC region can formally be defined as:

Definition 4.1.3. Geo-distributed regions are composed of at least one
cluster but can be composed of much more to achieve a more resilient,
scalable, and available system.

With the previous definition, we have to be careful not to introduce huge
latency in the system. To lower the region latency, the vast distances
between clusters should be strongly avoided in normal circumstances.

74

CHAPTER 4. MICRO CLOUDS

In the CC model, new nodes have to be brought and connected
physically to the rest of the infrastructure [29], while in the ECC, just
by changing the definition to which the specific cluster belongs, we can
extend the region.

Multiple regions should be able to form a second logical layer –
topology. In the geo-distributed systems such as ECC or µCs, topology
can formally be described as:

Definition 4.1.4. In geo-distributed systems, topology represents the
highest logical concept that is composed of a minimum of one region
and could span over multiple regions. Topology is fully capable to accept
new or release the existing regions.

With these simple abstractions, any geographical region can be easily
covered with the ability to shrink or expand clusters, regions, and
topologies. Size and formation of clusters, regions, and topologies
should be a matter of need, agreement, and usages of nearby population
similar to the size of µDCs [24], and modeling in Big Data systems [30,
31]. This separation and organization gives one interesting feature. A
more natural administrative division of some region can be followed,
and resources can be organized by population usages.

The organization of these concepts should be fully optional. So
for example, we could fit clusters in an interval of nDCs [27] and
µDCs [24] or as wide as the whole city or as small as all devices in a
single household and everything in between. Formally, the size of some
cluster µC cluster (µCc) can be represented like:

µCc ∈ [nDCs, µDCs] (4.1)

If we go a little bit further, we can represent the city as one region,
where parts of the city are organized into clusters. A city topology can
even be formed by splitting the city into multiple regions containing
multiple clusters, and ultimately a country topology can be formed by

75

CHAPTER 4. MICRO CLOUDS

splitting the country into regions, with cities being clusters.

Nodes that belong to the same cluster should run some form of
membership protocol presented in 2.1.3. Gossip style protocols, like
SWIM [32] (see page 23), are standard in the cloud environment. The
same strategy could be applied here, used in conjunction with replica-
tion mechanisms [33, 34, 35] making the whole system more resilient.
It could be upgraded to better reflect current network conditions [164],
or to enable self-healing properties in the system [165].

Replication could be used not only in nodes inside the cluster, but
data can also be replicated in clusters inside the region and even in
regions inside topology. This property should exist, but it should be
controlled by users depending on how resilient and available the system
he/she wants and needs. In [166] Simić et al. take a look from a
theoretical point of view on CRDTs usage, to achieve SEC in EC. The
authors conclude that CRDTs could be a natural fit to EC as long as
we are aware of the potential pitfalls of CRDTs.

Single topology reflects one CC provider, so multiple topologies are
forming µCs that can help CC with huge latency issues, pre-processing
in huge volumes of data, and relax and decentralize strict centralized
CC model.

These µCs have much fewer resources compared to standard clouds,
but they are much closer to the user meaning they have a much faster
response. In the case of storage, if data is not present at the time of
user request, they can pull data from the cloud and cache it for later.
Formally, the position of µCs in between CC and EC like:

µCs ∈ (Edge computing, Cloud computing) (4.2)

Exclusiveness in the previous formula means that the position of µCs
is moveable in between EC and CC depending do we want our model
to be more CC-like or more EC-like, but it should not become one of

76

CHAPTER 4. MICRO CLOUDS

them. It could be an integral part of both of these models (even at the
same time) [59, 61].

To achieve such elasticity, we must abstract the infrastructure to the
level of software, creating "infrastructure programming” [131], allowing
µCs infrastructure to be managed similarly as the software is.

Three-tier architecture with numerous clients at the bottom, µCs
in the middle, and cloud on the top seem to resemble cache level
architecture in CPU [167].

Figure 4.1. shows the three-tier architecture, with the response
time and resource availability.

Tier 1 - clients

Tier 2 - micro clouds

Tier 3 - clouds
More

Less

Slow

Fast

R
e
s
o
u
rc

e
s

R
e
s
p
o
n
s
e
 t
im

e

Figure 4.1: Three tier architecture, with the response time and resource
availability

On lower levels, response time is the fastest, since data is processed
closer to the source. At the same time, there is a limited storage
capacity and processing power. As we go on the upper tiers, there is
more and more storage capacity and processing power, but the response

77

CHAPTER 4. MICRO CLOUDS

time is higher and higher, especially when distance and huge volumes
of data that need to be moved to the cloud are considered.

In everything as a service model [36], ECC as a service fits in
between CaaS and PaaS, depending on the user needs.

4.2 Separation of concers

In his work, Jin et al. [39] introduces three core concepts to fully
describe physical services, and specifies their relationships. Concepts
that authors propose are: (1) Devices, (2) Resources, and (3) Services.
This separation is interesting because we can rely on it in a geo-
distributed environment, to describe SoC for µCs.

One of the most important part of every system, is the SoC model.
This is especially important if a platform to be offered as a service
is going to be created. With some adaptations, our SoC model can
be based on concepts proposed by Jin et al. [39] in three layers, as
depicted in Figure 4.2.

The layer on the very bottom of the three-tier architecture (see Fig-
ure 4.2) consists of various devices. These devices are important because
they represent main data creators but at the same time, they are main
services consumers.

The layer in the middle (see Figure 4.2) represents resources or EC
nodes. These resources have a very important spatial feature, and as
such, they indicate the range of their hosting devices [39]. This means
that the developers at any given time must know the topology of the
system, the resource spread, and utilization across clusters. Besides
that main information, users must know the state and health of every
application. If some EC node desires to be a part of the system, a
node must obey four simple rules:

(1) A node must run an operating system with a usable file system;

(2) A node must be able to run some isolation engine for applications,
for example, containers or unikernels;

78

CHAPTER 4. MICRO CLOUDS

(3) A node must have available resources for utilization so that
applications can be run or data stored;

(4) A node must have internet connection.

One thing that is important to notice, is that all nodes in clusters,
regions, and topologies are equal and there are no special nodes.
Every node that joins the system must be able to store and process
information.

Last but certainly not least layer represents services. These services
expose resources through some interface and make them available
over the internet [39]. These services respond to the client requests
immediately, if possible, or cache information [40, 41] for future use.
Unlike the previous two layers, services have one specific feature and
span over two tiers of the system (see Figure 4.2):

(i) Services that exist in the µC, and they are responsible for filtering
and data pre-processing before sending it to the cloud. Or cache
information that was not available on a previous user request for
some future use;

(ii) Services in the standard cloud that should be able to accept
pre-processed data, and they are responsible for computation and
storage that is beyond the capabilities of ECC nodes. Services in
the cloud should be able to take direct requests from the clients
in a case when something catastrophic happens to the µC that
is close to the user, and it is not able anymore to accept user
requests.

This kind of services separation creates new application model that we
present in detal in the secion 4.3.

Figure 4.2. shows the proposed SoC for every layer of the ECC as
a service model.

79

CHAPTER 4. MICRO CLOUDS

Cloud

Cluster 1 Cluster n

Region 1

Topology 1

Cluster 1 Cluster n

Region n

Cluster 1 Cluster n

Region 1

Topology n

Cluster 1 Cluster n

Region n

Core

ECC

Clients

Services

Devices

Resources

*** *** ***

Figure 4.2: ECC as a service architecture with separation of concerns.

4.3 Applications Model

Modern-day applications that should run in the cloud are advised
to follow the cloud-native model [168]. With this approach, we get
applications that are easier to scale, more available, and less error-prone
when compared to traditional web applications [168].

Satyanarayanan et al. present the edge-native applications model [20]
that should use the full potential of EC infrastructure, and keep good
features of their cloud counterparts.

When we introduced SoC for the µC model (see page 79), we
described services that have one specific feature, and that is that
these services span over two tiers of the system. This information is
crucial for application development because we want to use the full
potential of formed infrastructure, and keep good features of their
cloud counterparts.

To satisfy the previously defined SoC model (see page 79), existing
applications can be split into the front and back processing services.
The front processing service is an edge-native application running inside
some previously formed cluster to minimize latency, while the back
service runs in the traditional cloud as a cloud-native application to
leverage greater resources.

80

CHAPTER 4. MICRO CLOUDS

The front processing service will handle user requests coming to
the nearby cluster, and communicate with the back processing services
when needed to synchronize the pieces of information, cache data, or
pass filtered or pre-processed data. Separation like that gives developers
better flexibility and large design space when creating and optimizing
their workloads. At the same time, it ties together the traditional clouds
and edge comuting into one coherent system. Figure 4.3 shows µC
applications model that tides edge and traditional cloud applicatoins.

Figure 4.3: µC applications model tides traditional clouds and edge
computing applications

With this model, we venture even deeper into understanding and ap-
plying the concept of data locality (see page 25). Since we have front
and back processing services, we are committed to doing processing
data closer to their source, instead of moving data to the cloud. This
reduces latency and saves some users money on storing and processing
unnecessary data.

81

CHAPTER 4. MICRO CLOUDS

4.3.1 Execution models

Frontend services model should be packed in some standard way 2.7
and deployed in the wild, as an event-driven application, with the
subscription policy to message streams, or infinite sequences [169]
using topics [160]. The processing strategy is in the developer’s hands,
depending on the nature of the use-case.

If a service is subscribed to some stream using a topic, for example,
it is natural that events appear in their stream. There are two strategies
for building a large-scale time-ordered event system:

(1) Fan out on write, with this strategy, every service has some
form of inbox, and when an event appears for some topic, that
data is copied to every service that is subscribed to that topic.
With these options, reads are fast, but writes are not. The more
subscribers to the topic, the longer it takes to persist all updates;

(2) Fan in on read, with this strategy, every topic has a sort of
outbox where it can store data. When services read their streams,
the system will read the recent data from the outboxes. Writes
are fast, and used storage is minimal, but reads are difficult
because to do this properly on a request-response deadline is not
a trivial task to do.

To implement those ideas without complicated synchronization, CRDTs
could be used 2.1.1. Companies like Soundcloud and Bet365 are already
using them for the same or similar tasks.

Some examples of applications may include:

(1) Events that notify users if some value is above or below some
defined threshold;

(2) Stream or processing data as it comes to the system;

(3) Micro-batch processing delivers data more slowly than real-time
data processing but faster than typical batch processing. It is

82

CHAPTER 4. MICRO CLOUDS

performed in smaller batches, than traditional batch processing.
This type of processing is for applications that require high-
throughput processing over large data streams [170];

(4) Batch does processing in predefined times over some bigger
collection of data;

(5) daemons or processing that are that do some tasks or executions
in the background without explicit user intervention, usually their
execution could be time defined but it is not mandatory;

(6) Services or applications that would operate over standard request-
response model or some variation of that protocol. For example,
the NATS messaging system has a request-reply form imple-
mented over topics;

(7) Other, something that falls outside these models, or it is a com-
position of multiple operations at once. This can be represented
as a function composition in mathematics:

(f ◦ g)(x) = f(g(x)) (4.3)

This type should get events from some topic as they arrive,
and a user can define his strategy what needs to be done and
how it needs to be processed. Users can contact other existing
services or combine them (eq. 4.3), and the user is responsible
for optimization;

These types of applications could be implemented in many ways like
those discussed in section 2.2.2, or some adapted variant of those
models, and should have a clear communication interface offered to
users or applications and other services.

Users should be given the option to develop their applications in
various available languages, not forcing them to use a strict one. Users
must also be advised about outcomes of their choice.

83

CHAPTER 4. MICRO CLOUDS

For example, some languages might be slower or use more resources
than others due to virtual machine execution, or some other tooling
that is required to be started as well. The second important thing
would be that users can do proper logging and tracing of their services.
If something fails, the user must be able to go over the logs and traces
to find problems.

4.3.2 Packaging options

Because of their nature, µCs could be most likely composed of ARM
devices. These devices in many cases are not able to run full VMs
because of their hardware restrictions. In recent years there have
been advances in VMs technology and its ability to run VMs on ARM
devices. In [171] Ding et al. show such possibility to run VMs on ARM
devices.

But even if VMs are fully compatible with ARM devices, we still
inherit VMs large footprint, already discussed in section 2.7 if we try
to use them asis.

On the contrary, containers, and unikernels give us more or less
the same functionality, but use fewer resources, which means that more
services can be run in containers and even more in unikernels. Until
unikernels are fully ready to be used, though, they will fall in nice
to have a category, and we should stick to containers. But even with
containers we need to be aware of their limitations and pitfalls and
know that there is no comprehensive solution and there is not just one
solution for all scenarios.

At the moment, containers are a more mature solution than uniker-
nels and require fewer resources than VMs. On top of that, there are
numerous tools already existing using containers that could be utilized.
Knowing all this, at the first stages of µCs, containers should be an
option to go.

In [172] Simić et al. show benefits of using containers in large scale
edge computing systems from the theoretical point of view, by looking
into architecture difference. Authors focus on differences between VMs

84

CHAPTER 4. MICRO CLOUDS

and containers in cases where services need to run on ARM devices
with limited resources.

In terms of boot times, throughput, and memory consumption,
unikernels are famous for providing excellent performance [173]. In
the future and when unikernels are more matured and tested, they
could be used for particular use-cases and applications, especially like
events or serverless implementations. The containers will probably not
be fully replaced, but they can co-exist with unikernels in some cases
where more control over running a single function is needed.

Like any other system, users can create variants of the systems and
different flavors optimized for certain solutions. In that cases, they
may favor one solution over the other one. In general, containers and
unikernels should be the preferred way to package, run, and distribute
user applications in a µCs environment.

4.4 As a service model

Users should be able to develop their applications using familiar models,
depending on their needs. Depending on how much control a user
requires over the process of service scheduling, resource selection, etc.
three models can be distinguished:

(1) Micro PaaS or µPaaS, where the platform does all the man-
agement and offers a simple interface for developers to deploy
their applications. This model is similar to PaaS, and the only
difference is that this runs in µC and should synchronize with
CC;

(2) Micro CaaS or µCaaS, if users require more control over
resource requirements, deployment, and orchestration decisions.
This model is similar to CaaS (or even IaaS), and the only
difference is that this runs in µC and should synchronize with
CC;

85

CHAPTER 4. MICRO CLOUDS

(3) Micro SaaS or µSaaS, with this option, data is not synchro-
nized with the CC, but all processing and storage is done in the
µC. As such, this option should be used vigilantly.

It is important to note, that both variants, mCaaS and mPaaS,
should not stand alone, at least not for now. UsingmSaaS is not being
advised for now, since that would require that the whole application
be running only in the µCs. In the future, when EC nodes gain more
power and storage, this might change. mSaaS as an option should
more investigated in the future.

Both options, mCaaS and mPaaS, could be included, and a part
of any cloud model (se Section 2.1.2), multi-cloud or offered separately.

4.5 Immutable infrastructure

This thesis proposes a DS model that is built with a three-tier archi-
tecture that should operate in the geo-distributed environment.

We believe that immutable deployment model would be a good
fit for such environnment. It will simplify the deployment process,
since we want to rely on atomic operations and do not want to leave
the misconfigured system at any level [162]. If something like that
happens, there will be a problem that would be hard to properly track,
address and resolve.

Geo-distributed µCs model that is described in this chapter should
operate in two levels of deployment that are built one on top of the
other:

(1) Infrastructure deployement, update and change should be
atomic and immutable. Users should do changes declaratively
– mutations of the system, by telling the system what the new
state should be, and let the system figure out the best way how
to do user-specified changes. In this category, we can account
for any change that is doing on the cluster, region, or topology

86

CHAPTER 4. MICRO CLOUDS

that user(s) operate on. For example create the new cluster,
region, topology, or doing configurations of the setup system.
The only change that could be done by imperative strategy
updates on the nodes themselves. But even for this strategy, it
would be beneficial if we could use declarative way if possible.
It is important to notice that mutation does not mean in place
change, but just the name of the operation. This deployment
strategy is reserved for operations people or (eg. DevOps or
SREs), but if the company or team is small any developer could
do this. Developers should not be dealing with this part of the
deployment;

(2) Services deployment, makes sense only if the previous action is
taken. We must have infrastructure already set up, to put any sort
of services (applications) into the system. Like the previous model,
this should be done declaratively as well, and all changes should
be done immutably without an in-place change. The user should
specify his new state or “view of the word” declaratively and let
the system do all the changes he wants. All user services should
be packed as described in section 4.3.2 because this simplifies
the way services are put to the nodes. When done properly,
this allows operations people to do faster changes with almost
zero downtime deployments with all strategies already discussed
in section 2.8. This part of the deployment should be done by
developers since they did implementation and testing. They know
how many resources they need for their service, what type of
service they had developed. This deployment could be done in
collaboration between operations and developers if a company is
big or time is properly separated.

It is important to notice, that both deployments should be closely
followed, for possible errors and problems so that users can act accord-
ingly. These deployment messages, logs, and traces [101] should be

87

CHAPTER 4. MICRO CLOUDS

stored in a centralized log system, for convenient lookup, alerting, and
reporting.

Separation like this simplifies deployment and usage for both appli-
cation development spectrums:

(i) Operations who should be dealing with infrastructure deploy-
ment, tooling set up, applications deployment, monitoring, and
in the general health of applications and infrastructure;

(ii) Developers who should be dealing with the development of
the services, their interactions, and cloud to µC and vice-versa
synchronization.

Only with tight collaboration with those two development roles, such
a complex system like one presented in this chapter can be alive, well,
and serving user requests without collapse.

It is important to note that every action in the system should
be logged and traced properly. Since we are dealing with multi-tier
architecture, a chance that something will fail is increased. Logs and
traces should be available to operations people who are responsible for
the infrastructure maintenance.

At the same time, actions should be traced by the company that
offers these µCs. For security reason, any of these logs and traces
should not be visible to others but responsible individuals, and the
level of details and personal pieces of information should be different.

4.5.1 Deployment in micro clouds

As described in section 2.8, there are a few options when it comes
to setup and deployment of infrastructure and/or applications. Let
us explore interesting options how both (1) infrastructure, and (2)
services could be deployd in µCs.

Rolling update strategy minimize the downtime, at the cost of
update speed.

88

CHAPTER 4. MICRO CLOUDS

Figure 4.4 shows flow chart for rolling update in µCs for both
services and infrastructure.

Done

Desired

Check
desired state

state: False

state: True

Desired

Select old
container/infrastructure

part

Deactivate old
container/infrastructure

part

Activate updated
container/infrastructure

part

Create updated

part
container/infrastructure

Figure 4.4: Rolling update flow chart

On the other side of the spectrum, the users should be able to choose the
recreation strategy as well. This strategy will causes higher downtime,
but it will do updates quickly.

Figure 4.5 shows flow chart for recreation strategy in µCs for both
services and infrastructure.

Done

Expected system downtime

New
specification

Activate all old

container/infrastructure
parts

Create all old

container/infrastructure
parts

Terminate all old

container/infrastructure
parts

Select all old

container/infrastructure
parts

Figure 4.5: Recreation strategy update flow chart

The third strategy is the canary update strategy. This strategy offers
a partial update process allowing to test new environment version ,
without a commitment to a full rollout.

This strategy comes handy when we want to test how your services
perform in real-life scenarios with production data and users, allowing
the revert to previous version fast.

In this strategy, the deployment creates a few new artifacts while
keeping most artifacts on the previous version. The ration between
new and previous version should be provided by the user. After the

89

CHAPTER 4. MICRO CLOUDS

test, we can go either direction: (1) full rollout, (2) revert to previous
version. Both directions are predicated by the results of the test.

Figure 4.6 shows chart for the canary update strategy deployment.

Workload Workload

V1

V1

V1

V2

V2

V2

V2

V2

V2 rollout

Original artifacts set

75%

Updated artifacts set

25%

V2 1:4 ration canary

Figure 4.6: Canary update 1:4 ration update chart

4.6 Formal model

Ensuring the reliability and correctness of any DS is a very difficult task,
and should be mathematically based. Formal methods are techniques
that allow us to create specifications and verification of complex (soft-
ware and hardware) systems based on mathematics and formal logic.
There are several options for how to formally describe DS: TLA+ [174],
pi calculus [175], combinational topology [176], asynchronous session
types/multiparty session types (MST) [43], etc. This theis rely on
explicit connection actions [42], an extension of MST.

Unfortunately, because of their nature DS cannot always be formally
described by any of the existing techniques [43, 174, 175, 176]. There
are a lot of variables that could influence this. A formally described
and correct model can save hours, days, and even months of hard
debugging, testing to reveal all bugs and problems in the system that
may only happen in some specific circumstances that are hard to
initiate. Therefore, it is recommended and beneficial to try to formally
describe system that is developing.

Infrastructure deployment will not happen overnight, and it might
take years. It might not be started at all until the whole process is trivial

90

CHAPTER 4. MICRO CLOUDS

[40], and this is a complicated task [45]. Because of those properties,
the key problem that needs to be resolved is how to simplify ECC or µC
management. The naive approach would require going to every node
and do it manually. This process is super tedious and time-consuming,
especially if we consider a geo-distributed environment.

In such a complex environment, formal models are of great help
if we can model and prove that protocols that the system relies on
are correct. The system we propose tackles this issue using remote
configuration and it relies on four formally modeled protocols:

(1) Health-check protocol informs the system about state of every
node (see Section 4.6.2);

(2) Cluster formation protocol forms new clusters dinamicaly
(see Section 4.6.3);

(3) Idempotency check protocol prevents system from creating
existing infrastructure (see Section 4.6.4);

(4) List detail protocol shows the current state of the system to
the user (see Section 4.6.5);

These three protocols are based on the geo-distributed Infrastructure
deployment.

4.6.1 Multiparty asynchronous session types

Communication protocols that operate from node to the system can be
modeled using [42], an extension of MPST [43] – a class of behavioral
types specifically designed for describing distributed protocols that rely
on asynchronous communications.

The type specifications give us one additional benefit. They are
not only useful to formally describe protocols, but also reliable for a
modeling-based approach developed in [42] to validate our protocols
are they satisfy multiparty session types safety (there is no reachable

91

CHAPTER 4. MICRO CLOUDS

error state) and progress (an action is eventually executed, assuming
fairness).

The modeling process is done in two steps.

(1) The first step in modeling the communications of a system
using MPST theory is to provide a global type, that is a high-level
description of the overall protocol from the neutral point of view.
Following [42], the syntax of global types are constructed by:

G ::= {p † qi:`i(Ti).Gi}i∈I | µt.G | t | end (4.4)

where † ∈ {→,�} and I 6= ∅. In the above, {p † qi:`i(Ti).Gi}i∈I
denotes that participant p can send (resp. connects) to one
of the participants qi, for † =→ (resp. † =�), a message `i
with the payload of sort Ti, and then the protocol continues as
prescribed with Gi. µt.G1 is a recursive type, and t is a recursive
variable, while end denotes a terminated protocol. We assume
all participants are (implicitly) disconnected at the end of each
session (cf. [42]).

The advance of using approach of [42], when compared to stan-
dard MPST (e.g., [43]), is in a relaxed form of choice (a participant
can choose between sending to different participants), and, �,
that explicitly connects two participants, hence (possibly) dy-
namically introducing participants in the session. Both of these
features will be significant for modeling our protocols (we will
return to this point);

(2) The second step in modeling protocols by MPST is providing
a syntactic projection of the protocol onto each participant as a
local type, that is then used to type check the endpoint implemen-
tations. We use the definition of projection operator given in [42,
Figure 2.9]. In essence, the projection of global type G onto

92

CHAPTER 4. MICRO CLOUDS

participant p can result in Sp = q!`(T) . . . (resp. Sp = q!!`(T) . . .)
when G = p→ q:`(T) . . . (resp. G = p � q:`(T) . . .), and, dually,
Sp = q?`(T) . . . (resp. Sp = q??`(T) . . .) when G = q→ p:`(T) . . .
(resp. G = q � p:`(T) . . .), while the projection operator “skips”
the prefix of a global type if participant p is not mentioned neither
as sender nor as receiver. Furthermore, a local type must be
represented by the following syntax:

S ::= +{qiα`i(Ti).Si}i∈I | µt.S | t | end (4.5)

where α ∈ {!, !!} or α ∈ {?, ??} (in which case qi = qj must
hold for all i, j ∈ I, to ensure consistent external choice subjects,
cf. [42, Page 6.]), and I 6= ∅. Interested reader can find details
in [42].

For simplicity reasons, we will consider that all participants are com-
municating in a single private session. All sent messages, but not yet
received, are buffered in a single queue that preserves their order. The
order is preserved only for pairs of messages having the same sender
and receiver, while other pairs of messages can be swapped since these
are asynchronously independent.

4.6.2 Health-check protocol

Nodes that exist in the clustered environment usually have a channel
where they can send metrics and other data in a form of a health-check
mechanism. This channel could be used this channel to reach nodes to
send some actions to them, for example, a cluster formation message.

In figure 4.7. a low-level health-check protocol between a single
node and the rest of the system can be seen. This process involves the
following participants: Node, Nodes, State, and Log.

93

CHAPTER 4. MICRO CLOUDS

StateNodesNode

healthcheck

opt

alive

used

active

update

Log

free

used

free

Figure 4.7: Low level health-check protocol diagram.

These participants included in Figure 4.7 follow the health-check pro-
tocol that is informally described below:

(1) Node sends a health-check signal to the Nodes service;

(2) Nodes accept health-check signals from every node, update node
metrics and if node is used in some cluster, inform that cluster
about the node state;

(3) State contains information about nodes in the clusters, regions
and topologies;

(4) Log contains records of operations. Users can query this service.

Nodes service will be informed about node existence on his health-check
ping. However, the system state will not be updated, changed, or even
informed about this ping if the node is not used in some cluster.

94

CHAPTER 4. MICRO CLOUDS

In the following algorithm 1 steps required by the system to deter-
mine if the node is free or used, and how node information is stored,
are described.
Algorithm 1: Health-check data received
input : event, config

1 if isNodeFree(event.id) then
2 if exists(event.id) then
3 renewLease(event.id, config.leaseTime);
4 updateData(event.id, event.data);
5 else
6 leaseNewNode(event.id, config.leaseTime, event.data);
7 saveMetrics(event.id, event.metrics);
8 end
9 else if isNodeReserved(event.id) then

10 updateData(event.id, event.data);
11 else
12 renewLease(event.id, config.leaseTime);
13 updateData(event.id, event.data);
14 saveMetrics(event.id, event.metrics);
15 sendNodeACK(event.id);
16 end

To formally describe servers or nodes (terms are used interchangeably)
properties in the system, set theory could be used. At the beginning,
the system will have an empty server set S denoted with S = ∅. To
determine node state, we could use existing node properties. One
approach may be that we use a node-id structure, for example.

Whatever approach is used, free nodes can be formally described
as follows:

Definition 4.6.1. Nodes are free if and only if (henceforth iff) they
do not belong to any cluster.

If node-id is taken, for example, when the new health-check message
from the particular node is received, node-id structure will determine

95

CHAPTER 4. MICRO CLOUDS

the node state. When the node is free, it will home some random
or user-defined id, while when it is used in some cluster, the node-id
structure will reflect this.

If, for example, there are n free nodes in the wild, this can be
denoted with si, where i ∈ {1, . . . , n},. If all of them send the health-
check ping to the system, we need to determine their state. If a node
si is free, we should add it to the server set, and thus we have:

Snew = Sold ∪
n⋃

i=1

{si} (4.6)

It is important to notice, that the order in which messages arrive is
not important. The only thing that is important is that every message
eventually comes into the system. Node roles in the system can now
formally be defined like:

Definition 4.6.2. All nodes in the system are equal, no matter if they
are a part of some cluster or if they are not.

The previous definition gives us a strong background in the further
formal definition of the system because the only thing that should be
cared about is that node is alive and well, and that it is ready to accept
some jobs.

We described in algorithm 1 how the system stores the node data,
but also how to determine if the node is free or used using the node-id
structure. Every node si in the system that is part of the server set S
could be described as a tuple si = (L,R,A, I), where:

• L is a set of ordered key-value pairs: L = {(k1, v1), . . . , (km, vm)}
where ki 6= kj, for each i, j ∈ {1, . . . ,m} such that i 6= j. L
represents node labels or server-specific features. Labels were
based on Kubernetes [150] labels concept, which is used as an
elegant binding mechanism for its components.

96

CHAPTER 4. MICRO CLOUDS

• R is a set of tuples R = {(f1, u1, t1), . . . , (fm, um, tm)} represent-
ing node resources, where fi, ui, ti, for i ∈ {1, . . . ,m} are as
follows:

– fi is the free resource value,

– ui is the used resource value, and

– ti is the total resource value.

• A is a set of tuples A = {(l1, r1, c1, i1), . . . , (lm, rm, cm, im)},
representing running applications, where lj, rj, cj, ij, for j ∈
{1, . . . ,m}, are as follows:

– lj represents labels, the same way we used for node labels,

– rj is the resource set application requires,

– cj is the configuration set application requires, and

– ij is the general information like name, port, developer.

• I represents a set of general node information like: name, location,
IP address, id, cluster id, region id, topology id, etc.

If we want to assign m (fresh) labels to the ith server, we start with
empty labels set si[L] = ∅, then we add labels to server. Therefore, we
have

si[L]new = si[L]old ∪
m⋃
j=1

{(kj, vj) (4.7)

We can now formally define the number of labels per single server si in
the system like:

Definition 4.6.3. Every node from the server set S must have non-
empty set of labels. The number of labels for every server si in the
server set S may vary.

97

CHAPTER 4. MICRO CLOUDS

Since labels are an important part of the system (more in future
sections), they should be picked carefully and agreed on upfront. It
should also be possible to change them if such a thing is required.

Labels should stick out some distinctive features of the node, that
might be valuable for developers or administrators to target. For
example, server resources, server features (e.g., SSD drive), geolocation,
etc. They can be created as follows:

Definition 4.6.4. Labels are created using arbitrary long alphanumeric
text, for both keys and values, separated by colon sign. For example
os:linux, arch:arm, model:rpi, cpu:2, memory:16GB, disk:300GB.

Following all things presented above, we can now give a formal descrip-
tion for the low-level health-check communication protocol (see Fig-
ure 4.7). The global protocol G1 (given bellow) conforms the informal
description given at page 94: node connects nodes with health_check
message and a payload of type T1 required by the system to properly
register node into the system.

Based on the received information, nodes either connect state
with active message, informing the node status alongside payload typed
with T2 (containing informations required by the system to properly
register active health-check sender), and then also connect log with
the same message, or directly connect log informing the node is free.

G1 =node � nodes:health_check(T1).{
nodes � state:active(T2).nodes � log:used(T2).end
nodes � log:free(T2).end

Notice that in G1 we indeed have a choice of nodes sending either
to state or to log. Such communication patterns are impossible to
be modeled using just standard MPST approaches. Also, notice that
state will be introduced into the session only when receiving from
nodes. Hence, if the session after the first ping from node to nodes

proceeds with the second branch (i.e., connecting nodes with log) then

98

CHAPTER 4. MICRO CLOUDS

state is not considered as stuck, as it would be in standard MPST,
such as, e.g., [43], but rather idle.

Projecting global type G1 onto participants node, nodes, state and
log we can then get local types as follows:

Snode = nodes!!health_check(T1).end

Snodes = node??health_check(T1).

+

{
state!!active(T2).log!!used(T2).end
log!!free(T2).end

Sstate = nodes??active(T2).end

Slog = +

{
nodes??used(T2).end
nodes??free(T2).end

where, for instance, type Snodes specifies nodes can receive the ping
message from node, after which it will dynamically introduce either
state or log into the session, where in the former case it also connects
log (but now with message free).

4.6.3 Cluster formation protocol

Another communication protocol that the system relies on, appears
in the cluster formation process, where users can form new clusters
dynamically. Two different actions are distinguished:

(1) The first action is user-system communication. Here user sends
query parameters to the system to obtain a list of available nodes
that satisfy specified query parameters;

99

CHAPTER 4. MICRO CLOUDS

(2) The second action is a little bit more complicated than the pre-
vious one, and it starts when the user sends a message to the
system with a new assembly specification. In this setting, the sys-
tem involves participants: User, Queue, Scheduler, State, Nodes,
Log, and NodesPool. These participants need to cooperate to
successfully form new clusters, regions, or topologies dynamically,
adhering to the scenario shown in Figure 4.8.

opt

mutate

accepted
action

reserve

User Queue State Nodes

reserved

update

schedule

Scheduler Log

log error

Node Pool

push

reserved

not

update

gossip

received

updated/alive
alive

log done

reserved

Figure 4.8: Low level cluster formation communication protocol dia-
gram.

These participants included in Figure 4.8 follow the cluster formation
protocol that is informally described below:

(1) User query Nodes service, based on some predefined query pa-
rameters. User sends a new creation message to Queue. User
either gets response ok if the message is accepted or error if the
message cannot be accepted due to missing rights or other issues.
This operation is called mutation;

100

CHAPTER 4. MICRO CLOUDS

(2) Queue accepts a user message, and passes it to State. Messages
are handled in FIFO (First In, First Out) order. The queue
prevents system congestion, with received messages. The queue
will also test if the specified message has already been handled
before over idempotency check;

(3) State accepts mutation messages from Queue, and tries to store
new information about the cluster, region, or topology. If Nodes
can reserve all desired nodes, the system will store new user
desired specification and send a message to Scheduler to physically
carry on the creation of clusters with desired nodes;

(4) Nodes accept messages from State. It will reserve desired nodes,
if possible, otherwise, it will send an error message to Log service.
On a health-check message, it will either just store node informa-
tion or if a node is used in some cluster, inform that cluster that
the node is alive;

(5) Scheduler waits for a message sent from State, and physically
carry on cluster formation by pushing cluster formation messages
to the chosen nodes;

(6) Log contains records of all operations. Users can query this
service to see if their tasks are finished or some problems occurred;

(7) Nodes Pool represents the set of n free nodes that will accept
mutation messages. When a node receives the message, it will
follow some predefined steps:

(i) start gossip protocol to inform other nodes from the muta-
tion message that they should form a cluster;

(ii) when cluster formation is done, send an event to Scheduler
and Nodes that node is alive and can receive messages. The
cluster formation is done, when all nodes have complete list
of nodes that should form the cluster;

101

CHAPTER 4. MICRO CLOUDS

If a user wants to get a list of free nodes in the system, he must create
a query using the selector, which is the set of key-value pairs where
he can describe what type of nodes he desires. Algorithm 2 describes
steps that are required to perform a proper node lookup based on a
received selector value.
Algorithm 2: Nodes lookup
input : query

1 Initialize: nodes ← []
2 foreach node ∈ freeNodes() do
3 if len(node.labels) == len(query) ∧ node.haveAll(query)

then
4 nodes.append(node)
5 end
6 end
7 return nodes

We start with the empty selector Q = ∅, in which we append
key-value pairs. Hence, when a user submits a set of p key-value pairs
we have that

Qnew = Qold ∪
p⋃

i=1

{(ki, vi) (4.8)

Once the user submits query selector to the system with desired at-
tributes, for every server in the set S, two things need to be checked:

(1) the cardinality of the ith server’s set of labels and the query
selector are identical in size

|si[L]| = |Q| , and (4.9)

(2) every key-value pair from query set Q is present in the ith server’s
labels set si[L], hence the following predicate must yield true:

P (Q, si) =
(
∀(k, v)∈Q ∃(kj, vj)∈si[L] such that k = kj∧v ≤ vj

)
(4.10)

102

CHAPTER 4. MICRO CLOUDS

The ith server from the server set S will be present in the result set
R, iff both rules are satisfied so we have:

R = {si | |si[L]| = |Q| ∧ P (Q, si), i ∈ {1, . . . , n}} (4.11)

If the result set R is not the empty set, we then reserve nodes for
configurable time so that other users cannot see, and try to use them.
Finally, reserved nodes with message data md are added to the task
queue set:

TQnew = TQold ∪ {(R,md)}. (4.12)

When the task comes to execution, the task queue will send messages
to every node that is specified. Algorithm 3 describes the steps required
for cluster formation.
Algorithm 3: Clustering formation message
input : request, config

1 nodes ← searchFreeNodes(data.query)
2 reserveNodes(nodes, config.time)
3 pushMsgToQueue(nodes, data)
4 key ← saveTopologyLogicState(data)
5 watchForNodesACK(key)

Users are free to override existing node labels with their labels or keep
predefined ones when including nodes in the cluster. If the node is
free, or the user did not change the node labels on cluster formation,
the system will use default labels like node geo-location, resources,
operating system, architecture, etc.

When the node receives the cluster formation message, he will
automatically pick and contact a configurable subset of nodes Rg ⊂ R,
and start the gossip protocol, propagating pieces of information about
nodes in the cluster (e.g, new, alive, suspected, dead, etc.). When

103

CHAPTER 4. MICRO CLOUDS

every node inside the newly formed cluster has a complete set of nodes
R obtained through gossiping, the cluster formation process is over.
Topology, region, or cluster formation should be done descriptively
using YAML, or similar formats.

In the Algorithm 4 describes the required steps after nodes receive
a cluster formation message.
Algorithm 4: Node reaction to clustering message
input : event

1 switch event.type do
2 case formationMessage do
3 updateId(event.topology, event.region, event.cluster)
4 newState ← updateState(event.labels, event.name)
5 sendReceived(newState)
6 nodes ← pickGossipNodes(event.nodes)
7 startGossip(nodes)
8 end
9 end

In the following, a low-level cluster formation communication protocol
(see Figure 2.5) is described. We are using the same extension of
MPSTs [42] used for the health-check protocol.

Global protocol G2 (given below) conforms the informal description
of the cluster formation protocol given on page 100. The protocol
starts with user connecting state by message query and a payload
typed with T1 that contains user query data, and then state forwards
the message by connecting nodes. Then, the protocol possibly enters
into a loop, specified with µt, depending on the later choices. Further,
nodes replies a response resp to state, that, in turn, forwards the
message to user. The payload of the message is typed with T2 that
has response data, based on a given query. At this point, user sends
to state one of three possible messages:

(1) mutate, and the mutation process, described with global protocol
G′, starts;

104

CHAPTER 4. MICRO CLOUDS

(2) quit , in which case the protocol terminates; or,

(3) query – this means the process of querying starts again, the query
message is forwarded to nodes and the protocol loops, returning
to the point marked with µt.

The third branch is the only one in which protocol loops. Also, we
can notice that user− state and state− nodes are connected before
specifying recursion. Hence, even after several recursion calls, these
connections will be unique. So it is not required to disconnect them
before looping.

G2 =user � state:query(T1).state � nodes:query(T1).

µt.nodes→ state:resp(T2).state→ user:resp(T2).
user→ state:mutate().G′

user→ state:quit().end
user→ state:query(T1).state→ nodes:query(T1).t

The mutate protocol G′, activated in the first branch in G1, starts with
user sending create message to state, specifying also information
about new user desired state typed with T3, and state replies back
with ok . Then, state sends ids of the nodes to be reserved (specified
in the payload typed with T4) to nodes, that, in turn sends one of the
two possible messages to state:

(i) rsrvd , denoting all nodes are reserved and the protocol proceeds
as prescribed with G′′, or

(ii) error , with error message in the payload, informing there has been
unsuccessful reservation of nodes, in which case state connects
log reporting the error and the protocol terminates.

G′ =user→ state:create(T3).state→ user:ok().

state→ nodes:ids(T4).{
nodes→ state:rsrvd().G′′

nodes→ state:err(String).state � log:err(String).end

105

CHAPTER 4. MICRO CLOUDS

Finally, in G′′ state connects sched (Scheduler) with message ids and
the payload that contains other data imported for mutation to be
completed (typed with T5). Then, sched connects pool (Nodes Pool)
with update specified with T6, after which pool replies back with ok ,
and connects to nodes sending new id’s nids typed with T4 (that
contains successfully reserved user desired nodes). Now nodes notifies
state the action was successful, that in turn connects log with the
same message, and the protocol terminates.

G′′ =state � sched:ids(T5).sched � pool:update(T6).

pool→ sched:ok().

pool � nodes:nids(T4).nodes→ state:succ().

state � log:succ().end

We may now obtain the projections of global type G2 onto the partici-
pants user, state, nodes, log, pool, and sched:

Suser =state!!query(T1).µt.state?resp(T2).

+


state!mutate().state!create(T3).state?ok().end
state!quit().end
state!query(T1).t

Sstate =user??query(T1).nodes!!query(T1).µt.nodes?resp(T2).

user!resp(T2).

+


user?mutate().user?create(T3).user!ok().nodes!ids(T4).S

′

user?quit().end
user?query(T1).nodes!query(T1).t

where

S′ =+

{
nodes?rsrvd().sched!!ids(T5).nodes?succ().log!!succ().end
nodes?err(String).log!!err(String).end

106

CHAPTER 4. MICRO CLOUDS

Snodes =state??query(T1).µt.state!resp(T2).

+

state?ids(T4).+


state!rsrvd().end
state!err(String).poll??nids(T4).
state!succ().end

state?query(T1).t

Slog =+

{
state??succ().end
state??err(String).end

Spool =sched??update(T6).sched!ok().nodes!!nids(T4).end

Ssched =state??ids(T5).pool!!update(T6).pool?ok().end

For instance, type Ssched specifies that participant sched gets included
in the session only after receiving from state message ids , then sched

connects pool with update message, after which it expects to receive
ok message and finally terminates.

We remark that global type G2 could also be modeled directly by
using standard MPST models (such as [43]). However, in such models,
the projection of G2 onto, for instance, participant sched would be
undefined (cf. [42]). Since we follow the approach of [42] with explicit
connections, projection of G2 onto sched is indeed defined as Ssched.

4.6.4 Idempotency check protocol

Mutate operation should be atomic, immutable, and idempotent. The
user can specify the same topology details but in a different order, for
example. We must ensure that the new cluster formation protocol
should not be initiated, if the user changes order of regions, clusters,
nodes, or labels in one or more node(s).

107

CHAPTER 4. MICRO CLOUDS

If mutate operation fails, i.e., the same infrastructure already exists,
the user should get a message that infrastructure is already formed,
but the new formation protocol would not be initiated. If the user
changes the number of labels per node, nodes per cluster, or similar, a
new protocol should be initiated.

But since we have a different scenario than standard write to storage,
and we do not specify steps on how operations should be done, to
implement idempotency correctly we have to do it a little bit differently.
First of all, we must use proper structure, and ensure that operation
done over that structure is idempotent.

The idempotent structure IS can be represented as a tuple of
topology name and data set like:

IS = (Name,DataSet) (4.13)

Name could be used for faster lookup, while DataSet represents the
set of data, because most set operations are idempotent, as described
in SEC (see page 17). DataSet could be represented in two ways:

(1) Flat keyspace, with this option all data could be part of the
same set, and distinguishment could be achieved using pre-
fix identity, for example: region1_cluster1_node1_labels, re-
gion1_cluster1_node1_name etc.;

(2) Hierarhical keyspace, with this option we can create nested
data-structures of elements, for example set of regions, where
every region is a set of clusters, etc. We can go deep as long as
we want, but we must not violate idempotency throughout the
hierarchy — every (sub)structure must be idempotent. So we
can use a set of sets or N-ary trees.

If we have cached idempotency data for user requests, and if a user tries
to send the same request again, we can then test idempotency using
set operation intersection because the intersection is an idempotent
operation following the next proof.

108

CHAPTER 4. MICRO CLOUDS

Proof. Intersection of two sets x and y x∩y is an idempotent operation,
becasue x ∩ x is always equal to x. This means that the idempotency
law 2.3 ∀x, x ∩ x = x is always true.

If we have stored the cluster formation protocol request in some idem-
potent storage, and we receive a new request with the same name, then
we can take the intersection of two sets. If we get the same set, that
action is already done because of the definition 4.6.4. Otherwise, the
request represents the new action, and new cluster formation protocol.

This can be made a little bit faster, by choosing the proper storage
structure. If we first do (the same) topology, the name is already present
in the idempotency store, and this lookup will spare us unnecessary
comparison on sets. For example, data structures like Hash tables store
element as pair of key − value and offers time and space complexity
for lookups O(1), on average [177], and use Bloom filter [178] for key
filtering. We can go even a little bit further and use CRDTs and
SEC to store and replicate data required for the idempotency test.
Figure 4.9 shows zoomed view in the State participant from figure 4.8,
and idempotency check communication.

opt

State
Service

mutate

accepted

User Queue

action

Idempotency
Storage

Main
Storage

try

resp

seen

Log

done

store

save

schedule

Nodes

not...

reserve

reserved

Scheduler

State

saved

stored

Figure 4.9: Low level view of idempotency check communication.

109

CHAPTER 4. MICRO CLOUDS

The participants follow the communication that we now describe infor-
mally:

(1) User sends a list request to State service (same as 4.6.3);

(2) Queue accepts the list request and the query local state based
on the user selector. If a detailed view is required, the state gets
metrics data from Nodes service (same as 4.6.3);

(3) State service is a wrapper aroud system main storage. Interacts
with main storage in order to create new topologies, regions or
clusters, or to get data from the main storages about the same
entities.

(4) Idempotency storage contains idempotent set for all already
formed topologies, regions and clusters.

(5) Main storage contains records about the desired state for all
formed topologies, regions, and clusters.

(6) Log contains records of operations. Users can query this service
to see if their tasks are finished or have any problems (same
as 4.6.3);

(7) Nodes accept messages from State. If possible, it will reserve
desired nodes, otherwise, it will send an error message to Log
service. On a health-check message, if a node is used in some
cluster, it will inform that the node is alive (same as 4.6.3);

(8) Scheduler waits for a message sent from State, and pushes
cluster formation messages to desired nodes (same as 4.6.3);

When testing idempotency, we must have in mind that stored structure
could be: (1) flat keyspace, and (2) hierarchical keyspace. The both
options are valid, as long as the structure is idempotent, and we
can do idempotent operations over that structure. For example,

110

CHAPTER 4. MICRO CLOUDS

set as a data structure and intersection are good candidates. It is
worth noticing that the flat keyspace is a special case of the hierarchical
keyspace.The algorithm that will test structure idempotency must be
able to test both options.

Algorithm 5 describes steps required to test if the operation is done
before.
Algorithm 5: Mutate idempotency check
// children are sorted in both trees

1 function equals(stored, topology):
2 sChildren ← stored.children
3 tChildren ← topology.children
4 if topology == null ∨ tChildren.size 6= sChildren.size
5 ∨ ¬ stored.isIdempotent(topology.data) then
6 return false

7 while sChildren.hasNext ∧ tChildren.hasNext do
8 if ¬ equals(sChildren.next, tChildren.next) then
9 return false

10 return true
input : request

11 stored ← storage.findRequest(request.payload.name)
12 if stored 6= null then
13 return false
14 else
15 topology ← request.payload.topology
16 return ¬ equals(stored, topology)
17 end

A formal description of the idempotency check protocol (see Figure 4.9)
by using [42] is presented next. The global protocol G3 (given below)
conforms the informal description given at page 110. At this point, the
user can choose one of two possible messages:

(1) quit , in which case the protocol terminates; or,

111

CHAPTER 4. MICRO CLOUDS

(2) mutate, and the mutation process, described with global protocol
G′, starts;

G3 =

{
user→ service:quit().end
user→ service:create(T3).state→ user:ok().G′

The mutate protocol G′, activated in the first branch in G3, starts
with user sending create message to state, specifying also informa-
tion about the new user desired state typed with T3, and state replies
back with ok . This process is the same as cluster formation protocol
(see Section (1)). Now we start specific communication protocol for
idempotency check so service sends payload T3 to istorage to test
if this request is seen before. The istorage responds with payload
T6 to service, and based on Boolean response service can do one
of two things:

(1) service sends message to log and this process terminates; or,

(2) service sends ids of the nodes to be reserved (specified in the
payload typed with T4) to nodes;

same as cluster formation protocol (see Section (1)). For simplification,
we can assume that all nodes are reserved, and now idempotency data
store global protocol G′′, starts;

G′ = service � istorage:try(T3).

istorage→ service:resp(Boolean).{
service � log:done(String).end
service � nodes:ids(T4).nodes→ service:rsrvd().G′′

The idempotency store protocol G′′, starts with service sending muta-
tion payload T3 to mstorage. Then mstorage sends the same payload
to istorage. When data is saved for future testing, istorage responds

112

CHAPTER 4. MICRO CLOUDS

back to mstorage, and finally mstorage responds back to service.
At this point user payload T3 is stored in both main storage and
idempotency storage for future testing. Protocol continues with state

connects sched (Scheduler) with message ids and the payload that
contains other data imported for mutation to be completed (typed
with T5), and the rest of cluster formation protocol may continue.

G′′ =service � mstorage:store(T3).mstorage � istorage:save(T3).

istorage→ mstorage:saved().mstorage→ service:stored().

service � sched:ids(T5).end

We may now obtain the projections of global type G3 onto the partici-
pants user, service, istorage, mstorage, log, nodes: and sched:

Suser =+

{
service!quit().end
service!create(T3).service?ok().end

Sservice =+

{
user?quit().end
user?create(T3).user!ok().S′

where

S′ =istorage!!try(T3).istorage?resp(Boolean).

+

{
log!!done(String).end
nodes!!ids(T4).nodes?rsrvd().S′′

Smstorage = service??store(T3).istorage!!save(T3).

istorage?saved().service!stored().end

S′′ =mstorage!!store(T3).mstorage?stored().

sched!!ids(T5).end

113

CHAPTER 4. MICRO CLOUDS

Sistorage =service??try(T3).service!resp(Boolean).

mstorage??save(T3).mstorage!saved().end

Slog =service??done(String).end

Snodes =service??ids(T4).service!rsrvd().end

Similarly, as for G2, we remark G3 could also be modeled using standard
MPST (e.g., [43]), but again the projection types would be undefined
while following the approach of [42] with explicit connections, all valid
projections have been obtained.

4.6.5 List detail protocol

The final communication protocol in our system appears in the infor-
mation retrieval process. Using labels, the user can specify what part
of the system he wants to retrieve, namely, on formed topologies. This
protocol could be useful, for example, if the user wants to visualize
his topologies, regions, or clusters on some dashboard and monitor for
some changes, alerts, etc.

This operation may span over multiple services to retreive complete
informations about the clusters and/or nodes. For this purpose some of
the distributed queries methods (see Section 2.2.2.1) can be used. For
some patterns api composition may be more suited, while for others
CQRS may be the better solution to optimize queries.

This protocol comes with two available options:

(1) global view of the system – all topologies the user manages.
This will return just basic information about regions and clusters
and their utilization;

114

CHAPTER 4. MICRO CLOUDS

(2) specific clusters details – in-depth details for specified clusters
like resources utilization over time (using stored metrics infor-
mation), node information, configuration data, and running or
stopped services.

It is important to note, that similarly to the query operation (defined
previously), both rules (4.9) and (4.10) must be satisfied for infor-
mation to be presented in the response. The user can specify one
additional information in the list request, and that is whether or not
the user wants a detailed view or not. If such information is presented
in the request, the user will get a detaild view back.

Figure 4.10 shows a low-level view of the list operation protocol,
where users can get details about the formed system. This setting
involves the next participants: User, State, Nodes, and Log.

list

result

User NodesState

opt query

resultneed

Log

brief

detail
metrics

Figure 4.10: Low level view of list operation communication.

Now we can informally describe the roles of the participants in the
protocol:, shown in figure 4.10

(1) User sends a list request to State;

(2) State accepts the list request and the query local state based on
the user selector. If a detailed view is requested, the state gets
metrics data from Nodes, and return details back to user;

115

CHAPTER 4. MICRO CLOUDS

(3) Nodes contain node metrics data, and if required, it may send
this data to State;

(4) Log contains records of all operations. Users can query this
service.

Algorithm 6 describes steps that are required after the state receives a
list message.
Algorithm 6: List of current state of the system
input : request

1 Initialize: data ← []
2 foreach (topology, isDetail) ∈ userData(request.query) do
3 if isDetail then
4 data.append(topology.collectData())
5 else
6 data.append(topology.data())
7 end
8 end
9 return data

A formal description of the list communication protocol (see Figure 2.11)
by using [42] is presented next. Global type G4 (given below) starts
with user connecting state with one of the two possible messages: (1)
list , specifying a request for a detailed view, where sort T1 identifies
which parts of the system the user wants to view in details, after which
state connects nodes with query message, with a payload of sort T2

containing specification of which nodes need to show their metrics data,
and then protocol proceeds as prescribed with G′; (2) list∗, specifies
no need for a detailed view is specified, where a payload of sort T4

denotes user specified parts of the system the user wants to view, but
without greater details. In the latter case protocol follows global type
G′′.

G4 =

{
user � state:list(T1).state � nodes:query(T2).G

′

user � state:list∗(T4).G
′′

116

CHAPTER 4. MICRO CLOUDS

Global type G′ starts with nodes replying to state result message
and a payload identifying parts of the system user wants to see in greater
detail typed with T3. Then, state connects log with details and
also sends result to user, and finally terminates. In G′′, state also
connects log with brief and a payload typed with T5 identifying parts
of the system the user wants to see without greater detail. Then, state
replies to user with result message, and the protocol terminates.

G′ =nodes→ state:result(T3).state � log:detail(T3).

state→ user:result(T3).end

G′′ =state � log:brief (T5).state→ user:result(T5).end

Same as for the health-check and the cluster formation protocols, here
we also present the projections of global type G4, modeling the list
protocol, onto participants user, state, nodes, and log:

Suser =+

{
state!!list(T1).state?result(T3).end
state!!list∗(T4).state?result(T5).end

Sstate =+

{
user??list(T1).nodes!!query(T2).S

′

user??list∗(T4).log!!brief (T5).user!result(T5).end

where

S′ =nodes?result(T3).log!!detail(T3).user!result(T3).end

Snodes =state??query(T2).state!result(T3).end

Slog =+

{
state??detail(T3).end
state??brief (T5).end

117

CHAPTER 4. MICRO CLOUDS

For instance, type Slog specifies log gets included in the session only
after receiving from state, either message detail , or message brief ,
and then terminates.

Similarly as for G2 and G3 we remark G4 could also be modeled
using standard MPST (e.g., [43]), but again the projection types
would be undefined, while following the approach of [42] with explicit
connections, all valid projections have been obtained.

4.7 Long-lived transactions in micro clouds

To operate µCs properly, such a system needs to be scalable. Architec-
ture composed of loosely coupled services can be a way to go, because
of all benefits such systems offer (see Section 2.2.2). But still, we must
be aware of all problems that come along with them.

That being said, one of the problems we have to deal with are
transactions that appear in such distributed system — distributed
transactions (see Section 2.5.1). Because of the nature of the system
sagas seems like a better pattern to use (see Section 2.5.2).

When a user submits new cluster creation message (see Section 4.6.3),
the message will be accepted by the system, and the new task with
PENDING state will be registered. If for whatever reason (e.g., no
available resources or nodes, etc.), the system cannot proceed further,
that task is terminated. It goes to FAILED state, concluding the
transaction. Otherwise, no errors occured, and the system can proceed
with the cluster formation protocol, changing the task state to IN
PROGRESS.

In this state, the system needs to do several things: (1) save
newly formed cluster information, (2) prepare metrics service, (3) add
watchers for the cluster nodes health-check, etc. This spans multiple
services, creating a few sub-transactions in the process. The task state
prevents the users to apply other tasks (e.g., configurations, actions,
autoscaling, etc.) on a not yet fully formed cluster.

118

CHAPTER 4. MICRO CLOUDS

Separation on sub-transactions allow us to invoke the rollback
mechanism, if the process yields any errors. Other strategy would be
to start some of the retry strategies in order to fix the occurred issue.

If no errors occur during the process, the cluster formation transac-
tion finishes, and the task state is changed to CREATED. Otherwise,
the cluster formation transaction ends, without creating the cluster.
The task state will be changed to FAILED state, concluding the trans-
action.

Figure 4.11 shows state diagram for cluster formation message.

CREATED

FAILED

initiate

PENDING

start done

error

error

IN

PROGRESS

Figure 4.11: State diagram for cluster formation message

Cluster formation protocol will most likely span over multiple ser-
vices, and strategies like sagas can be useful to implement transactions
and rollbacks properly.

4.7.1 Garbage collection in micro clouds

When the user submits the task to the system, and if, for whatever
reason that task fails, there is the option to immediately remove that
task, and possibly all task connected items. Or, the system should have
a specific process in the background, which only purpose is garbage
collection to restore unused and fragmented system resources.

The second option seems more acceptable because one item can
have a graph of items that are connected to that specific item. This

119

CHAPTER 4. MICRO CLOUDS

graph can be complex, and immediate deletion may slow down the
entire system. In the background, the garbage collection process can
mark unused items and delete them when the time is right.

Users should also be able to delete certain items with their depen-
dencies as well, invoking cascading deletion. Dependencies may be
deleted immediately, or marked as orphans, and deleted by the garbage
collection process.

It makes sense that users can influence garbage collection by sub-
mitting their policies when and how often to do this operation, to
delete only items or container images as well, and so on.

4.8 System observability

Observability is an importatnt part of any real-world computing system
(see page 35). It is an important part of any platform that strives to
be offered as a service to large groups of different users.

At every moment, we must know what is happening in the system,
where bottlenecks are, and how we can resolve problems. This is of
significant importance in DS, where state and calculations are scattered
across multiple nodes, clusters and even DCs.

In the µCs environment that involves multiple layers (see page 77),
this technique is even more important to give us insight what is hap-
pening in the system, and how we can optimize different layers of the
system. On the other hand, users who use such a system need to know
what is happening with their services.

Because of these two really important parameters, observability
must be implemented on two levels:

(1) System level contains data that is generated by the system.
This data should be avalible to the administrators and providers
of the system only. Operations people in the team (eg. DevOps
or SREs), and developers cannot see it;

120

CHAPTER 4. MICRO CLOUDS

(2) User level contains information about user requests that only
operations people in the team (eg. DevOps or SREs) should be
able see it. This type of data should not be visible to the system
providers for privacy reasons.

Every service should log details about its usage and calls as well as traces
how requests are going, regardless of whether it is a platform or user.
Log data should be stored outside the service and the virtualization
tool (eg. using sidecar pattern with containers [179]), while pieces of
information will be sent to centralized log storage. Sending intervals
should be able to be changed and adapted for both levels.

Log storage could be searched to see the general state of the system,
and pieces of information about user requests and the state of their
requests.

4.9 Access pattern

In section 4.3, we already discussed system access patterns from the
applications point of view, using streams and topics. In this section, we
are going to venture into the dashboard and system access described
in 2.3.

To access the system, requests are going over the master process.
This process is not responsible for any sort of synchronization, agree-
ment, or something like that, but just to show dashboards and various
system details since the cloud is available anywhere in the world, while
µC should serve the local population.

One question that could that requre an answer is, what if some
cloud provider offering µC functionality, or running our master process,
goes down, should the rest of the µCs go to read-only mode and only
accept read requests?

All communication is not exclusive to go over that master process,
but if the user is nearby to µC he/she should be able to initiate
commands directly to clusters, regions, and topologies. However, for

121

CHAPTER 4. MICRO CLOUDS

dashboards and full pieces of information about his µCs, cloud would
be a better solution, because of more available resources.

If some cloud provider goes down for whatever reason, we should
foresee this, and to resolve it, we could use multiple cloud providers
using Multi-Cloud Computing [59, 60] so that one cloud provider is a
master process and many others are backup in case the whole cloud
provider goes down.

We inevitably have some state synchronization here, and we could
rely on SEC and CRDTs to do synchronization without some expensive
coordination between providers.

This is not generally a problem if applications that are running in
µCs are not dependent on some process, location, sensors of services,
etc. If this is the case, then we can connect µCs in sort of P2P network
and give them some logic to just route request to the proper location
on the globe.

This might not be that fast, since even light is affected by the
distance, but we would be able to issue requests to cluster in a different
part of the world.

4.10 Auto scaling micro clouds

Configurable model structure bring any additional benefit to proposed
µCs model — infrastructure auto scaling.

The purpose of this process is to automatically scale up or down
existing clusters, regions even topologies, adapting the number of nodes
in the cluster, clusters per region, and even regions per topology to
match newly workload increase.

The users can create a scaling plan via scaling policies, where they
should be able to define: (1) how resources should be added (e.g.,
grow clusters, regions, or topologies) and at which rate, (2) what
specific type of resources are desired (e.g., prefered values for CPU,
disk, memory etc.), and (3) boundaries for both resource additions
and resource types.

122

CHAPTER 4. MICRO CLOUDS

The third item is increasingly important, because it directly affect
the costs of the applications running inside µCs. As such, it should
never be underlooked.

Based on the given policies the autoscaler dynamically adjusts the
amount of resources according to user demands [180]. This elasticity
allows accommodation of fluctuations in the workloads, that vary over
time.

Auto scaling strategy could be applied to both applications and
infrastructure, and µC provider should decide should they depend
on each other, or should they be regulated separately. The proposed
model could accomodate both options.

4.11 User data flow in micro clouds

One of the benefits of having µC in near proximity is that user data
can be processed and stored locally, and users are able to control to
which extent data can be shared with the cloud [20] (see section 1.2).

User data would be relatively easy to replicate inside a region
using CRDTs for example (see 2.1.1), to eliminate expensive coor-
dination [166]. On top of this, distributed file system can be built,
distributed databases, processing frameworks specially designed for µC
environment.

But since µCs storage capacity is less than traditional cloud, they
should store most recently used data [162]. The storage capacity is
determined by the µC size given by the equation 4.1.

Data locality in µCs creates two challenges, that must be ad-
dressed:

(1) If a user leaves a place, is data stationary, or follows him using
some pattern? The decision should be left to users, µC providers,
and developers to decide. The proposed model allows the creation
of different data plans that could be represented via different
policies for every individual user or group of users. If data

123

CHAPTER 4. MICRO CLOUDS

needs to follow the user, as a data transfer medium the cloud
could be used as a backbone, to transfer data to the µC in user
proximity. The process is similar to the content delivery networks
on the edge [27]. In such a scenario, we must pay attention to
the network pressure and transfer only the requested data. As
an alternative option, we can serve data directly from the cloud
and do not transfer anything;

(2) How long the user data should be stored in the µC, if we assume
that locally existing µC will serve many users? The proposed
model does not restrict how long the data should be stored and it
is policy-based. Depending on the µC size given by equation 4.1,
µC providers may determine different policies — Time to live
(TTL) [181] and offer to users. This process is somewhat similar
to the leases mechanism in cache systems [182].

The data retention and size in the µC are decided and optimized
with 4.1 and 4.2, for the single user or group of users. This gives
developers, and µC providers more room to optimize their policies
offered to the users, while users may choose different options based on
their needs [162].

4.12 Extendability

The proposed system allow extension, and could be used for addition
of various configurations and artifacts to nodes, clusters, regions and
even topologies — µCs, all done remotely.

As the direct implication of reconcile pattern (see page 54), extension
is as easy as adding the new worker to the system. This new worker,
will deal with a specific resource type when that kind of file is submitted
to the system.

On the other hand, a reconcile loop (see page 54) will provide the
observed resource informations that this worker can act on. This mean

124

CHAPTER 4. MICRO CLOUDS

that specific worker (controller) will deal with just one resouce type at
any given point in time knowing what is specified, and what is returned
from reconcile loop.

When registering new worker, a user should provide unique name
of the worker so that reconcile loop can send informations to the right
place. As a unique name we can use for examle worker name and
resource type name.

Figure 4.12 show high overview of adding a new worker to the
system, with reconcile loop.

State

Loop
Data flow in

Pass data by ID

Pick worker
Sync

unique ID #1

Registry

unique ID #2

unique ID #n

Worker

unique ID # n+1

New Worker

Scheduler

Reconcile

Figure 4.12: New worker addition to the system, with reconcile loop.

4.13 Repercussion

The model presented in this chapter, has four possible model repercus-
sions:

(1) Stand alone, the proposed model can serve as a base layer for
future ECC as a service implementation. On top of it, we can
implement other services and features like scheduling, storage,
applications, management, monitoring, etc. As such it could be
a viable option in the CC;

125

CHAPTER 4. MICRO CLOUDS

(2) Integration, the proposed model could be integrated with ex-
isting systems like Kubernetes, OpenShift, or cloud provider
infrastructure since they all operate over the cluster. This is
possible, with some small infrastructure changes and adaptations
because – the communication should be implemented via stan-
dard interfaces like HTTP and JSON, the integrations should be
relatively easy to achieve. The proposed model could be used as
a geo-distributed description and/or an organization tool;

(3) Combination, this approach can be done over multi-cloud prin-
ciples. Some cloud tasks could be offloaded to the nearest µC;

(4) Enhancement, big data tools, esspecially lambda architecture
(see Section 2.2.1) could be enhanced using the proposed model
creating lambda++ architecture. Here we can reduce cost
even more, by doing preprocessing and filtering of data closer to
their source. After that we can send processed data to stream
processing part of traitional lambda architecture, allowing it to
process even more data than before.

126

Chapter 5

Proof of concept

In this chapter, more details are going to be given about the framework
implemented based on the formal model and architecture specification
given in the previous chapter.

Section 5.1 discusses framework architecture, and system implemen-
tation details, and framework limits. Section 5.2 presents implemen-
tation details about framework operations. Section 6.1 describes few
possible senarios and applications that could utilize µCs platform. In
Section 5.3 presents results of our experiments.

5.1 Platform implementation

In this section, we are going to introduce an implemented proof-of-
concept framework based on the model proposed in the previous chap-
ter 4. The framework is called Constellations (c12s)1 because it is
strongly influenced by nature and the neverending number of galaxies
that the universe is (not only) composed of. Similarly, we are trying
to create a universe of clusters that will serve users to help them with

1https://github.com/c12s

127

CHAPTER 5. PROOF OF CONCEPT

their day-to-day tasks. The framework is open-source, and it is im-
plemented using the microservice architecture with services that have
distinct role and purpose to the entire system. These services are:

• Gateway, its purpose is to export services feature to the rest
of the world. Gateway is designed as a REST service, accepting
JSON style messages, so that various clients can communicate
to the system. When the request arrives at the gateway, if the
request is valid it will pass the request to the rest of the system.
It communicates to the rest of the services to check if the user
exists, if he/she has proper rights for actions he/she sends, and
if not, returns the proper message and and does not propagate it
to the rest of the system;

• Authentification & Authorization, the sole purpose of this
service is to store users and their credentials. This service will
validate does user exists in the system, and does he have certain
rights to perform some specific operation. Users that often use
the system will be stored in the cache layer of the service so that
on the next request his/here actions are done faster. Users that
do not use the system that often will not be stored in the cache
until the first use. After that, if the user does not use the system
for some time, he/she will expire from the cache;

• Queues, the purpose of this service is to prevent huge request
load to the system and to accept more user requests. When
the user submits any mutation operation – an operation that
changes the state of the system, these operations will be put in
the queue. User can create their queues, to prevent long lines for
specific tasks. For example, users can create queues for specific
tasks, and use them only for those tasks, while other queues
could be general-purpose queues. On system start, every user
will start with one queue — default. When doing mutations on
different parts of the system, the user can specify in metadata
which queue he wants the task to go to. This service implements

128

CHAPTER 5. PROOF OF CONCEPT

a token bucket rate-limiting algorithm [183] to prevent congestion
of the system;

• Nodes, this service stores and maintains pieces of information
about registered nodes in the system. All node hardware and
software details will be stored in this here. This service is also
responsible for storing metrics data, accept health-check requests
from nodes, and inform the rest of the system that the used node
is alive;

• State, is the heart of the system. This service stores all in-
formation about architecture, clusters, regions, and topologies.
When a new cluster/region/topology is created, this service will
setup watchers for nodes, so that if the node does not send the
health-check signal for some time, that node will be declared
dead. This is important so that at any moment we must know
the state of the clusters and their utilization. This service as
well will cache frequently used nodes data, so that on the next
request node lookup is faster, since we can have a huge number
of nodes, topologies, clusters and pieces of information about
them. To prevent data loss, this service will first store a copy of
the operation before attempting any mutation of the system;

• Log, is responsible for storing all log and trace data from every
service. Here a user can check whether all jobs are done, whether
there is some error and possibly why the error happened to resolve
it or fix it for the next time. From a user point of view, this is
read only service and from a system view, this is write only
service;

• Command push, the purpose of this service is to push com-
mands and operations to the nodes user desired. This service
implements a token bucket rate-limiting algorithm [183] to pre-
vent constant data push to the nodes. Similar to the state service,

129

CHAPTER 5. PROOF OF CONCEPT

this service will store a copy of operation information locally be-
fore attempting any push to the nodes. This information will be
deleted, once the operation reaches all decided nodes and all of
the responses with the acknowledge (ACK) message;

All services are highly customizable and all have their configuration
file that could be changed and adopted. All these services are easy to
extend to support new operations and pieces of information about nodes,
regions, clusters, topologies, and latter on applications, configurations,
namespaces.

The system operates with four commands, where three of them
follow formal models described in the previous chapter. The last
command is a simple command to list logs for every user.

Regarding 4.9, the framework operates as a master process is run-
ning in Kubernetes, and through that process, all commands are issued.
Future applications can communicate with nodes as stated in 4.3. They
do not require communication with the master process at all, they can
communicate with the formed cluster using topics and streams.

In the rest of this section, we will see details about all operations,
as well as used technologies to implement the whole system. Possible
applications and future directions for application development will also
be described. System architecture is shown in Figure 5.1.

Gateway

Queue

State service

events

Nodes service

events

Command push
service

rpc

Authentication &
Authorization Service

rpc rpc

rpc

rpc

rpc

rpc

rpc

Log service

log events

rpc

http/s

log events

CLI

Figure 5.1: Proof of concept implemented system.

130

CHAPTER 5. PROOF OF CONCEPT

5.1.1 Technologies

All services are implemented using the Go2 programming language, be-
cause of its well-known tooling, support for developing system software,
web-based applications, small binaries, but also, great concurrency
model, and ability to build binaries for almost any architecture without
any code changes. All services rely on Go implicit interface imple-
mentation mechanism. Every technology or component used in the
system can be swapped for some other, as long as that component
implements interface fully. The framework is developed in such a way
that is relatively easy to extend, or switch and use different components
and technologies.

As the main storage layer for our system, we used etcd3, a popular
open-source key-value database, that shows good performance, and it
is mostly used for configuration data. Metrics data are stored in the
open-source time-series database InfluxDB4.

Communication between microservices is implemented in RPC
manner using gRPC5, and Protobuf6 as a message definition. gRPC
and Protobuf are open-source tools designed by Google to be scalable,
interoperable, and available for general purposes. Communication
between nodes and the system is carried out using NATS, an open-
source messaging system. Health checking and action push to nodes
are implemented over NATS7 in a publish-subscribe manner.

Caching layer for every service is implemented using Redis8 key-
value, in-memory database. It is important to notice, that all concrete

2https://golang.org/
3https://etcd.io/
4https://www.influxdata.com/
5https://grpc.io/
6https://developers.google.com/protocol-buffers
7https://nats.io/
8https://redis.io/

131

CHAPTER 5. PROOF OF CONCEPT

tools that are used, are easily swappable for some other as long as they
implement a proper interface.

All communication with the outside world is done in a REST
manner using JSON encoded messages over HTTP. To communicate
with the platform, we have developed a simple command-line interface
(CLI) application also using the Go programming language that sends
JSON encoded messages over HTTP to the system.

Every service is packed in a container, and for this purpose Docker9
containers are used. To achieve automatic orchestration, and self-heal,
and up-time, all services that are packed in containers, are running
inside Kubernetes.

Every service will log details about its usage and calls, as well as
traces how requests are going. Log data is stored outside the service
and container, and pieces of information will be sent to centralized
log storage on every t seconds specified by the user. Sending intervals
could be changed and adapted using the configuration file for every
service independently.

Log data will be stored in the two levels:

(1) System level, this data is generated by the system and could be
viewed by administrators of the system only. Operations people
in the team (eg. DevOps or SREs), and developers cannot see it,
but providers can;

(2) User level that stores information about user requests that
only users can see. This type of data will not be visible to the
developers of the system, and only users that created these logs
will be able to see them.

Log storage could be searched to see the general state of the system,
and pieces of information about user requests and the state of their
requests.

9https://www.docker.com/

132

CHAPTER 5. PROOF OF CONCEPT

5.1.2 Node daemon

Every node runs a simple daemon program implemented using the Go
programming language, as an actor system (see Secion 2.11.1). The
actor system is developed for this purpose. When a message arrives,
the proper actor will react based on the message type, or discard it if
the type is not supported.

Extending such a system is rather easy because users need to simply
write a new actor and logic that goes with them and register it to the
system.

When the daemon start, it will first read the configuration file to
do the proper setup and then will contact the actor system to start all
the actors.

System messages will be sent to the daemon, but it will not react
to these messages. Daemon is not able to communicate with any actor
directly. All communication goes through the actor system which is
responsible to pass messages to the actors. The actor system at this
point has only four existing actors:

(1) Cluster actor, this actor reacts on messages about new cluster
formation, but he is also responsabile to contact rest of the system
that message has arrived.

(2) Internal actor, this actor react to messages from other actors to
update the daemon state. For example, on new cluster creation,
this actor will update daemon id, name, labels, etc.

(3) Health actor, this actor will periodically send health-check data
to the system about node state, utilization, etc. This actor will
communicate to the rest of the hardware to get proper pieces of
information, to collect logs from the node, and send all that data
to the system.

(4) Gossip actor, this actor will communicate with other peers in
the group using SWIM protocol techniques.

133

CHAPTER 5. PROOF OF CONCEPT

The actor system will monitor these actors, and in case any of the
crushes, the actor system will restart them.

Listing 5.1 show the actor system hierarchy of existing actors.

1 \StarSystem
2 +--\TopologyActor
3 +--\ HealthcheckActor
4 +--\GossipActor
5 +--\InternalActor

Listing 5.1: Actor system hierarchy.

Before daemon starts, the user needs to specify some parameters for
proper configuration like:

(1) Identifier represents unique identifier of the node. When a node
is not a part of some cluster, this can be whatever the user wants.
Once the node is a part of some cluster, the identifier will be
updated, and it is not advised to change it manually afterwards.;

(2) Name, represent name of the node. This property also can be
changed when a node is part of the cluster, otherwise, it can be
whatever we want;

(3) Labels represent the specific features of the node. Labels are
used to query for free nodes, and there is no formal restriction of
what they can or can not be. This property can be changed when
the node is a part of some cluster. It is advised that as labels we
put some specific features of the node that might be beneficial
for the user who is looking for nodes to create new cluster(s);

(4) Health-check details, here we have pieces of information to
control the health-check mechanism. Since nodes communicate
with the rest of the system via publish-subscribe events, we must
specify the address of the rest of the system and the topic name,
where we publish our pieces of information;

134

CHAPTER 5. PROOF OF CONCEPT

(5) System information represents basic information for a node
to know how to contact the rest of the system. We should specify
the system address, so that node knows where to send messages,
and where are messages are coming from. We can also specify the
version of the system we are trying to contact. System version
could be used to support backward compatibility if we have
multiple API versions of the system running at the same time or
some period.

Configuration can be done easily using the YAML configuration file.
Listing 5.2 shows simple YAML configuration file for daemon pro-

cess.

1 star:
2 version: v1
3 nodeid: node1
4 name: noname
5 flusher: address
6 healthcheck:
7 address: address
8 topic: health
9 interval: 1m
10 labels:
11 os: linux
12 disk: flash
13 arch: arm
14 model: rpi
15 memory: 4GB
16 storage: 120GB
17 cpu: 1
18 cores: 4

Listing 5.2: Daemon configiration file

Based on the configuration file, the daemon will start a background
health-check mechanism, and it will subscribe to the system, using an

135

CHAPTER 5. PROOF OF CONCEPT

identifier as a subscription topic. The background thread will contact
the system repeatedly using a contact interval time, specified in the
configuration file.

On every health-check, the node will send labels, names, IDs, and
metrics to the system (e.g., CPU utilization, total, used, free ram or
disk, etc.). The specified labels will be used when the user is querying
for available nodes, while the node id will be used for reservation when
forming a cluster.

At the first start of the daemon, when the node is free, the user
can specify whatever node id he/she wants. Once, the node is a part
of the cluster, the node id will be updated to match that. Node id
update will happen on the cluster formation process.

5.1.3 Separation of concerns details

The implemented framework follow the clear SoC model, presented in
Section 4.2. Since the presented model consists of three components,
the implemented framework is deals only with resources (see page 78).
Its job is to organize nodes into clusters, regions, and topologies, to
make them communicate and expose their resources to the upper layer
of SoC for utilization. The upper layer will run services on these
resources, to collect data from data creators and process them as
requested. It must have set up the infrastructure to do any processing
or storage. This middle layer is the binding element between the layers.

5.1.4 Long-lived transactions details

Current implementation follows the sagas pattern (see page 44) for
transactions, and isolation is added using semantic lock by adding
states to the task. The task can be in one of following states: (1)
PENDING, (2) IN PROGRESS, (3) CREATED, and (4) FAILED.

Until the task reaches Created state, no other operation can be
done on that cluster configuration.

136

CHAPTER 5. PROOF OF CONCEPT

The cluster formation transaction is split into a few sub-transactions:
(1) reserving nodes, (2) writing cluster information, and (3) sending
cluster information to push service and ultimately sending pieces of
information to the nodes.

The rollback mechanism is implemented using choreography, and
communication between the various services is done asynchronously
using message queues.

5.1.5 Garbage collection details

The current garbage collection process is pretty trivial since there is
no complicated graph of items connected to the cluster information
details.

The process will scan tasks with the state FAILED in the back-
ground, and it will remove those items. Related details to the cluster
information, for example, node metrics, will expire automatically since
there is a lease attached to them.

Another resource that will be automatically deleted is node data.
If a node health-check message does not reach the system in some time,
the node lease will expire and data will be removed automatically.

5.1.6 Limitations

The framework at the current state has some limitations that we must
address. As shown in figure 5.1, for purpose of testing the system, and
to give the users any way to interact with the system, a CLI application
is implemented. This is a good option for initiating commands to the
system. The problem with this approach is that showing logs, and
topologies might be limiting the users, especially if they monitor and
supervise multiple topologies with regions and clusters.

For monitoring, a tool with UI would be a better solution and it
can show more details. For a small amount of data, when topologies
are relatively small, CLI could be used. But for some real-world
applications, desktop, and/or web-based UI will be a much better

137

CHAPTER 5. PROOF OF CONCEPT

solution, and CLI can be used for fast lookup on specific pieces of
information about clusters and nodes, for example.

The current implementation of the queueing system is limiting
because if we want to extend the system with new queues we need
to shut down the whole service, and that is not the best solution.
But since the goal of this thesis is not queue management, but µC
formation, protocols, and formal modeling.

Since the goal of this thesis is not queue management, and the
purpose of this thesis is not Human-computer interaction, but µC for-
mation, protocols, and formal modeling, mentioned limitations should
be the topic of the future work 7.3 section.

The current implementation do not include garbage collection of
connected dependent items, and users cannot influence garbage collec-
tion decisions. This should be one of the topic of the future work 7.3
section as well.

5.2 Operations

In this section, we are going to describe all implemented operations
in the framework and present specific details about every individual
operation.

5.2.1 Query

The query operation is used to show all free nodes or filtered free
nodes that are registered into the system, to the user (yellow arrows in
Figure 5.1.).

When a user wants to get information about free nodes, they need
to submit a selector value which is composed of multiple key-value
pairs. These key-value pairs can be any alphanumeric set of symbols
for both keys and values. Based on that key-value pair the system will
do the query of the free nodes.

138

CHAPTER 5. PROOF OF CONCEPT

The selector will be used as a search mechanism to compare the
labels of every free node that exists in the system. The nodes that are
satisfying the rules 4.11 defined in Section 4.6.3 will be present in the
result.

This operation is done before the formation of new topologies,
regions, or clusters — mutation of the system. The user first needs to
get a list of free nodes, then he can choose nodes that are best suited
for him and try to form topologies, regions, or clusters of them.

The querying process is a little bit changed from one presented in
Section 4.6.3. The only change that is made is the addition of the
Gateway service that will pass requests into the system and prevent
overflow of requests. This change does not affect or validate the formal
model presented before, since the added service does not interfere with
the process of searching nodes or changes to the system.

Figure 5.2 shows a communication diagram for the query action,
with the addition of the Gateway service.

query

query

result
result

User Gateway Nodes

Figure 5.2: Low level communication protocol diagram of query opera-
tion.

Query operation is implemented using api composition pattern (see
page 34).

139

CHAPTER 5. PROOF OF CONCEPT

5.2.2 Mutate

Mutate operation (orange arrows in Figure 5.1.) changes the system
state by creating, editing, or deleting clusters, regions, and topologies.
When a user wants to perform a mutation over the system, the desired
state needs to be specified declaratively using a YAML file and
submitted to the system. When the state is submitted, the system will
do the rest of the job to ensure that the state desired by the user is
reached. As a deployment strategy, we used recreation strategy (cf.
section 4.5.1), for simplistic implementation reason.

The users specify which nodes are forming the cluster. Optionally,
users can also specify labels and names on the node level, and retention
period on the cluster level. The retention period is used to describe
how long metrics are going to be kept. When the retention period
expires, the metrics data will be deleted or moved to another location.

When forming a topology, users can assign a name and label to the
entire topology. These parameters will be used when the user wants to
query all topologies to get full information about regions, clusters, and
nodes inside a topology.

Mutate operation is immutable, which mean that there will be no
in-place changes to the existing state. If a user wants to do any update,
he/she needs to specify a full new state that will replace the existing
one. This operation is atomic as well, which mean that a whole new
state must be able to replace the existing state. If this happens, the
system will replace the old state with the new one. The main storage
that stores configuration data is a key-value store implemented using
an etcd database. The key that will be used to store the configuration
data is the whole path of topology, regions, cluster, node, while the
value represents the state desired by the user.

Listing 5.3 shows structure for key-value pair that is stored in the
main database, where on top we can see a structure of the key, and
below it we can see the structure of the value. This kind of structure
is similar to OS file-system data organizations of files and folders.

1 \topology\region\cluster\node

140

CHAPTER 5. PROOF OF CONCEPT

2 +--\labels
3 +--\informations
4 +--\resources
5 +--\status

Listing 5.3: Structure of stored key-value element.

We store as well one additional information about labels index value.
This index is used for a faster query of elements when doing labels
comparison. To find elements we can query in a similar way like
searching files and folder structure. The etcd in newer version do not
allow hierarchical keyspace, but what they allow is ranged query by
some prefix. This is useful as well because we can still get all regions
in topology, clusters in the region, or nodes in the cluster if we know
to which group they belong.

Mutate operation is not idempotent by nature, but the whole
process behind it makes mutate an idempotent operation. Whether the
user tries to create already existing infrastructure by changing the order
of regions, clusters, or labels in the nodes, or if he for whatever reason
did not get confirmation that infrastructure is created, an existing
infrastructure will not be created. This is done in such a way, that
State service (Figure 5.1) will keep the information set about created
infrastructure. This information is implemented as a flat keyspace
set, that have information. On every mutation request, the system
will test if such a topology already exists. If such topology already
exists, the user will get confirmation that his infrastructure is created.
If such topology do not exist, a new cluster formation protocol 4.6.3
will be initiated. The mutation confirmation is followed by a unique
id, which the user can use to query steps, logs, and traces that are
done in process of working towards the state desired by the user. Logs
service can give the user complete details about his task state using
that unique id.

When creating topologies, the user is free to give whatever name
he wants for every region, cluster, and node. The only restriction is
that name should be the alphanumeric set of characters. Listing 5.4

141

CHAPTER 5. PROOF OF CONCEPT

shows an example of a user-defined state that forms the topology of
one region with one cluster that contains three nodes, with a retention
period of 24 hours. The whole topology will have the same set of labels,
but node3 redefines this rule by specifying its own.

1 constellations:
2 version: v1
3 kind: Topology
4 metadata:
5 taskName: default
6 queue: default
7 payload:
8 name: MyTopology
9 selector:
10 labels:
11 l1: v1
12 l2: v2
13 l3: v3
14 topology:
15 region1:
16 cluster1:
17 retention:
18 period: 24h
19 machineid1:
20 name: node1
21 machineid2:
22 name: node2
23 machineid3:
24 name: node3
25 selector:
26 labels:
27 os: linux
28 arch: arm
29 model: rpi

142

CHAPTER 5. PROOF OF CONCEPT

30 storage: 100GB
31 memory: 1GB

Listing 5.4: Example of mutate file using YAML.

After all, nodes that should form a cluster, acknowledge cluster forma-
tion message, they will inform the system that the message is received,
and they will start the process of cluster formation. This process is
done by using SWIM [32], a Gossip style protocol. When every node
has a complete list of its peers that should be in the cluster, the process
of cluster formation is done.

On the next health-check message, every node will send its id that
is telling the system that he is part of some cluster. This kind of
messages will be used in the State service to validate that cluster is
alive and well, or that some nodes (or all), are dead or down if id is
not received.

Gossip style protocols (like SWIM) could be used in the future
to propagate information in the cluster, without explicitly ping every
node in the cluster.

5.2.3 Queueing

When doing mutation, users can target a specific system queue, by
adding a metadata part in the configuration file. With this ability,
users can aim for specific queues just for the mutation to avoid long
waiting times if other queues are full. Currently, the system does not
have any limitations, restrictions, or logic that will specify which queues
are used for what or give them special rules or permissions. This can
be viewed as a “gentleman agreement”, that in one team, operations
users can proclaim specific queues like mutatation queues used maybe
for specific topologies, and later on for other operations as well.

The queue service starts only when the default queue exists.
Adding a new queue to the system is implemented using the con-
figuration file, for convenience only.

143

CHAPTER 5. PROOF OF CONCEPT

Listing 5.5 shows an example of queue service with two additional
queues with specifications of their parameter needed for token bucket
operation [183]. Also, we can see configuration pieces of information
for instrumentation of a single service, and the same configuration is
implemented for all specified services shown in Figure 5.1.

1 blackhole:
2 db: address
3 queue:
4 myqueue1:
5 namespace: mynamespace
6 retry:
7 delay: linear
8 doubling: 1
9 limit: 5000
10 maxWorkers: 4
11 capacity: 4
12 tokens: 0
13 fillInterval:
14 interval: 1
15 rate: s
16 myqueue2:
17 namespace: default
18 retry:
19 delay: exp
20 doubling: 2
21 limit: 50000
22 maxWorkers: 5
23 capacity: 5
24 tokens: 0
25 fillInterval:
26 interval: 1
27 rate: s
28 instrument:

144

CHAPTER 5. PROOF OF CONCEPT

29 address: address
30 stopic: topic
31 collect: interval
32 location: location

Listing 5.5: Structure of stored key-value element.

5.2.4 List

The list command shows the current state of the system for the logged
user (blue arrows in Figure 5.1.). Logged user is able only to see in-
frastructure he/she has created or maintains. All other infrastructures,
created by other users, will not be visible to the users that are not
creators or maintainers.

To view his/her infrastructures, the user can specify what part
of the system he/she wants to see using a set of labels or list of key-
value pairs, which will be used by the system to determine what the
user wants to see. This process is similar to selector shown in the
query 5.2.1 operation.

There are two levels of details that user can specify:

(1) Global view of the syste, or all topologies he/she manages with
just basic information like resource utilization, number of regions
clusters and nodes;

(2) Detail view, or details about a single topology (i.e., regions,
clusters, and nodes in a single topology). Users can specify a
more detailed view of a single cluster, meaning the users will
get information about what resources the cluster has, but also
resource utilization over time (using stored metrics information)
and so on.

Both options can be useful if operations people need different details
levels for different topologies. List operation is implemented using api
composition pattern (cf. page 34).

145

CHAPTER 5. PROOF OF CONCEPT

5.2.5 Logs

The logs operation shows stored logs and traces to the user (purple
arrows in Figure 5.1.). Same as previous operations, the user needs to
be registered and logged in to be able to perform this action. With
this action, the user can see the state of his/her operations and actions.
The user can choose between two options for querying his/her logs:

(1) Get, for this option a user needs to provide a unique task id
that is given to the user when he/she creates a mutate operation.
With this option, the user will get a full list of steps, traces, and
logs collected over the time the system was setting up his/her
desired state;

(2) List, with this option user can specify selector using list of
key-value pairs in a similar way to query 5.2.1 and mutate 5.2.2
to filter only parts of the traces that contain the same labels as
selector does.

This action is implemented in some basic aspects, as this action can
return a huge amount of data that require some better visualization
than CLI.

5.3 Experimental Results

In our tests, we have used:

• 9 Raspberry Pi 3+ Model B with 1GB LPDDR2 SDRAM, 16GB
SDCard storage, and 1.4GHz Cortex-A53 64-bit SoC running
Raspbian Linux, a Debian-based operating system.

• 3 Beagle bone black devices with 512MB DDR3 RAM, 4GB
8-bit eMMC on-board flash storage, and 1GHz ARM Cortex-A8
running a version of Linux Debian operating system.

as test nodes for creating clusters, regions, and topologies.

146

CHAPTER 5. PROOF OF CONCEPT

5.3.1 Experiment

Using Go tooling, we were able to build daemon service without changes
and dissiminate on all nodes without problems.

We ran tests on different configurations and different nodes clusters
using these nodes. All nodes were connected on the network, and
experiments were conducted in a controlled environment. Nodes that
should be a part of the same cluster were connected on same network.

Our experiment started with separating nodes into groups of three.
This number is chosen because in DS, an odd number is used in cases
when we need to reach some agreement and we need major majority
like consensus, for example. This is not important for purpose of this
thesis, we could pick any number, membership protocol does not makes
a difference if there are three or four or eleven nodes in the cluster.

After nodes had been separated, we created a configuration file
for every node, setting up default parameters for every property node
daemon required 5.1.2. After all services were up and running, we
turned the nodes on, and health-check protocol 4.6.2 started at uprfront
defined time, which we had set for test purposes at 1 minute interval.
Logs, resources and other node details were set to 15 seconds inter-
val, so between health-check intervals, daemon would collect resource
information four times before sending it to the rest of the system.

For convenient testing, all nodes had the same set of labels, and as
labels we chose OS name, OS version, architecture version, node name
basic details about resources of the nodes.

After some time, we were able to see all nodes registered in the
system. When all nodes had been sending health-check ping for some
time, and we had a stable system, we issued a mutate operation creating
clusters of nodes that are logicaly close ot each other, and we initiated
cluster formation protocol 4.6.3. After the protocol was done, we
ended up with four clusters as we intended. We tried to initiate the
same command again to test idempotency check 4.6.4, and we got the
message that clusters already existed.

147

CHAPTER 5. PROOF OF CONCEPT

To increase capaticity, we extended clusters by creating new ones
using three clusters with four nodes. We created new new mutate file,
and initiate new mutate command. After some time, we saw that one
cluster was down and that we now had three clusters with four-nodes,
as we intended. After successful creation of new clusters, we dleted
down cluster.

The last test was to test health-check protocol once again - we
disconnected one random node from the power supply, and since that
node ping was missing, the system was able to detect which node was
down. This concluded our experiment.

5.4 The existing solutions enhancement

The protocols defined in this thesis could serve as a base layer for
the system developed from scratch. On top of such a solution, other
services and features can be added like scheduling, storage, applications,
management, monitoring, etc.

The protocols described in this thesis ensure proper node registra-
tion into the system, organization, and reorganization of node resources
into clusters, regions, and topologies, bringing disposable µCs closer to
the users at the network edge, allowing that requests are served from
the local µCs.

The existing orchestrator engines (e.g., Kubernetes, Apache Mesos,
Docker Swarm, etc.) operate one cluster level [91, 149, 150, 154, 184].
The single cluster could span over multiple availability zones in the
cloud, minimizing the chance that a failure in one zone impairs services
in other zones [184]. Kubernetes allow extension in terms of multi-
cluster deployments [184]. In such a scenario, Kubernetes is handling
these clusters as disposable — "treating clusters as cattle, not pets"
(i.e., numerous servers/clusters built using automated tools designed
for failure, where no servers/clusters are irreplaceable [185]).

The model proposed in this thesis goes one step further, allowing
the creation of disposable µCs. Such an extension allows infrastructure

148

CHAPTER 5. PROOF OF CONCEPT

optimization in more dimensions [186]. The users are allowed to build
numerous µCs designed for failure using automated tools where no µC
is irreplaceable — "treating µCs as cattle, not pets."

The existing solutions can integrate the model proposed in this
thesis to serve as a node register. Such integration allows the registra-
tion of new nodes into the system, allowing the existing orchestration
engines to use new nodes, and expand their available resource pool. In
form of specification, the users can provide a list of which available EC
nodes need to be part of some µC.

The system will communicate with the existing orchestrator agent to
register/unregister them with the existing cluster. In such a scenario,
we can hook on the existing orchestrator health-check mechanism
informing our system that a node in some cluster is alive. Unused
nodes still use the health-check protocol defined in this thesis informing
the system that they are still available for utilization.

The proposed model preserves the node’s topology allowing cloud
providers and orchestrator engines to treat µCs disposable, abstracting
infrastructure to the level of software — infrastructure as software [131].
This approach benefits from the already available tools, principles,
and techniques (e.g., reuse, testing, modeling, and evaluation). The
already available tools can be used for the disposable µC infrastructure
definitions.

The model developed in this thesis is not competing with the
existing orchestrator tools. It is not orchestrating applications, but it
is a free nodes register and µCs infrastructure descriptor allowed to be
offered as a stand-alone service bringing disposable µCs model to the
users.

The model allows integration with the existing orchestration tools,
leveraging existing mechanisms and best practices. Cloud providers
can create an operator for various orchestration engines. This allows
them to offer dynamically created, disposable µCs as a service to their
users, using infrastructure as software principles, for already existing
orchestration engines, that users are already familiar with. And if

149

CHAPTER 5. PROOF OF CONCEPT

cloud provider have their own orchestration engines, they can fine-tune
integration between the model and their tools tightly integrating it
into their their services.

150

Chapter 6

Model usability

This chapter discusses applicability of the proposed model. We are
also going to give a case-study for the COVID-19 area traffic control
example in city of Milan, Italy.

6.1 Applications

This research focuses on a platform with geo-distributed edge nodes
that can be organized dynamically into the µDCs and regions based
on the cloud model, but adapted for a different environment. This
middle layer helps the power-hungry servers reduce traffic by serving
the nearby population requests. Users are getting a new platform as a
blank canvas, and there is no limitation in what applications they can
develop. Integrating hardware and/or software, even more, connecting
sensors and things around us and eventually an operating system that
will be capable of running city/state infrastructure without human
intervention. The system presented in this thesis is a stepping stone
towards that idea.

The main advance of EC, when compared to the cloud-only ap-
proach, is the acceleration of the communication speed. The cloud

151

CHAPTER 6. MODEL USABILITY

could bring huge latency, while EC originates from peer to peer sys-
tems [10], serving only local population needs, minimizing potentially
huge round-trip time of the cloud. Furthermore, the presented model
expands peer to peer systems into new directions and blends them with
the cloud to allow novel human-centered applications.

If we imagine sensors are put on a specific group of users and/or
places in the city/state and monitor them in real-time, we can process
these streams of data directly close to where they are, where they are
moving and going. We could monitor air pollution for example, and
make decisions in real-time to suggest users not to walk in some area,
especially if they have some known respiratory problem.

Geo-distributed nodes represent a great idea to do any kind of
monitoring and processing, especially for natural phenomena and do
alert as soon as probes, sensors, or other things detect even the slight-
est changes. Applications like self-driving cars, delivery drones, or
power balancing in electric grids require real-time processing for proper
decision making or any other application that future developers may
develop. Content delivery networks, content sharing could be imple-
mented to serve content to the users faster than going over the cloud,
since µCs should serve the local population that is nearby.

6.2 Area traffic control example

Let us consider a use case that can benefit from our model. In the
context of the recent COVID-19 outbreak, we can examine the city of
Milan, Italy. Into nine municipalities, numbered from 1 to 9 the city
is split. Let us follow the natural subdivision having Milan topology
where municipalities have one or more regions. Population density
implemented applications and needs dictate the number of clusters per
region serving the population nearby.

If city subdivision changes in the future, reorganization of regions
and clusters is easy to be done dynamically, using cluster formation
protocol. A prerequisite for this to be done: there must be EC nodes

152

CHAPTER 6. MODEL USABILITY

deployed on the territory, and nodes are connected to the system using
health check protocol.

During the COVID-19 outbreak, an increased amount of ambulance
vehicles and medical personnel had to be routed to hospitals as fast
as possible. Let us consider that the city is using some platform
for supervised area traffic control. Utilizing the principles from the
presented model, we can target ambulance vehicles, giving them a
higher priority, compared to regular vehicles.

In such a scenario, µCs can run three kinds of frontend services,
specifically tailored for this application: (1) a service that follows the
ambulance vehicles, (2) a service that will regulate the traffic light
control, and (3) GPS routing service.

Suddenly increased number of ambulance vehicles causes an in-
creased need for resources (e.g., decisions that require more processing
power) at the frontend service regulating the traffic routing and light
control. µC clusters allow resource rearrange, or even a dedicated
cluster just for this purpose. If more resources are required, regions can
be changed as well, and finally, the whole topology can be repurposed or
merged with a city nearby to support an increased number of requests.

We can monitor patient health in real-time [187, 188, 189] with
extremely short response time (below a millisecond), usinng internet-
based application control [190] and transfer data to healthcare plat-
form [191, 192]. On patient’s arrival, health workers already have
crucial information, while robotic systems can help in diagnosis and
screening [193]. Such a platform ofering telemedicine in cooperation
with area traffic control increases patient survival chances. At the same
time, reduce the hospital spending on unnecessary tests.

For the research purpose, the depersonalized data can be transferred
to the backend service for deeper analysis, behavior modeling, etc. This
should be regulated by a trustworthy body. The proposed model would
be helpful for researchers [194], giving them valuable insight into the
outbreak in real-time.

The same applications strategy could be reused by others or adjusted

153

CHAPTER 6. MODEL USABILITY

to best suit their needs. Such a service may exist only during the
outbreak. When the situation is under control, the service could be
dismissed. If fewer resources are required, or the pandemic is over, we
can rearrange resources according to different needs. We can reuse the
strategy on the next pandemic spike.

Figure 6.1 depicts previously described example, trough conceptual
architecture model.

Cluster C

Region A [COVID 19 affected]

Cluster A
Cluster B

Cluster D

Topology A

Vehicle tracking, routing and

Patient

services

recognition frontend services

monitoring
alerting

prediction
frontend

Region B [Not affected]

Cluster A

Utility
frontend services

General purpose
frontend services

Cluster C

Power grid
frontend servicesPower grid

frontend services

Cluster B

Utility
frontend services

Cluster D

Utility
frontend services

Unutilized

Nodes

Volunteer

Nodes

Backend
Services

Sync important

transfer patient

Micro cloud scope

Traditional cloud scope

depersonalized

Target, prioritize,

and route

[local]

[global]

data in real-time

data

data

Medical personal

Research

Patients

alerting, predictions

real-time data

and warnings

Patients
historical data

depersonalized
data extraction

Ingraft

and transfer to
typical cloud apps

Figure 6.1: Conceptual architecture model for COVID-19 area traffic
control example

154

Chapter 7

Conclusion

This chapter gives the summary of contributions for this thesis in Sec-
tion 7.1. Section 7.2 presents limitations of our model, while Section 7.3
presents future work.

7.1 Contributions of the thesis

This thesis presents a possible solution to how to organize geo-distributed
EC nodes into µCs that will be able to serve the requests of the nearby
population. We have introduced an extension of µDCs based on proven
abstractions from cloud computing like zones and regions but adapted
for different usage scenarios.

These easy to understand, yet powerful abstractions with slight
adaptations, allowed us to cover any arbitrary vast geographic area,
and yield a more available and reliable system forming the µC model.
These abstractions are easy to organize and reorganize, and µC size is
determined by the population needs descriptively.

We have also presented the cloud to ECC mapping, showing differ-
ences between two architecture models. Furthermore, we have given
a formal model of the system and its protocols used to form such a
system, with clear SoC and native application model for future µCs

155

CHAPTER 7. CONCLUSION

infrastructure and service development. The thesis also presents a
proof of concept implementation and discusses integration into existing
solutions, limitation of such a system with a few applications that
could be used in.

Chapter 1 presents the motivation for this thesis with problem are,
hypothesis combined with goals and research questions this thesis is
built on.

A short introduction to the topic of distributed system is given
in Chapter 2, with a short introduction to the topic of distributed
systems, with a focus only on the areas that are important for the
understanding of this thesis.

It is shown what distributed systems are. We present problems these
systems create, and why they are so hard to implement and maintain.
It also presents a few distributed computing applications, that we can
use to employ nodes in the distributed system. Further on it is shown
what scalability is and why it is important for distributed systems,
with few organizational ideas like peer-to-peer and membership that
protocol that is important in a distributed environment for various
reasons.

Virtualization techniques are then described that can be used to
pack and deploy applications and infrastructure, how to implement
various deployment techniques especially in the CC environment, but
also the difference between DS and few models that are usually confused
as distributed like parallel computing and decentralized computing.

Chapter 3 shows related work done by various other researchers or,
companies, focused again only on things that are related to this thesis.

We show different platform options, where people change the ex-
isting solutions like Kubernetes or OpenStack to made them work in
areas like edge computing and mobile computing. Implementations of
a few new platforms to use volunteer nodes to do some computation
and storage on them with drop computing and systems like Nebula are
shown further.

It is show how nodes can be organized to split some geographic area

156

CHAPTER 7. CONCLUSION

into zones, and show how µDCs can help CC to serve requests from
the local population. Different offloading techniques are used today,
how to offload tasks from mobile devices closer to fog or edge nodes,
but also various application models that could harness these offloading
techniques and nodes organizations.

In the end, the position of this thesis, compared to other similar
researches, is presented.

Chapter 4 presents the main contribution of this thesis. We dissect
all important aspects that we need to have to help CC with latency
issues, Big Data with huge volumes of data especially in the age of
mobile devices and IoT.

Our model is based around µDCs that are zonally organized, that
will serve local population and population nearby. We present a model
that is based on CC but adapted for different scenarios and use cases.

We show how we can dynamically form new clusters, regions, and
topologies and how we can use them in the new age of mobile devices
and IoT. These newly formed systems will have clear the SoC, adopted
from existing research to three-tier architecture. The formed model
will serve as a pre-processing layer, firewall, or privacy layers, and it is
adjustable in various dimensions.

The presented model can be formed in such a way to serve larger
or smaller geographic areas, where users are located. This is a matter
of agreement and a matter of choice. We present how developers can
use this new infrastructure and what possible models of applications
could exist, and how operations can deploy developed services onto
existing infrastructure.

In the end, we present the repercussions of this model, and how
it can be used as an integral part of existing systems to serve as
topology storage or as a new model on top of which new subsystems
and applications can be developed. We present protocols for the
creation of such a system and model them using asynchronous session
types. The system follows a formal model, and it is easy to extend.

157

CHAPTER 7. CONCLUSION

Finally, we give limitations of such a system and things we must
be aware of.

Chapter 5 presents an implemented framework that is based on
knowledge compiled from previous chapters. We also present in detail
operations that could be done in the framework, where it fits in the
presented SoC model.

It further presents the results of our experiments in a controlled
environment, what, the limitations of the framework at the current
stage, and possible applications, and where this model could be used
and beneficial.

The thesis is concluded in this last chapter with what is done, what
can be done in the future in form of future work.

7.2 Limitations

The model proposed in this thesis has some llimitations that we must
be aware of. When talking about small-scale servers and µCs, we must
be aware of a few things.

(1) Not all organizations will be able to deploy µCs, due to the high
initial investments required [12]. We can rely on government
authorities, large cloud providers, or other big companies to build
the initial infrastructure for their own needs, and lease it to others
similar to the cloud. The general public can use them, similarly
to the cloud – pay as you go, model;

(2) There is no guarantee that existing public cloud providers will
allow nodes that are not built, resigned, or deployed by them.
If we are building a private cloud, then we can make a different
decision. One way to resolve this issue is that the whole platform
becomes open-source so that public cloud providers can engage
in the development, and eventually use them as a solution;

158

CHAPTER 7. CONCLUSION

(3) These small-scale servers must be out of reach of people and
protected in some way so that not everyone has access to them.
Some degree of physical security must be implemented;

(4) The places where these small scale servers will be deployed must
have a stable internet connection, and the ability to integrate
SDN or other similar technologies, so that complex network
topologies could be implemented properly;

(5) These servers can have some open architecture or could be custom
built by other providers. In both cases, they must be able to
satisfy rules that are presented in Section 4.2;

(6) Splitting the processing into two parts and the possibility that
users can be responsible for µCs may raise some legal concerns.
Either to develop interesting applications, use them as a firewall
or simply use them as a privacy level for data, there must be a
legal agreement that might not be that easy to achieve.

7.2.1 Discussion

The specialized infrastructure in models like [195, 26, 188, 187, 189] is
required to solve a single problem. The model proposed in this thesis is
more oriented towards a wider specter of applications, without the need
for specialized hardware or software. Users should build applications,
similarly as they build them for the cloud. Even existing applications
models (e.g., microservices, serverless functions) could be transferred
from cloud to µC.

One advantage is that specialized models are developed and op-
timized for a specific use case taking the maximum out of existing
hardware and software. Compared to the presented model (in terms of
speed), in some situations, they might outperform the proposed model.
On the other hand, the proposed model offers much more freedom

159

CHAPTER 7. CONCLUSION

for development (in terms of agility and applicability). This develop-
ment freedom gives the users a new platform for creating interesting
human-centered applications spanning over CC and µCs [67].

Specialized platforms usually require special types of applications,
while the proposed model does not limit users (in terms of development
tools and techniques), as long as their application could be virtualized in
some way (e.g., using virtual machines, containers, or unikernels). The
developers may reuse existing knowledge to develop their applications.

The proposed model allows the organization of storage and process-
ing resources according to priority if a catastrophic event occurs (e.g.,
COVID-19 see section 6.2). Providers can organize their resources and
manage their digital infrastructure, where developers make applications
that will help its citizens.

7.3 Future work

The work on the µCs is at an early stage and leaves many open
questions. As a part of our current and future work, we are planning to
extend the proposed model in different directions. Future work might
be separated into three options:

(1) Features that operations people (eg. DevOps and SREs) users
can benefit from;

(2) Features developers might benefit from;

(3) Infrastructure features, that both previous groups can benefit
from.

For the first group, the first thing that should be implemented is remote
cluster management, using configurations, security credentials, and
actions over nodes in one or multiple clusters. On formed clusters, the
users should be able to do remote configurations that nodes and/or

160

CHAPTER 7. CONCLUSION

applications can use and set up the data without going from node to
node.

The system should also be extended with namespaces for usage
in environments with many users in multiple teams – multi-tenant
environments. Namespaces provide the separation on virtual clusters,
running on the same physical hardware. Speaking about multi-tenancy,
we are also planning to implement role-based access control integrate
with authentification and authorization services, with the addition of
controlling different users with quotas, using rate limiting and resource
limiting.

Also one possible approach would be to extend resources dynami-
cally using infrastructure auto-scaling mechanism, so that system can
grow and shrink as needed.

We are also planning to implement a full architecture and appli-
cations monitoring, alerting, and reporting that would be helpful to
any administrator of such a system. We might also consider rethinking
networking and making network isolation so that once formed topolo-
gies can communicate within themselves, and a possibility to specify
strategies of communication with other topologies.

Queueing system mentioned in section 5.2.3 should be extended so
that users and/or operations people can easily add new queues and
possibly assign a role for them.

We should extend the access pattern so that users can issue com-
mands to µCs directly instead of going over the cloud master process
only. Here we need to implement synchronization in multi-cloud de-
ployment.

For the last part in this operations section, we should also think
about continuous integration, deployment, and delivery of services onto
the infrastructure, and as well as various UI dashboards that can be
customized to present different aspects of the system.

Another direction for future work is the implementation which de-
velopers could benefit from. The first thing that should be implemented

161

CHAPTER 7. CONCLUSION

here is the complete application framework so that users can start de-
veloping services that can do something. We should also implement a
framework and maybe domain-specific language for the use case where
users just want to pre-process the data before sending it to the cloud,
in a more convenient way than writing the whole application.

Users can develop their applications with different models:

(1) mPaaS, where the platform is doing all the management and
offers a simple interface for developers to deploy their applications;

(2) mCaaS, if users require more control over resources requirements,
deployment and orchestration decisions;

(3) mSaaS, users can develop their solutions only using µCs, but
this is not advised at the moment;

The second would be file system and database APIs that users can use
to store their data. We should also provide an interface for extensions
so that others can create their databases following different models
from which developers can benefit, but also integrating existing ones.

The last part of the future work be extending the current system
with tunable replicating strategies for the data, in case that any part
of the topology fails for whatever reason, data would not be lost.
Furthermore, we should provide tunable CC synchronization models
that could be used.

We should implement a scheduling system for user-developed appli-
cations so that we can put applications into the formed architecture.
And last but not least, we are planning to add several security layers
to protect a system in general from malicious users.

We should investigate compression methods to reduce data stored
and sent via the network. These tests should be conducted on ARM
devices with existing methods, or maybe we can create a ground for
new compression methods and techniques.

It is stated in section 4.13 of this thesis that this model could be
integrated into existing solutions. Our efforts should go as well on

162

CHAPTER 7. CONCLUSION

integrating this system with existing solutions so that they can benefit
from this hierarchical and geo-distributed nodes organization in the
same way or almost the same way as the stand-alone solution would.

163

CHAPTER 7. CONCLUSION

164

Bibliography

[1] M. Chiang, T. Zhang, Fog and iot: An overview of research
opportunities, IEEE Internet Things J. 3 (6) (2016) 854–864.
doi:10.1109/JIOT.2016.2584538.
URL https://doi.org/10.1109/JIOT.2016.2584538

[2] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria,
J. Adityatama, K. J. Eliazar, Why does the cloud stop comput-
ing? lessons from hundreds of service outages, in: M. K. Aguilera,
B. Cooper, Y. Diao (Eds.), Proceedings of the Seventh ACM Sym-
posium on Cloud Computing, Santa Clara, CA, USA, October 5-7,
2016, ACM, 2016, pp. 1–16. doi:10.1145/2987550.2987583.
URL https://doi.org/10.1145/2987550.2987583

[3] W. Vogels, A head in the clouds the power of infrastructure as a
service, in: Proceedings of the 1st Workshop on Cloud Computing
and Applications, 2008.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, M. Zaharia,
Above the clouds: A berkeley view of cloud computing, Tech.
Rep. UCB/EECS-2009-28, EECS Department, University of Cal-
ifornia, Berkeley (Feb 2009).
URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/
EECS-2009-28.html

165

https://doi.org/10.1109/JIOT.2016.2584538
https://doi.org/10.1109/JIOT.2016.2584538
https://doi.org/10.1109/JIOT.2016.2584538
https://doi.org/10.1109/JIOT.2016.2584538
https://doi.org/10.1145/2987550.2987583
https://doi.org/10.1145/2987550.2987583
https://doi.org/10.1145/2987550.2987583
https://doi.org/10.1145/2987550.2987583
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

BIBLIOGRAPHY

[5] Q. Zhang, L. Cheng, R. Boutaba, Cloud computing: state-of-the-
art and research challenges, J. Internet Serv. Appl. 1 (1) (2010)
7–18. doi:10.1007/s13174-010-0007-6.
URL https://doi.org/10.1007/s13174-010-0007-6

[6] M. D. de Assunção, A. D. S. Veith, R. Buyya, Distributed data
stream processing and edge computing: A survey on resource
elasticity and future directions, J. Netw. Comput. Appl. 103
(2018) 1–17. doi:10.1016/j.jnca.2017.12.001.
URL https://doi.org/10.1016/j.jnca.2017.12.001

[7] S. K. A. Hossain, M. A. Rahman, M. A. Hossain, Edge computing
framework for enabling situation awareness in iot based smart
city, J. Parallel Distributed Comput. 122 (2018) 226–237. doi:
10.1016/j.jpdc.2018.08.009.
URL https://doi.org/10.1016/j.jpdc.2018.08.009

[8] J. Cao, Q. Zhang, W. Shi, Edge Computing: A Primer, Springer
Briefs in Computer Science, Springer, 2018. doi:10.1007/
978-3-030-02083-5.
URL https://doi.org/10.1007/978-3-030-02083-5

[9] M. F. Bari, R. Boutaba, R. P. Esteves, L. Z. Granville,
M. Podlesny, M. G. Rabbani, Q. Zhang, M. F. Zhani, Data center
network virtualization: A survey, IEEE Commun. Surv. Tutorials
15 (2) (2013) 909–928. doi:10.1109/SURV.2012.090512.00043.
URL https://doi.org/10.1109/SURV.2012.090512.00043

[10] P. G. López, A. Montresor, D. H. J. Epema, A. Datta, T. Hi-
gashino, A. Iamnitchi, M. P. Barcellos, P. Felber, E. Rivière,
Edge-centric computing: Vision and challenges, Comput. Com-
mun. Rev. 45 (5) (2015) 37–42. doi:10.1145/2831347.2831354.
URL https://doi.org/10.1145/2831347.2831354

[11] M. B. A. Karim, B. I. Ismail, M. Wong, E. M. Goortani, S. Se-
tapa, L. J. Yuan, H. Ong, Extending cloud resources to the edge:

166

https://doi.org/10.1007/s13174-010-0007-6
https://doi.org/10.1007/s13174-010-0007-6
https://doi.org/10.1007/s13174-010-0007-6
https://doi.org/10.1007/s13174-010-0007-6
https://doi.org/10.1016/j.jnca.2017.12.001
https://doi.org/10.1016/j.jnca.2017.12.001
https://doi.org/10.1016/j.jnca.2017.12.001
https://doi.org/10.1016/j.jnca.2017.12.001
https://doi.org/10.1016/j.jnca.2017.12.001
https://doi.org/10.1016/j.jpdc.2018.08.009
https://doi.org/10.1016/j.jpdc.2018.08.009
https://doi.org/10.1016/j.jpdc.2018.08.009
https://doi.org/10.1016/j.jpdc.2018.08.009
https://doi.org/10.1016/j.jpdc.2018.08.009
https://doi.org/10.1016/j.jpdc.2018.08.009
https://doi.org/10.1007/978-3-030-02083-5
https://doi.org/10.1007/978-3-030-02083-5
https://doi.org/10.1007/978-3-030-02083-5
https://doi.org/10.1007/978-3-030-02083-5
https://doi.org/10.1109/SURV.2012.090512.00043
https://doi.org/10.1109/SURV.2012.090512.00043
https://doi.org/10.1109/SURV.2012.090512.00043
https://doi.org/10.1109/SURV.2012.090512.00043
https://doi.org/10.1145/2831347.2831354
https://doi.org/10.1145/2831347.2831354
https://doi.org/10.1145/2831347.2831354
https://doi.org/10.1109/ICCCRI.2016.20
https://doi.org/10.1109/ICCCRI.2016.20
https://doi.org/10.1109/ICCCRI.2016.20

BIBLIOGRAPHY

Possible scenarios, challenges, and experiments, in: International
Conference on Cloud Computing Research and Innovations, ICC-
CRI 2016, Singapore, Singapore, May 4-5, 2016, IEEE Computer
Society, 2016, pp. 78–85. doi:10.1109/ICCCRI.2016.20.
URL https://doi.org/10.1109/ICCCRI.2016.20

[12] S. A. Monsalve, F. G. Carballeira, A. Calderón, A heterogeneous
mobile cloud computing model for hybrid clouds, Future Gener.
Comput. Syst. 87 (2018) 651–666. doi:10.1016/j.future.2018.
04.005.
URL https://doi.org/10.1016/j.future.2018.04.005

[13] M. Satyanarayanan, The emergence of edge computing, Computer
50 (1) (2017) 30–39. doi:10.1109/MC.2017.9.
URL https://doi.org/10.1109/MC.2017.9

[14] A. Rotem-Gal-Oz, Fallacies of distributed computing explained,
Doctor Dobbs Journal (01 2008).
URL https://www.researchgate.net/publication/
322500050_Fallacies_of_Distributed_Computing_
Explained

[15] H. Ning, Y. Li, F. Shi, L. T. Yang, Heterogeneous edge computing
open platforms and tools for internet of things, Future Gener.
Comput. Syst. 106 (2020) 67–76. doi:10.1016/j.future.2019.
12.036.
URL https://doi.org/10.1016/j.future.2019.12.036

[16] F. Bonomi, R. A. Milito, P. Natarajan, J. Zhu, Fog com-
puting: A platform for internet of things and analytics, in:
N. Bessis, C. Dobre (Eds.), Big Data and Internet of Things:
A Roadmap for Smart Environments, Vol. 546 of Studies in
Computational Intelligence, Springer, 2014, pp. 169–186. doi:
10.1007/978-3-319-05029-4_7.
URL https://doi.org/10.1007/978-3-319-05029-4_7

167

https://doi.org/10.1109/ICCCRI.2016.20
https://doi.org/10.1109/ICCCRI.2016.20
https://doi.org/10.1109/ICCCRI.2016.20
https://doi.org/10.1109/ICCCRI.2016.20
https://doi.org/10.1109/ICCCRI.2016.20
https://doi.org/10.1016/j.future.2018.04.005
https://doi.org/10.1016/j.future.2018.04.005
https://doi.org/10.1016/j.future.2018.04.005
https://doi.org/10.1016/j.future.2018.04.005
https://doi.org/10.1016/j.future.2018.04.005
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MC.2017.9
https://www.researchgate.net/publication/322500050_Fallacies_of_Distributed_Computing_Explained
https://www.researchgate.net/publication/322500050_Fallacies_of_Distributed_Computing_Explained
https://www.researchgate.net/publication/322500050_Fallacies_of_Distributed_Computing_Explained
https://www.researchgate.net/publication/322500050_Fallacies_of_Distributed_Computing_Explained
https://doi.org/10.1016/j.future.2019.12.036
https://doi.org/10.1016/j.future.2019.12.036
https://doi.org/10.1016/j.future.2019.12.036
https://doi.org/10.1016/j.future.2019.12.036
https://doi.org/10.1016/j.future.2019.12.036
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1007/978-3-319-05029-4_7

BIBLIOGRAPHY

[17] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, W. Wang,
A survey on mobile edge networks: Convergence of computing,
caching and communications, IEEE Access 5 (2017) 6757–6779.
doi:10.1109/ACCESS.2017.2685434.
URL https://doi.org/10.1109/ACCESS.2017.2685434

[18] A. Khune, S. Pasricha, Mobile network-aware middleware frame-
work for cloud offloading: Using reinforcement learning to make
reward-based decisions in smartphone applications, IEEE Con-
sumer Electron. Mag. 8 (1) (2019) 42–48. doi:10.1109/MCE.
2018.2867972.
URL https://doi.org/10.1109/MCE.2018.2867972

[19] M. Chen, Y. Hao, Y. Li, C. Lai, D. Wu, On the computation
offloading at ad hoc cloudlet: architecture and service modes,
IEEE Commun. Mag. 53 (6-Supplement) (2015) 18–24. doi:
10.1109/MCOM.2015.7120041.
URL https://doi.org/10.1109/MCOM.2015.7120041

[20] M. Satyanarayanan, G. Klas, M. D. Silva, S. Mangiante, The
seminal role of edge-native applications, in: E. Bertino, C. K.
Chang, P. Chen, E. Damiani, M. Goul, K. Oyama (Eds.), 3rd
IEEE International Conference on Edge Computing, EDGE 2019,
Milan, Italy, July 8-13, 2019, IEEE, 2019, pp. 33–40. doi:
10.1109/EDGE.2019.00022.
URL https://doi.org/10.1109/EDGE.2019.00022

[21] R. V. Aroca, L. M. G. Gonçalves, Towards green data centers:
A comparison of x86 and ARM architectures power efficiency,
J. Parallel Distributed Comput. 72 (12) (2012) 1770–1780. doi:
10.1016/j.jpdc.2012.08.005.
URL https://doi.org/10.1016/j.jpdc.2012.08.005

[22] M. Simic, M. Stojkov, G. Sladic, B. Milosavljević, Edge comput-
ing system for large-scale distributed sensing systems, in: Edge

168

https://doi.org/10.1109/ACCESS.2017.2685434
https://doi.org/10.1109/ACCESS.2017.2685434
https://doi.org/10.1109/ACCESS.2017.2685434
https://doi.org/10.1109/ACCESS.2017.2685434
https://doi.org/10.1109/MCE.2018.2867972
https://doi.org/10.1109/MCE.2018.2867972
https://doi.org/10.1109/MCE.2018.2867972
https://doi.org/10.1109/MCE.2018.2867972
https://doi.org/10.1109/MCE.2018.2867972
https://doi.org/10.1109/MCE.2018.2867972
https://doi.org/10.1109/MCOM.2015.7120041
https://doi.org/10.1109/MCOM.2015.7120041
https://doi.org/10.1109/MCOM.2015.7120041
https://doi.org/10.1109/MCOM.2015.7120041
https://doi.org/10.1109/MCOM.2015.7120041
https://doi.org/10.1109/EDGE.2019.00022
https://doi.org/10.1109/EDGE.2019.00022
https://doi.org/10.1109/EDGE.2019.00022
https://doi.org/10.1109/EDGE.2019.00022
https://doi.org/10.1109/EDGE.2019.00022
https://doi.org/10.1016/j.jpdc.2012.08.005
https://doi.org/10.1016/j.jpdc.2012.08.005
https://doi.org/10.1016/j.jpdc.2012.08.005
https://doi.org/10.1016/j.jpdc.2012.08.005
https://doi.org/10.1016/j.jpdc.2012.08.005

BIBLIOGRAPHY

computing system for large-scale distributed sensing systems,
2018.

[23] M. Ryden, K. Oh, A. Chandra, J. B. Weissman, Nebula: Dis-
tributed edge cloud for data intensive computing, in: 2014 IEEE
International Conference on Cloud Engineering, Boston, MA,
USA, March 11-14, 2014, IEEE Computer Society, 2014, pp.
57–66. doi:10.1109/IC2E.2014.34.
URL https://doi.org/10.1109/IC2E.2014.34

[24] A. G. Greenberg, J. R. Hamilton, D. A. Maltz, P. Patel, The cost
of a cloud: research problems in data center networks, Comput.
Commun. Rev. 39 (1) (2009) 68–73. doi:10.1145/1496091.
1496103.
URL https://doi.org/10.1145/1496091.1496103

[25] N. Abbas, Y. Zhang, A. Taherkordi, T. Skeie, Mobile edge com-
puting: A survey, IEEE Internet Things J. 5 (1) (2018) 450–465.
doi:10.1109/JIOT.2017.2750180.
URL https://doi.org/10.1109/JIOT.2017.2750180

[26] H. Guo, L. Rui, Z. Gao, A zone-based content pre-caching strat-
egy in vehicular edge networks, Future Gener. Comput. Syst. 106
(2020) 22–33. doi:10.1016/j.future.2019.12.050.
URL https://doi.org/10.1016/j.future.2019.12.050

[27] I. Kurniawan, H. Febiansyah, J. Kwon, Cost-Effective Content
Delivery Networks Using Clouds and Nano Data Centers, Vol.
280, 2014, pp. 417–424. doi:10.1007/978-3-642-41671-2_53.

[28] F. R. de Souza, C. C. Miers, A. Fiorese, M. D. de Assunção, G. P.
Koslovski, QVIA-SDN: towards qos-aware virtual infrastructure
allocation on sdn-based clouds, J. Grid Comput. 17 (3) (2019)
447–472. doi:10.1007/s10723-019-09479-x.
URL https://doi.org/10.1007/s10723-019-09479-x

169

https://doi.org/10.1109/IC2E.2014.34
https://doi.org/10.1109/IC2E.2014.34
https://doi.org/10.1109/IC2E.2014.34
https://doi.org/10.1109/IC2E.2014.34
https://doi.org/10.1145/1496091.1496103
https://doi.org/10.1145/1496091.1496103
https://doi.org/10.1145/1496091.1496103
https://doi.org/10.1145/1496091.1496103
https://doi.org/10.1145/1496091.1496103
https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1016/j.future.2019.12.050
https://doi.org/10.1016/j.future.2019.12.050
https://doi.org/10.1016/j.future.2019.12.050
https://doi.org/10.1016/j.future.2019.12.050
https://doi.org/10.1007/978-3-642-41671-2_53
https://doi.org/10.1007/s10723-019-09479-x
https://doi.org/10.1007/s10723-019-09479-x
https://doi.org/10.1007/s10723-019-09479-x
https://doi.org/10.1007/s10723-019-09479-x

BIBLIOGRAPHY

[29] J. R. Hamilton, An architecture for modular data centers, in:
CIDR 2007, Third Biennial Conference on Innovative Data Sys-
tems Research, Asilomar, CA, USA, January 7-10, 2007, Online
Proceedings, www.cidrdb.org, 2007, pp. 306–313.
URL http://cidrdb.org/cidr2007/papers/cidr07p35.pdf

[30] K. Sonbol, Ö. Özkasap, I. Al-Oqily, M. Aloqaily, Edgekv: Decen-
tralized, scalable, and consistent storage for the edge, J. Parallel
Distributed Comput. 144 (2020) 28–40. doi:10.1016/j.jpdc.
2020.05.009.
URL https://doi.org/10.1016/j.jpdc.2020.05.009

[31] J. Wang, D. Crawl, I. Altintas, W. Li, Big data applications
using workflows for data parallel computing, Comput. Sci. Eng.
16 (4) (2014) 11–21. doi:10.1109/MCSE.2014.50.
URL https://doi.org/10.1109/MCSE.2014.50

[32] A. Das, I. Gupta, A. Motivala, SWIM: scalable weakly-consistent
infection-style process group membership protocol, in: 2002
International Conference on Dependable Systems and Networks
(DSN 2002), 23-26 June 2002, Bethesda, MD, USA, Proceedings,
IEEE Computer Society, 2002, pp. 303–312. doi:10.1109/DSN.
2002.1028914.
URL https://doi.org/10.1109/DSN.2002.1028914

[33] C. Li, J. Bai, Y. Chen, Y. Luo, Resource and replica management
strategy for optimizing financial cost and user experience in
edge cloud computing system, Inf. Sci. 516 (2020) 33–55. doi:
10.1016/j.ins.2019.12.049.
URL https://doi.org/10.1016/j.ins.2019.12.049

[34] E. Cau, M. Corici, P. Bellavista, L. Foschini, G. Carella, A. Ed-
monds, T. M. Bohnert, Efficient exploitation of mobile edge
computing for virtualized 5g in EPC architectures, in: 4th IEEE
International Conference on Mobile Cloud Computing, Services,

170

http://cidrdb.org/cidr2007/papers/cidr07p35.pdf
http://cidrdb.org/cidr2007/papers/cidr07p35.pdf
https://doi.org/10.1016/j.jpdc.2020.05.009
https://doi.org/10.1016/j.jpdc.2020.05.009
https://doi.org/10.1016/j.jpdc.2020.05.009
https://doi.org/10.1016/j.jpdc.2020.05.009
https://doi.org/10.1016/j.jpdc.2020.05.009
https://doi.org/10.1109/MCSE.2014.50
https://doi.org/10.1109/MCSE.2014.50
https://doi.org/10.1109/MCSE.2014.50
https://doi.org/10.1109/MCSE.2014.50
https://doi.org/10.1109/DSN.2002.1028914
https://doi.org/10.1109/DSN.2002.1028914
https://doi.org/10.1109/DSN.2002.1028914
https://doi.org/10.1109/DSN.2002.1028914
https://doi.org/10.1109/DSN.2002.1028914
https://doi.org/10.1016/j.ins.2019.12.049
https://doi.org/10.1016/j.ins.2019.12.049
https://doi.org/10.1016/j.ins.2019.12.049
https://doi.org/10.1016/j.ins.2019.12.049
https://doi.org/10.1016/j.ins.2019.12.049
https://doi.org/10.1016/j.ins.2019.12.049
https://doi.org/10.1109/MobileCloud.2016.24
https://doi.org/10.1109/MobileCloud.2016.24

BIBLIOGRAPHY

and Engineering, MobileCloud 2016, Oxford, United Kingdom,
March 29 - April 1, 2016, IEEE Computer Society, 2016, pp.
100–109. doi:10.1109/MobileCloud.2016.24.
URL https://doi.org/10.1109/MobileCloud.2016.24

[35] W. Yu, C.-L. Ignat, Conflict-Free Replicated Relations for Multi-
Synchronous Database Management at Edge, in: IEEE Inter-
national Conference on Smart Data Services, 2020 IEEE World
Congress on Services, Beijing, China, 2020.
URL https://hal.inria.fr/hal-02983557

[36] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, B. Hu,
Everything as a service (xaas) on the cloud: Origins, current
and future trends, in: C. Pu, A. Mohindra (Eds.), 8th IEEE
International Conference on Cloud Computing, CLOUD 2015,
New York City, NY, USA, June 27 - July 2, 2015, IEEE Computer
Society, 2015, pp. 621–628. doi:10.1109/CLOUD.2015.88.
URL https://doi.org/10.1109/CLOUD.2015.88

[37] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of
things (iot): A vision, architectural elements, and future direc-
tions, Future Gener. Comput. Syst. 29 (7) (2013) 1645–1660.
doi:10.1016/j.future.2013.01.010.
URL https://doi.org/10.1016/j.future.2013.01.010

[38] C. Jiang, X. Cheng, H. Gao, X. Zhou, J. Wan, Toward compu-
tation offloading in edge computing: A survey, IEEE Access 7
(2019) 131543–131558. doi:10.1109/ACCESS.2019.2938660.
URL https://doi.org/10.1109/ACCESS.2019.2938660

[39] X. Jin, S. Chun, J. Jung, K. Lee, Iot service selection based on
physical service model and absolute dominance relationship, in:
7th IEEE International Conference on Service-Oriented Com-
puting and Applications, SOCA 2014, Matsue, Japan, Novem-
ber 17-19, 2014, IEEE Computer Society, 2014, pp. 65–72.

171

https://doi.org/10.1109/MobileCloud.2016.24
https://doi.org/10.1109/MobileCloud.2016.24
https://hal.inria.fr/hal-02983557
https://hal.inria.fr/hal-02983557
https://hal.inria.fr/hal-02983557
https://doi.org/10.1109/CLOUD.2015.88
https://doi.org/10.1109/CLOUD.2015.88
https://doi.org/10.1109/CLOUD.2015.88
https://doi.org/10.1109/CLOUD.2015.88
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1109/ACCESS.2019.2938660
https://doi.org/10.1109/ACCESS.2019.2938660
https://doi.org/10.1109/ACCESS.2019.2938660
https://doi.org/10.1109/ACCESS.2019.2938660
https://doi.org/10.1109/SOCA.2014.24
https://doi.org/10.1109/SOCA.2014.24

BIBLIOGRAPHY

doi:10.1109/SOCA.2014.24.
URL https://doi.org/10.1109/SOCA.2014.24

[40] M. Satyanarayanan, P. Bahl, R. Cáceres, N. Davies, The case
for vm-based cloudlets in mobile computing, IEEE Pervasive
Comput. 8 (4) (2009) 14–23. doi:10.1109/MPRV.2009.82.
URL https://doi.org/10.1109/MPRV.2009.82

[41] Y. Yao, B. Xiao, W. Wang, G. Yang, X. Zhou, Z. Peng, Real-
time cache-aided route planning based on mobile edge computing,
IEEE Wirel. Commun. 27 (5) (2020) 155–161. doi:10.1109/
MWC.001.1900559.
URL https://doi.org/10.1109/MWC.001.1900559

[42] R. Hu, N. Yoshida, Explicit connection actions in multiparty
session types, in: M. Huisman, J. Rubin (Eds.), Fundamen-
tal Approaches to Software Engineering - 20th International
Conference, FASE 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, Vol. 10202 of
Lecture Notes in Computer Science, Springer, 2017, pp. 116–133.
doi:10.1007/978-3-662-54494-5_7.
URL https://doi.org/10.1007/978-3-662-54494-5_7

[43] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous
session types, in: G. C. Necula, P. Wadler (Eds.), Proceedings of
the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008, ACM, 2008, pp. 273–284. doi:10.
1145/1328438.1328472.
URL https://doi.org/10.1145/1328438.1328472

[44] H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta,
M. Mohanty, C. Lin, Edge of things: The big picture on the

172

https://doi.org/10.1109/SOCA.2014.24
https://doi.org/10.1109/SOCA.2014.24
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1109/MWC.001.1900559
https://doi.org/10.1109/MWC.001.1900559
https://doi.org/10.1109/MWC.001.1900559
https://doi.org/10.1109/MWC.001.1900559
https://doi.org/10.1109/MWC.001.1900559
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1109/ACCESS.2017.2780087
https://doi.org/10.1109/ACCESS.2017.2780087
https://doi.org/10.1109/ACCESS.2017.2780087

BIBLIOGRAPHY

integration of edge, iot and the cloud in a distributed com-
puting environment, IEEE Access 6 (2018) 1706–1717. doi:
10.1109/ACCESS.2017.2780087.
URL https://doi.org/10.1109/ACCESS.2017.2780087

[45] Y. Jararweh, A. Doulat, O. AlQudah, E. Ahmed, M. Al-
Ayyoub, E. Benkhelifa, The future of mobile cloud comput-
ing: Integrating cloudlets and mobile edge computing, in: 23rd
International Conference on Telecommunications, ICT 2016,
Thessaloniki, Greece, May 16-18, 2016, IEEE, 2016, pp. 1–5.
doi:10.1109/ICT.2016.7500486.
URL https://doi.org/10.1109/ICT.2016.7500486

[46] S. Miloš, P. Ivan, D. Jovana, S. Goran, M. Branko, Towards edge
computing as a service: Dynamic formation of the micro data-
centers, IEEE Access 9 (2021) 114468–114484. doi:10.1109/
ACCESS.2021.3104475.

[47] M. Hirsch, C. Mateos, A. Zunino, Augmenting computing
capabilities at the edge by jointly exploiting mobile devices:
A survey, Future Gener. Comput. Syst. 88 (2018) 644–662.
doi:10.1016/j.future.2018.06.005.
URL https://doi.org/10.1016/j.future.2018.06.005

[48] M. van Steen, A. S. Tanenbaum, A brief introduction to dis-
tributed systems, Computing 98 (10) (2016) 967–1009. doi:
10.1007/s00607-016-0508-7.
URL https://doi.org/10.1007/s00607-016-0508-7

[49] A. S. Tanenbaum, M. van Steen, Distributed systems - principles
and paradigms, 2nd Edition, Pearson Education, 2007.

[50] A. B. Bondi, Characteristics of scalability and their impact on
performance, in: Second International Workshop on Software and
Performance, WOSP 2000, Ottawa, Canada, September 17-20,

173

https://doi.org/10.1109/ACCESS.2017.2780087
https://doi.org/10.1109/ACCESS.2017.2780087
https://doi.org/10.1109/ACCESS.2017.2780087
https://doi.org/10.1109/ACCESS.2017.2780087
https://doi.org/10.1109/ACCESS.2017.2780087
https://doi.org/10.1109/ACCESS.2017.2780087
https://doi.org/10.1109/ACCESS.2017.2780087
https://doi.org/10.1109/ICT.2016.7500486
https://doi.org/10.1109/ICT.2016.7500486
https://doi.org/10.1109/ICT.2016.7500486
https://doi.org/10.1109/ICT.2016.7500486
https://doi.org/10.1109/ACCESS.2021.3104475
https://doi.org/10.1109/ACCESS.2021.3104475
https://doi.org/10.1016/j.future.2018.06.005
https://doi.org/10.1016/j.future.2018.06.005
https://doi.org/10.1016/j.future.2018.06.005
https://doi.org/10.1016/j.future.2018.06.005
https://doi.org/10.1016/j.future.2018.06.005
https://doi.org/10.1007/s00607-016-0508-7
https://doi.org/10.1007/s00607-016-0508-7
https://doi.org/10.1007/s00607-016-0508-7
https://doi.org/10.1007/s00607-016-0508-7
https://doi.org/10.1007/s00607-016-0508-7
https://doi.org/10.1145/350391.350432
https://doi.org/10.1145/350391.350432

BIBLIOGRAPHY

2000, ACM, 2000, pp. 195–203. doi:10.1145/350391.350432.
URL https://doi.org/10.1145/350391.350432

[51] J. L. Gustafson, Moore’s Law, Springer US, Boston, MA, 2011,
pp. 1177–1184. doi:10.1007/978-0-387-09766-4_81.
URL https://doi.org/10.1007/978-0-387-09766-4_81

[52] R. Buyya, High Performance Cluster Computing: Architectures
and Systems, Prentice Hall PTR, USA, 1999.

[53] E. A. Brewer, Towards robust distributed systems., in: Sympo-
sium on Principles of Distributed Computing (PODC), 2000.
URL http://www.cs.berkeley.edu/~brewer/cs262b-2004/
PODC-keynote.pdf

[54] S. Gilbert, N. A. Lynch, Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services, SIGACT
News 33 (2) (2002) 51–59. doi:10.1145/564585.564601.
URL https://doi.org/10.1145/564585.564601

[55] J. Gray, D. P. Siewiorek, High-availability computer systems,
Computer 24 (9) (1991) 39–48. doi:10.1109/2.84898.
URL https://doi.org/10.1109/2.84898

[56] M. Shapiro, N. M. Preguiça, C. Baquero, M. Zawirski, Conflict-
free replicated data types, in: X. Défago, F. Petit, V. Villain
(Eds.), Stabilization, Safety, and Security of Distributed Systems
- 13th International Symposium, SSS 2011, Grenoble, France,
October 10-12, 2011. Proceedings, Vol. 6976 of Lecture Notes in
Computer Science, Springer, 2011, pp. 386–400. doi:10.1007/
978-3-642-24550-3_29.
URL https://doi.org/10.1007/978-3-642-24550-3_29

[57] P. M. Mell, T. Grance, Sp 800-145. the nist definition of cloud
computing, Tech. rep., Gaithersburg, MD, USA (2011).

174

https://doi.org/10.1145/350391.350432
https://doi.org/10.1145/350391.350432
https://doi.org/10.1007/978-0-387-09766-4_81
https://doi.org/10.1007/978-0-387-09766-4_81
https://doi.org/10.1007/978-0-387-09766-4_81
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1109/2.84898
https://doi.org/10.1109/2.84898
https://doi.org/10.1109/2.84898
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29

BIBLIOGRAPHY

[58] D. Cohen, T. Talpey, A. Kanevsky, U. Cummings, M. Krause,
R. Recio, D. Crupnicoff, L. Dickman, P. Grun, Remote direct
memory over the converged enhanced ethernet fabric: Evalu-
ating the options, in: K. Bergman, R. Brightwell, F. Petrini,
H. Bubba (Eds.), 17th IEEE Symposium on High Performance
Interconnects, HOTI 2009, New York, New York, USA, Au-
gust 25-27, 2009, IEEE Computer Society, 2009, pp. 123–130.
doi:10.1109/HOTI.2009.23.
URL https://doi.org/10.1109/HOTI.2009.23

[59] J. Hong, T. Dreibholz, J. A. Schenkel, J. A. Hu, An overview of
multi-cloud computing, in: L. Barolli, M. Takizawa, F. Xhafa,
T. Enokido (Eds.), Web, Artificial Intelligence and Network
Applications - Proceedings of the Workshops of the 33rd Inter-
national Conference on Advanced Information Networking and
Applications, AINA Workshops 2019, Matsue, Japan, March
27-29, 2019, Vol. 927 of Advances in Intelligent Systems and
Computing, Springer, 2019, pp. 1055–1068. doi:10.1007/
978-3-030-15035-8_103.
URL https://doi.org/10.1007/978-3-030-15035-8_103

[60] D. Ardagna, Cloud and multi-cloud computing: Current chal-
lenges and future applications, in: M. A. Babar, H. Paik,
M. Chetlur, M. Bauer, A. M. Sharifloo (Eds.), 7th IEEE/ACM
International Workshop on Principles of Engineering Service-
Oriented and Cloud Systems, PESOS 2015, Florence, Italy,
May 23, 2015, IEEE Computer Society, 2015, pp. 1–2. doi:
10.1109/PESOS.2015.8.
URL https://doi.org/10.1109/PESOS.2015.8

[61] I. Stoica, S. Shenker, From cloud computing to sky computing,
in: S. Angel, B. Kasikci, E. Kohler (Eds.), HotOS ’21: Workshop
on Hot Topics in Operating Systems, Ann Arbor, Michigan, USA,
June, 1-3, 2021, ACM, 2021, pp. 26–32. doi:10.1145/3458336.

175

https://doi.org/10.1109/HOTI.2009.23
https://doi.org/10.1109/HOTI.2009.23
https://doi.org/10.1109/HOTI.2009.23
https://doi.org/10.1109/HOTI.2009.23
https://doi.org/10.1109/HOTI.2009.23
https://doi.org/10.1007/978-3-030-15035-8_103
https://doi.org/10.1007/978-3-030-15035-8_103
https://doi.org/10.1007/978-3-030-15035-8_103
https://doi.org/10.1007/978-3-030-15035-8_103
https://doi.org/10.1007/978-3-030-15035-8_103
https://doi.org/10.1109/PESOS.2015.8
https://doi.org/10.1109/PESOS.2015.8
https://doi.org/10.1109/PESOS.2015.8
https://doi.org/10.1109/PESOS.2015.8
https://doi.org/10.1109/PESOS.2015.8
https://doi.org/10.1145/3458336.3465301
https://doi.org/10.1145/3458336.3465301
https://doi.org/10.1145/3458336.3465301
https://doi.org/10.1145/3458336.3465301

BIBLIOGRAPHY

3465301.
URL https://doi.org/10.1145/3458336.3465301

[62] L. G., A. L., Multicloud Architecture Migration and Security,
O’Reilly Media, 2019.
URL https://www.oreilly.com/library/view/
multicloud-architecture-migration/9781492050407/

[63] A. Dadgar, J. Phillips, J. Currey, Lifeguard: Local health
awareness for more accurate failure detection, in: 48th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops, DSN Workshops 2018, Luxembourg,
June 25-28, 2018, IEEE Computer Society, 2018, pp. 22–25.
doi:10.1109/DSN-W.2018.00017.
URL http://doi.ieeecomputersociety.org/10.1109/DSN-W.
2018.00017

[64] N. Fernando, S. W. Loke, J. W. Rahayu, Mobile cloud computing:
A survey, Future Gener. Comput. Syst. 29 (1) (2013) 84–106.
doi:10.1016/j.future.2012.05.023.
URL https://doi.org/10.1016/j.future.2012.05.023

[65] L. Lin, X. Liao, H. Jin, P. Li, Computation offloading toward
edge computing, Proc. IEEE 107 (8) (2019) 1584–1607. doi:
10.1109/JPROC.2019.2922285.
URL https://doi.org/10.1109/JPROC.2019.2922285

[66] M. Villari, M. Fazio, S. Dustdar, O. Rana, D. N. Jha, R. Ranjan,
Osmosis: The osmotic computing platform for microelements in
the cloud, edge, and internet of things, Computer 52 (8) (2019)
14–26. doi:10.1109/MC.2018.2888767.
URL https://doi.org/10.1109/MC.2018.2888767

[67] M. Villari, A. Celesti, M. Fazio, Towards osmotic computing:
Looking at basic principles and technologies, in: L. Barolli,
O. Terzo (Eds.), Complex, Intelligent, and Software Intensive

176

https://doi.org/10.1145/3458336.3465301
https://doi.org/10.1145/3458336.3465301
https://doi.org/10.1145/3458336.3465301
https://doi.org/10.1145/3458336.3465301
https://www.oreilly.com/library/view/multicloud-architecture-migration/9781492050407/
https://www.oreilly.com/library/view/multicloud-architecture-migration/9781492050407/
https://www.oreilly.com/library/view/multicloud-architecture-migration/9781492050407/
http://doi.ieeecomputersociety.org/10.1109/DSN-W.2018.00017
http://doi.ieeecomputersociety.org/10.1109/DSN-W.2018.00017
https://doi.org/10.1109/DSN-W.2018.00017
http://doi.ieeecomputersociety.org/10.1109/DSN-W.2018.00017
http://doi.ieeecomputersociety.org/10.1109/DSN-W.2018.00017
https://doi.org/10.1016/j.future.2012.05.023
https://doi.org/10.1016/j.future.2012.05.023
https://doi.org/10.1016/j.future.2012.05.023
https://doi.org/10.1016/j.future.2012.05.023
https://doi.org/10.1109/JPROC.2019.2922285
https://doi.org/10.1109/JPROC.2019.2922285
https://doi.org/10.1109/JPROC.2019.2922285
https://doi.org/10.1109/JPROC.2019.2922285
https://doi.org/10.1109/JPROC.2019.2922285
https://doi.org/10.1109/MC.2018.2888767
https://doi.org/10.1109/MC.2018.2888767
https://doi.org/10.1109/MC.2018.2888767
https://doi.org/10.1109/MC.2018.2888767
https://doi.org/10.1007/978-3-319-61566-0_86
https://doi.org/10.1007/978-3-319-61566-0_86

BIBLIOGRAPHY

Systems - Proceedings of the 11th International Conference on
Complex, Intelligent, and Software Intensive Systems (CISIS-
2017), Torino, Italy, July 10-12, 2017, Vol. 611 of Advances in
Intelligent Systems and Computing, Springer, 2017, pp. 906–915.
doi:10.1007/978-3-319-61566-0_86.
URL https://doi.org/10.1007/978-3-319-61566-0_86

[68] R. de Vera Jr., Review of: Distributed systems: An algorithmic
approach (2nd edition) by sukumar ghosh, SIGACT News 47 (4)
(2016) 13–14. doi:10.1145/3023855.3023860.
URL https://doi.org/10.1145/3023855.3023860

[69] G. Andrews, , parallel, and distributed programming, Addison-
Wesley, 2000.
URL http://books.google.com.br/books?id=npRQAAAAMAAJ

[70] D. Fisher, R. DeLine, M. Czerwinski, S. M. Drucker, Interactions
with big data analytics, Interactions 19 (3) (2012) 50–59. doi:
10.1145/2168931.2168943.
URL https://doi.org/10.1145/2168931.2168943

[71] C.-W. Tsai, C.-F. Lai, H.-C. Chao, A. V. Vasilakos, Big data
analytics: a survey, Journal of Big Data 2 (1) (2015) 21. doi:
10.1186/s40537-015-0030-3.
URL https://doi.org/10.1186/s40537-015-0030-3

[72] Z. Guo, G. C. Fox, M. Zhou, Investigation of data locality in
mapreduce, in: 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, CCGrid 2012, Ottawa,
Canada, May 13-16, 2012, IEEE Computer Society, 2012, pp.
419–426. doi:10.1109/CCGrid.2012.42.
URL https://doi.org/10.1109/CCGrid.2012.42

[73] P. G. Sarigiannidis, T. Lagkas, K. Rantos, P. Bellavista, The
big data era in iot-enabled smart farming: Re-defining systems,
tools, and techniques, Comput. Networks 168 (2020). doi:10.

177

https://doi.org/10.1007/978-3-319-61566-0_86
https://doi.org/10.1007/978-3-319-61566-0_86
https://doi.org/10.1145/3023855.3023860
https://doi.org/10.1145/3023855.3023860
https://doi.org/10.1145/3023855.3023860
https://doi.org/10.1145/3023855.3023860
http://books.google.com.br/books?id=npRQAAAAMAAJ
http://books.google.com.br/books?id=npRQAAAAMAAJ
https://doi.org/10.1145/2168931.2168943
https://doi.org/10.1145/2168931.2168943
https://doi.org/10.1145/2168931.2168943
https://doi.org/10.1145/2168931.2168943
https://doi.org/10.1145/2168931.2168943
https://doi.org/10.1186/s40537-015-0030-3
https://doi.org/10.1186/s40537-015-0030-3
https://doi.org/10.1186/s40537-015-0030-3
https://doi.org/10.1186/s40537-015-0030-3
https://doi.org/10.1186/s40537-015-0030-3
https://doi.org/10.1109/CCGrid.2012.42
https://doi.org/10.1109/CCGrid.2012.42
https://doi.org/10.1109/CCGrid.2012.42
https://doi.org/10.1109/CCGrid.2012.42
https://doi.org/10.1016/j.comnet.2019.107043
https://doi.org/10.1016/j.comnet.2019.107043
https://doi.org/10.1016/j.comnet.2019.107043
https://doi.org/10.1016/j.comnet.2019.107043
https://doi.org/10.1016/j.comnet.2019.107043
https://doi.org/10.1016/j.comnet.2019.107043

BIBLIOGRAPHY

1016/j.comnet.2019.107043.
URL https://doi.org/10.1016/j.comnet.2019.107043

[74] R. Patgiri, A. Ahmed, Big data: The v’s of the game changer
paradigm, in: J. Chen, L. T. Yang (Eds.), 18th IEEE Interna-
tional Conference on High Performance Computing and Com-
munications; 14th IEEE International Conference on Smart
City; 2nd IEEE International Conference on Data Science and
Systems, HPCC/SmartCity/DSS 2016, Sydney, Australia, De-
cember 12-14, 2016, IEEE Computer Society, 2016, pp. 17–24.
doi:10.1109/HPCC-SmartCity-DSS.2016.0014.
URL https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.
0014

[75] Y. Kumar, Lambda architecture - realtime data processing, Ph.D.
thesis (01 2020). doi:10.13140/RG.2.2.19091.84004.

[76] M. Kiran, P. Murphy, I. Monga, J. Dugan, S. S. Baveja, Lambda
architecture for cost-effective batch and speed big data processing,
in: 2015 IEEE International Conference on Big Data, Big Data
2015, Santa Clara, CA, USA, October 29 - November 1, 2015,
IEEE Computer Society, 2015, pp. 2785–2792. doi:10.1109/
BigData.2015.7364082.
URL https://doi.org/10.1109/BigData.2015.7364082

[77] D. Medjedovic, E. Tahirovic, I. Dedovic, Algorithms and Data
Structures for Massive Datasets, Manning, 2022.
URL https://www.manning.com/books/
algorithms-and-data-structures-for-massive-datasets

[78] T. R. Rao, P. Mitra, R. Bhatt, A. Goswami, The big data system,
components, tools, and technologies: a survey, Knowl. Inf. Syst.
60 (3) (2019) 1165–1245. doi:10.1007/s10115-018-1248-0.
URL https://doi.org/10.1007/s10115-018-1248-0

178

https://doi.org/10.1016/j.comnet.2019.107043
https://doi.org/10.1016/j.comnet.2019.107043
https://doi.org/10.1016/j.comnet.2019.107043
https://doi.org/10.1016/j.comnet.2019.107043
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0014
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0014
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0014
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0014
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0014
https://doi.org/10.13140/RG.2.2.19091.84004
https://doi.org/10.1109/BigData.2015.7364082
https://doi.org/10.1109/BigData.2015.7364082
https://doi.org/10.1109/BigData.2015.7364082
https://doi.org/10.1109/BigData.2015.7364082
https://doi.org/10.1109/BigData.2015.7364082
https://www.manning.com/books/algorithms-and-data-structures-for-massive-datasets
https://www.manning.com/books/algorithms-and-data-structures-for-massive-datasets
https://www.manning.com/books/algorithms-and-data-structures-for-massive-datasets
https://www.manning.com/books/algorithms-and-data-structures-for-massive-datasets
https://doi.org/10.1007/s10115-018-1248-0
https://doi.org/10.1007/s10115-018-1248-0
https://doi.org/10.1007/s10115-018-1248-0
https://doi.org/10.1007/s10115-018-1248-0

BIBLIOGRAPHY

[79] J. E. Marynowski, A. O. Santin, A. R. Pimentel, Method for test-
ing the fault tolerance of mapreduce frameworks, Comput. Net-
works 86 (2015) 1–13. doi:10.1016/j.comnet.2015.04.009.
URL https://doi.org/10.1016/j.comnet.2015.04.009

[80] N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara,
F. Montesi, R. Mustafin, L. Safina, Microservices: yesterday,
today, and tomorrow, CoRR abs/1606.04036 (2016). arXiv:
1606.04036.
URL http://arxiv.org/abs/1606.04036

[81] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, N. M.
Josuttis, Microservices in practice, part 1: Reality check and
service design, IEEE Softw. 34 (1) (2017) 91–98. doi:10.1109/
MS.2017.24.
URL https://doi.org/10.1109/MS.2017.24

[82] S. Li, H. Zhang, Z. Jia, Z. Li, C. Zhang, J. Li, Q. Gao, J. Ge,
Z. Shan, A dataflow-driven approach to identifying microservices
from monolithic applications, J. Syst. Softw. 157 (2019). doi:
10.1016/j.jss.2019.07.008.
URL https://doi.org/10.1016/j.jss.2019.07.008

[83] L. Krause, Microservices: Patterns and Applications: Designing
Fine-Grained Services by Applying Patterns, Lucas Krause, 2015.
URL https://books.google.rs/books?id=dd5-rgEACAAJ

[84] O. Al-Debagy, P. Martinek, A comparative review of microser-
vices and monolithic architectures, CoRR abs/1905.07997 (2019).
arXiv:1905.07997.
URL http://arxiv.org/abs/1905.07997

[85] N. Kratzke, P. Quint, Understanding cloud-native applications
after 10 years of cloud computing - A systematic mapping study,
J. Syst. Softw. 126 (2017) 1–16. doi:10.1016/j.jss.2017.01.

179

https://doi.org/10.1016/j.comnet.2015.04.009
https://doi.org/10.1016/j.comnet.2015.04.009
https://doi.org/10.1016/j.comnet.2015.04.009
https://doi.org/10.1016/j.comnet.2015.04.009
http://arxiv.org/abs/1606.04036
http://arxiv.org/abs/1606.04036
http://arxiv.org/abs/1606.04036
http://arxiv.org/abs/1606.04036
http://arxiv.org/abs/1606.04036
https://doi.org/10.1109/MS.2017.24
https://doi.org/10.1109/MS.2017.24
https://doi.org/10.1109/MS.2017.24
https://doi.org/10.1109/MS.2017.24
https://doi.org/10.1109/MS.2017.24
https://doi.org/10.1016/j.jss.2019.07.008
https://doi.org/10.1016/j.jss.2019.07.008
https://doi.org/10.1016/j.jss.2019.07.008
https://doi.org/10.1016/j.jss.2019.07.008
https://doi.org/10.1016/j.jss.2019.07.008
https://books.google.rs/books?id=dd5-rgEACAAJ
https://books.google.rs/books?id=dd5-rgEACAAJ
https://books.google.rs/books?id=dd5-rgEACAAJ
http://arxiv.org/abs/1905.07997
http://arxiv.org/abs/1905.07997
http://arxiv.org/abs/1905.07997
http://arxiv.org/abs/1905.07997
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1016/j.jss.2017.01.001

BIBLIOGRAPHY

001.
URL https://doi.org/10.1016/j.jss.2017.01.001

[86] G. Adzic, R. Chatley, Serverless computing: economic and ar-
chitectural impact, in: E. Bodden, W. Schäfer, A. van Deursen,
A. Zisman (Eds.), Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, Pader-
born, Germany, September 4-8, 2017, ACM, 2017, pp. 884–889.
doi:10.1145/3106237.3117767.
URL https://doi.org/10.1145/3106237.3117767

[87] W. Li, Y. Lemieux, J. Gao, Z. Zhao, Y. Han, Service mesh:
Challenges, state of the art, and future research opportunities, in:
13th IEEE International Conference on Service-Oriented System
Engineering, SOSE 2019, San Francisco, CA, USA, April 4-9,
2019, IEEE, 2019. doi:10.1109/SOSE.2019.00026.
URL https://doi.org/10.1109/SOSE.2019.00026

[88] P. Adamczyk, P. H. Smith, R. E. Johnson, M. Hafiz, REST and
web services: In theory and in practice, in: E. Wilde, C. Pautasso
(Eds.), REST: From Research to Practice, Springer, 2011, pp.
35–57. doi:10.1007/978-1-4419-8303-9_2.
URL https://doi.org/10.1007/978-1-4419-8303-9_2

[89] A. Balalaie, A. Heydarnoori, P. Jamshidi, Microservices archi-
tecture enables devops: Migration to a cloud-native architecture,
IEEE Software 33 (3) (2016) 42–52. doi:10.1109/MS.2016.64.

[90] W. Felter, A. Ferreira, R. Rajamony, J. Rubio, An updated
performance comparison of virtual machines and linux containers,
in: 2015 IEEE International Symposium on Performance Analysis
of Systems and Software, ISPASS 2015, Philadelphia, PA, USA,
March 29-31, 2015, IEEE Computer Society, 2015, pp. 171–172.
doi:10.1109/ISPASS.2015.7095802.
URL https://doi.org/10.1109/ISPASS.2015.7095802

180

https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1145/3106237.3117767
https://doi.org/10.1145/3106237.3117767
https://doi.org/10.1145/3106237.3117767
https://doi.org/10.1145/3106237.3117767
https://doi.org/10.1109/SOSE.2019.00026
https://doi.org/10.1109/SOSE.2019.00026
https://doi.org/10.1109/SOSE.2019.00026
https://doi.org/10.1109/SOSE.2019.00026
https://doi.org/10.1007/978-1-4419-8303-9_2
https://doi.org/10.1007/978-1-4419-8303-9_2
https://doi.org/10.1007/978-1-4419-8303-9_2
https://doi.org/10.1007/978-1-4419-8303-9_2
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/ISPASS.2015.7095802

BIBLIOGRAPHY

[91] B. Burns, B. Grant, D. Oppenheimer, E. A. Brewer, J. Wilkes,
Borg, omega, and kubernetes, Commun. ACM 59 (5) (2016)
50–57. doi:10.1145/2890784.
URL https://doi.org/10.1145/2890784

[92] J. Soldani, D. A. Tamburri, W. van den Heuvel, The pains and
gains of microservices: A systematic grey literature review, J.
Syst. Softw. 146 (2018) 215–232. doi:10.1016/j.jss.2018.09.
082.
URL https://doi.org/10.1016/j.jss.2018.09.082

[93] G. Grätzer, B. Davey, R. Freese, B. Ganter, M. Greferath,
P. Jipsen, H. Priestley, H. Rose, E. Schmidt, S. Schmidt, et al.,
General Lattice Theory: Second edition, Birkhäuser Basel, 2002.
URL https://books.google.rs/books?id=SoGLVCPuOz0C

[94] C. Richardson, Microservices Patterns: With examples in Java,
Manning Publications, 2018.
URL https://books.google.rs/books?id=UeK1swEACAAJ

[95] Z. Long, Improvement and implementation of a high performance
cqrs architecture, in: 2017 International Conference on Robots
Intelligent System (ICRIS), 2017, pp. 170–173. doi:10.1109/
ICRIS.2017.49.

[96] A. Akbulut, H. G. Perros, Performance analysis of microservice
design patterns, IEEE Internet Computing 23 (6) (2019) 19–27.
doi:10.1109/MIC.2019.2951094.

[97] C. J. Fidge, Fundamentals of distributed system observation,
IEEE Softw. 13 (6) (1996) 77–83. doi:10.1109/52.542297.
URL https://doi.org/10.1109/52.542297

[98] J. Joyce, G. Lomow, K. Slind, B. W. Unger, Monitoring dis-
tributed systems, ACM Trans. Comput. Syst. 5 (2) (1987) 121–
150. doi:10.1145/13677.22723.
URL https://doi.org/10.1145/13677.22723

181

https://doi.org/10.1145/2890784
https://doi.org/10.1145/2890784
https://doi.org/10.1145/2890784
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
https://books.google.rs/books?id=SoGLVCPuOz0C
https://books.google.rs/books?id=SoGLVCPuOz0C
https://books.google.rs/books?id=UeK1swEACAAJ
https://books.google.rs/books?id=UeK1swEACAAJ
https://doi.org/10.1109/ICRIS.2017.49
https://doi.org/10.1109/ICRIS.2017.49
https://doi.org/10.1109/MIC.2019.2951094
https://doi.org/10.1109/52.542297
https://doi.org/10.1109/52.542297
https://doi.org/10.1109/52.542297
https://doi.org/10.1145/13677.22723
https://doi.org/10.1145/13677.22723
https://doi.org/10.1145/13677.22723
https://doi.org/10.1145/13677.22723

BIBLIOGRAPHY

[99] I. Beschastnikh, P. Wang, Y. Brun, M. D. Ernst, Debugging
distributed systems, Commun. ACM 59 (8) (2016) 32–37. doi:
10.1145/2909480.
URL https://doi.org/10.1145/2909480

[100] D. S. Daniels, A. Z. Spector, D. S. Thompson, Distributed logging
for transaction processing, in: U. Dayal, I. L. Traiger (Eds.),
Proceedings of the Association for Computing Machinery Special
Interest Group on Management of Data 1987 Annual Conference,
San Francisco, CA, USA, May 27-29, 1987, ACM Press, 1987,
pp. 82–96. doi:10.1145/38713.38728.
URL https://doi.org/10.1145/38713.38728

[101] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,
M. Plakal, D. Beaver, S. Jaspan, C. Shanbhag, Dapper, a
large-scale distributed systems tracing infrastructure, Tech. rep.,
Google, Inc. (2010).
URL https://research.google.com/archive/papers/
dapper-2010-1.pdf

[102] R. Schollmeier, A definition of peer-to-peer networking for the
classification of peer-to-peer architectures and applications, in:
R. L. Graham, N. Shahmehri (Eds.), 1st International Conference
on Peer-to-Peer Computing (P2P 2001), 27-29 August 2001,
Linköping, Sweden, IEEE Computer Society, 2001, pp. 101–102.
doi:10.1109/P2P.2001.990434.
URL https://doi.org/10.1109/P2P.2001.990434

[103] H. M. N. D. Bandara, A. P. Jayasumana, Collaborative ap-
plications over peer-to-peer systems-challenges and solutions,
Peer Peer Netw. Appl. 6 (3) (2013) 257–276. doi:10.1007/
s12083-012-0157-3.
URL https://doi.org/10.1007/s12083-012-0157-3

[104] M. Kamel, C. M. Scoglio, T. Easton, Optimal topology design
for overlay networks, in: I. F. Akyildiz, R. Sivakumar, E. Ekici,

182

https://doi.org/10.1145/2909480
https://doi.org/10.1145/2909480
https://doi.org/10.1145/2909480
https://doi.org/10.1145/2909480
https://doi.org/10.1145/2909480
https://doi.org/10.1145/38713.38728
https://doi.org/10.1145/38713.38728
https://doi.org/10.1145/38713.38728
https://doi.org/10.1145/38713.38728
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://doi.org/10.1109/P2P.2001.990434
https://doi.org/10.1109/P2P.2001.990434
https://doi.org/10.1109/P2P.2001.990434
https://doi.org/10.1109/P2P.2001.990434
https://doi.org/10.1007/s12083-012-0157-3
https://doi.org/10.1007/s12083-012-0157-3
https://doi.org/10.1007/s12083-012-0157-3
https://doi.org/10.1007/s12083-012-0157-3
https://doi.org/10.1007/s12083-012-0157-3
https://doi.org/10.1007/978-3-540-72606-7_61
https://doi.org/10.1007/978-3-540-72606-7_61

BIBLIOGRAPHY

J. C. de Oliveira, J. McNair (Eds.), NETWORKING 2007. Ad
Hoc and Sensor Networks, Wireless Networks, Next Generation
Internet, 6th International IFIP-TC6 Networking Conference,
Atlanta, GA, USA, May 14-18, 2007, Proceedings, Vol. 4479 of
Lecture Notes in Computer Science, Springer, 2007, pp. 714–725.
doi:10.1007/978-3-540-72606-7_61.
URL https://doi.org/10.1007/978-3-540-72606-7_61

[105] I. Filali, F. Bongiovanni, F. Huet, F. Baude, A survey of
structured P2P systems for RDF data storage and retrieval,
Trans. Large Scale Data Knowl. Centered Syst. 3 (2011) 20–55.
doi:10.1007/978-3-642-23074-5_2.
URL https://doi.org/10.1007/978-3-642-23074-5_2

[106] I. Stoica, R. T. Morris, D. R. Karger, M. F. Kaashoek, H. Balakr-
ishnan, Chord: A scalable peer-to-peer lookup service for internet
applications, in: R. L. Cruz, G. Varghese (Eds.), Proceedings of
the ACM SIGCOMM 2001 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication,
August 27-31, 2001, San Diego, CA, USA, ACM, 2001, pp. 149–
160. doi:10.1145/383059.383071.
URL https://doi.org/10.1145/383059.383071

[107] N. Leavitt, Will nosql databases live up to their promise?, Com-
puter 43 (2) (2010) 12–14. doi:10.1109/MC.2010.58.
URL https://doi.org/10.1109/MC.2010.58

[108] Q. H. Vu, M. Lupu, B. C. Ooi, Peer-to-Peer Computing -
Principles and Applications, Springer, 2010. doi:10.1007/
978-3-642-03514-2.
URL https://doi.org/10.1007/978-3-642-03514-2

[109] E. Korach, S. Kutten, S. Moran, A modular technique for the
design of efficient distributed leader finding algorithms, ACM
Trans. Program. Lang. Syst. 12 (1) (1990) 84–101. doi:10.1145/

183

https://doi.org/10.1007/978-3-540-72606-7_61
https://doi.org/10.1007/978-3-540-72606-7_61
https://doi.org/10.1007/978-3-642-23074-5_2
https://doi.org/10.1007/978-3-642-23074-5_2
https://doi.org/10.1007/978-3-642-23074-5_2
https://doi.org/10.1007/978-3-642-23074-5_2
https://doi.org/10.1145/383059.383071
https://doi.org/10.1145/383059.383071
https://doi.org/10.1145/383059.383071
https://doi.org/10.1145/383059.383071
https://doi.org/10.1109/MC.2010.58
https://doi.org/10.1109/MC.2010.58
https://doi.org/10.1109/MC.2010.58
https://doi.org/10.1007/978-3-642-03514-2
https://doi.org/10.1007/978-3-642-03514-2
https://doi.org/10.1007/978-3-642-03514-2
https://doi.org/10.1007/978-3-642-03514-2
https://doi.org/10.1007/978-3-642-03514-2
https://doi.org/10.1145/77606.77610
https://doi.org/10.1145/77606.77610
https://doi.org/10.1145/77606.77610
https://doi.org/10.1145/77606.77610
https://doi.org/10.1145/77606.77610

BIBLIOGRAPHY

77606.77610.
URL https://doi.org/10.1145/77606.77610

[110] G. S. Almási, A. Gottlieb, Highly parallel computing (2. ed.),
Addison-Wesley, 1994.

[111] S. Leible, S. Schlager, M. Schubotz, B. Gipp, A review on
blockchain technology and blockchain projects fostering open
science, Frontiers Blockchain 2 (2019) 16. doi:10.3389/fbloc.
2019.00016.
URL https://doi.org/10.3389/fbloc.2019.00016

[112] G. Weikum, G. Vossen, Transactional Information Systems: The-
ory, Algorithms, and the Practice of Concurrency Control and
Recovery, Morgan Kaufmann, 2002.

[113] J. Gray, A. Reuter, Transaction Processing: Concepts and Tech-
niques, Morgan Kaufmann, 1993.

[114] L. Frank, T. U. Zahle, Semantic acid properties in multidatabases
using remote procedure calls and update propagations, Softw.
Pract. Exper. 28 (1) (1998) 77–98.

[115] P. Helland, Life beyond distributed transactions: an apostate’s
opinion, in: Third Biennial Conference on Innovative Data Sys-
tems Research, CIDR 2007, Asilomar, CA, USA, January 7-10,
2007, Online Proceedings, www.cidrdb.org, 2007, pp. 132–141.
URL http://cidrdb.org/cidr2007/papers/cidr07p15.pdf

[116] H. Garcia-Molina, K. Salem, Sagas, in: U. Dayal, I. L. Traiger
(Eds.), Proceedings of the Association for Computing Machinery
Special Interest Group on Management of Data 1987 Annual
Conference, San Francisco, CA, USA, May 27-29, 1987, ACM
Press, 1987, pp. 249–259. doi:10.1145/38713.38742.
URL https://doi.org/10.1145/38713.38742

184

https://doi.org/10.1145/77606.77610
https://doi.org/10.1145/77606.77610
https://doi.org/10.1145/77606.77610
https://doi.org/10.1145/77606.77610
https://doi.org/10.3389/fbloc.2019.00016
https://doi.org/10.3389/fbloc.2019.00016
https://doi.org/10.3389/fbloc.2019.00016
https://doi.org/10.3389/fbloc.2019.00016
https://doi.org/10.3389/fbloc.2019.00016
https://doi.org/10.3389/fbloc.2019.00016
http://cidrdb.org/cidr2007/papers/cidr07p15.pdf
http://cidrdb.org/cidr2007/papers/cidr07p15.pdf
http://cidrdb.org/cidr2007/papers/cidr07p15.pdf
https://doi.org/10.1145/38713.38742
https://doi.org/10.1145/38713.38742
https://doi.org/10.1145/38713.38742

BIBLIOGRAPHY

[117] R. E. Jones, R. D. Lins, Garbage collection - algorithms for
automatic dynamic memory management, Wiley, 1996.

[118] J. McCarthy, Recursive functions of symbolic expressions and
their computation by machine, part I, Commun. ACM 3 (4)
(1960) 184–195. doi:10.1145/367177.367199.
URL https://doi.org/10.1145/367177.367199

[119] S. Crosby, D. Brown, The virtualization reality, ACM Queue
4 (10) (2006) 34–41. doi:10.1145/1189276.1189289.
URL https://doi.org/10.1145/1189276.1189289

[120] S. Sharma, Y. Park, Virtualization: A review and future di-
rections executive overview, American Journal of Information
Technology 1 (2011) 1–37.

[121] E. E. Absalom, S. M. Buhari, S. B. Junaidu, Virtual machine
allocation in cloud computing environment, Int. J. Cloud Appl.
Comput. 3 (2) (2013) 47–60. doi:10.4018/ijcac.2013040105.
URL https://doi.org/10.4018/ijcac.2013040105

[122] C. Yang, K. Huang, W. C. Chu, F. Leu, S. Wang, Implementation
of cloud iaas for virtualization with live migration, in: J. J. Park,
H. R. Arabnia, C. Kim, W. Shi, J. Gil (Eds.), Grid and Pervasive
Computing - 8th International Conference, GPC 2013 and Colo-
cated Workshops, Seoul, Korea, May 9-11, 2013. Proceedings,
Vol. 7861 of Lecture Notes in Computer Science, Springer, 2013,
pp. 199–207. doi:10.1007/978-3-642-38027-3_21.
URL https://doi.org/10.1007/978-3-642-38027-3_21

[123] K.-T. Seo, H.-S. Hwang, I. Moon, O.-Y. Kwon, B. jun Kim,
Performance comparison analysis of linux container and virtual
machine for building cloud, 2014.

[124] R. Pavlicek, Unikernels: Beyond Containers to the Next Genera-
tion of Cloud, O’Reilly Media, 2016.
URL https://books.google.rs/books?id=qfDXuQEACAAJ

185

https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/1189276.1189289
https://doi.org/10.1145/1189276.1189289
https://doi.org/10.1145/1189276.1189289
https://doi.org/10.4018/ijcac.2013040105
https://doi.org/10.4018/ijcac.2013040105
https://doi.org/10.4018/ijcac.2013040105
https://doi.org/10.4018/ijcac.2013040105
https://doi.org/10.1007/978-3-642-38027-3_21
https://doi.org/10.1007/978-3-642-38027-3_21
https://doi.org/10.1007/978-3-642-38027-3_21
https://doi.org/10.1007/978-3-642-38027-3_21
https://books.google.rs/books?id=qfDXuQEACAAJ
https://books.google.rs/books?id=qfDXuQEACAAJ
https://books.google.rs/books?id=qfDXuQEACAAJ

BIBLIOGRAPHY

[125] T. Goethals, M. Sebrechts, A. Atrey, B. Volckaert, F. D. Turck,
Unikernels vs containers: An in-depth benchmarking study in the
context of microservice applications, in: 8th IEEE International
Symposium on Cloud and Service Computing, SC2 2018, Paris,
France, November 18-21, 2018, IEEE, 2018, pp. 1–8. doi:10.
1109/SC2.2018.00008.
URL https://doi.org/10.1109/SC2.2018.00008

[126] R. Pavlicek, The next generation cloud: Unleashing the power of
the unikernel, USENIX Association, Washington, D.C., 2015.

[127] M. Plauth, L. Feinbube, A. Polze, A performance survey of
lightweight virtualization techniques, in: F. D. Paoli, S. Schulte,
E. B. Johnsen (Eds.), Service-Oriented and Cloud Computing
- 6th IFIP WG 2.14 European Conference, ESOCC 2017, Oslo,
Norway, September 27-29, 2017, Proceedings, Vol. 10465 of
Lecture Notes in Computer Science, Springer, 2017, pp. 34–48.
doi:10.1007/978-3-319-67262-5_3.
URL https://doi.org/10.1007/978-3-319-67262-5_3

[128] P. Helland, Immutability changes everything, Commun. ACM
59 (1) (2016) 64–70. doi:10.1145/2844112.
URL https://doi.org/10.1145/2844112

[129] M. Perry, The Art of Immutable Architecture: Theory and
Practice of Data Management in Distributed Systems, Apress,
2020.
URL https://books.google.rs/books?id=Ea9tzQEACAAJ

[130] P. C. de Guzmán, F. Gorostiaga, C. Sánchez, i2kit: A tool for im-
mutable infrastructure deployments based on lightweight virtual
machines specialized to run containers, CoRR abs/1802.10375
(2018). arXiv:1802.10375.
URL http://arxiv.org/abs/1802.10375

186

https://doi.org/10.1109/SC2.2018.00008
https://doi.org/10.1109/SC2.2018.00008
https://doi.org/10.1109/SC2.2018.00008
https://doi.org/10.1109/SC2.2018.00008
https://doi.org/10.1109/SC2.2018.00008
https://doi.org/10.1007/978-3-319-67262-5_3
https://doi.org/10.1007/978-3-319-67262-5_3
https://doi.org/10.1007/978-3-319-67262-5_3
https://doi.org/10.1007/978-3-319-67262-5_3
https://doi.org/10.1145/2844112
https://doi.org/10.1145/2844112
https://doi.org/10.1145/2844112
https://books.google.rs/books?id=Ea9tzQEACAAJ
https://books.google.rs/books?id=Ea9tzQEACAAJ
https://books.google.rs/books?id=Ea9tzQEACAAJ
http://arxiv.org/abs/1802.10375
http://arxiv.org/abs/1802.10375
http://arxiv.org/abs/1802.10375
http://arxiv.org/abs/1802.10375
http://arxiv.org/abs/1802.10375

BIBLIOGRAPHY

[131] B. Fitzgerald, N. Forsgren, K.-J. Stol, J. Humble, B. Doody,
Infrastructure is software too!, SSRN Electronic Journal (01
2015). doi:10.2139/ssrn.2681904.

[132] L. J. Osterweil, Software processes are software too, revisited: An
invited talk on the most influential paper of icse 9, in: Proceedings
of the 19th International Conference on Software Engineering,
ICSE ’97, Association for Computing Machinery, New York, NY,
USA, 1997, p. 540–548. doi:10.1145/253228.253440.
URL https://doi.org/10.1145/253228.253440

[133] A. R. andRezvan Mahdavi-Hezaveh andLaurie A. Williams, A
systematic mapping study of infrastructure as code research,
Inf. Softw. Technol. 108 (2019) 65–77. doi:10.1016/j.infsof.
2018.12.004.
URL https://doi.org/10.1016/j.infsof.2018.12.004

[134] A. Wittig, M. Wittig, Amazon Web Services in Action, Manning
Publications, 2018.
URL https://books.google.rs/books?id=-LRotAEACAAJ

[135] M. Artac, T. Borovsak, E. D. Nitto, M. Guerriero, D. A. Tam-
burri, Devops: introducing infrastructure-as-code, in: S. Uchitel,
A. Orso, M. P. Robillard (Eds.), Proceedings of the 39th Interna-
tional Conference on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017 - Companion Volume, IEEE
Computer Society, 2017, pp. 497–498. doi:10.1109/ICSE-C.
2017.162.
URL https://doi.org/10.1109/ICSE-C.2017.162

[136] M. Luksa, Kubernetes in Action, Manning Publications, 2018.
URL https://books.google.rs/books?id=8bE5MQAACAAJ

[137] L. A. F. Leite, C. Rocha, F. Kon, D. S. Milojicic, P. Meirelles, A
survey of devops concepts and challenges, ACM Comput. Surv.

187

https://doi.org/10.2139/ssrn.2681904
https://doi.org/10.1145/253228.253440
https://doi.org/10.1145/253228.253440
https://doi.org/10.1145/253228.253440
https://doi.org/10.1145/253228.253440
https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1016/j.infsof.2018.12.004
https://books.google.rs/books?id=-LRotAEACAAJ
https://books.google.rs/books?id=-LRotAEACAAJ
https://doi.org/10.1109/ICSE-C.2017.162
https://doi.org/10.1109/ICSE-C.2017.162
https://doi.org/10.1109/ICSE-C.2017.162
https://doi.org/10.1109/ICSE-C.2017.162
https://books.google.rs/books?id=8bE5MQAACAAJ
https://books.google.rs/books?id=8bE5MQAACAAJ
https://doi.org/10.1145/3359981
https://doi.org/10.1145/3359981

BIBLIOGRAPHY

52 (6) (2020) 127:1–127:35. doi:10.1145/3359981.
URL https://doi.org/10.1145/3359981

[138] R. Jabbari, N. B. Ali, K. Petersen, B. Tanveer, What is devops?:
A systematic mapping study on definitions and practices, in:
Proceedings of the Scientific Workshop Proceedings of XP2016,
Edinburgh, Scotland, UK, May 24, 2016, ACM, 2016, p. 12.
doi:10.1145/2962695.2962707.
URL https://doi.org/10.1145/2962695.2962707

[139] B. Beyer, C. Jones, J. Petoff, N. Murphy, Site Reliability Engi-
neering: How Google Runs Production Systems, O’Reilly Media,
Incorporated, 2016.
URL https://books.google.rs/books?id=81UrjwEACAAJ

[140] C. Jones, T. Underwood, S. Nukala, Hiring site reliability
engineers, login Usenix Mag. 40 (3) (2015).
URL https://www.usenix.org/publications/login/
june15/hiring-site-reliability-engineers

[141] B. Beyer, N. R. Murphy, L. Fong-Jones, T. Underwood, L. Nolan,
D. K. Rensin, How sre relates to devops (2018).
URL https://www.safaribooksonline.com/library/view/
how-sre-relates/9781492030645/

[142] R. Pike, Concurrency is not parallelism, waza conference (2013).
URL https://blog.golang.org/waza-talk

[143] C. A. R. Hoare, Communicating sequential processes, Commun.
ACM 21 (8) (1978) 666–677. doi:10.1145/359576.359585.
URL https://doi.org/10.1145/359576.359585

[144] C. Hewitt, Actor model for discretionary, adaptive concurrency,
CoRR abs/1008.1459 (2010). arXiv:1008.1459.
URL http://arxiv.org/abs/1008.1459

188

https://doi.org/10.1145/3359981
https://doi.org/10.1145/3359981
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/2962695.2962707
https://books.google.rs/books?id=81UrjwEACAAJ
https://books.google.rs/books?id=81UrjwEACAAJ
https://books.google.rs/books?id=81UrjwEACAAJ
https://www.usenix.org/publications/login/june15/hiring-site-reliability-engineers
https://www.usenix.org/publications/login/june15/hiring-site-reliability-engineers
https://www.usenix.org/publications/login/june15/hiring-site-reliability-engineers
https://www.usenix.org/publications/login/june15/hiring-site-reliability-engineers
https://www.safaribooksonline.com/library/view/how-sre-relates/9781492030645/
https://www.safaribooksonline.com/library/view/how-sre-relates/9781492030645/
https://www.safaribooksonline.com/library/view/how-sre-relates/9781492030645/
https://blog.golang.org/waza-talk
https://blog.golang.org/waza-talk
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
http://arxiv.org/abs/1008.1459
http://arxiv.org/abs/1008.1459
http://arxiv.org/abs/1008.1459

BIBLIOGRAPHY

[145] A. C. Baktir, A. Ozgovde, C. Ersoy, How can edge computing
benefit from software-defined networking: A survey, use cases,
and future directions, IEEE Commun. Surv. Tutorials 19 (4)
(2017) 2359–2391. doi:10.1109/COMST.2017.2717482.
URL https://doi.org/10.1109/COMST.2017.2717482

[146] J. Sherwin, C. J. Sreenan, Software-defined networking for data
centre network management: A survey, CoRR abs/2106.10014
(2021). arXiv:2106.10014.
URL https://arxiv.org/abs/2106.10014

[147] R. Ciobanu, C. Negru, F. Pop, C. Dobre, C. X. Mavromoustakis,
G. Mastorakis, Drop computing: Ad-hoc dynamic collaborative
computing, Future Gener. Comput. Syst. 92 (2019) 889–899.
doi:10.1016/j.future.2017.11.044.
URL https://doi.org/10.1016/j.future.2017.11.044

[148] Y. Shao, C. Li, Z. Fu, L. Jia, Y. Luo, Cost-effective replication
management and scheduling in edge computing, J. Netw. Comput.
Appl. 129 (2019) 46–61. doi:10.1016/j.jnca.2019.01.001.
URL https://doi.org/10.1016/j.jnca.2019.01.001

[149] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune,
J. Wilkes, Large-scale cluster management at google with borg,
in: L. Réveillère, T. Harris, M. Herlihy (Eds.), Proceedings of
the Tenth European Conference on Computer Systems, EuroSys
2015, Bordeaux, France, April 21-24, 2015, ACM, 2015, pp. 18:1–
18:17. doi:10.1145/2741948.2741964.
URL https://doi.org/10.1145/2741948.2741964

[150] F. Rossi, V. Cardellini, F. L. Presti, M. Nardelli, Geo-distributed
efficient deployment of containers with kubernetes, Comput.
Commun. 159 (2020) 161–174. doi:10.1016/j.comcom.2020.
04.061.
URL https://doi.org/10.1016/j.comcom.2020.04.061

189

https://doi.org/10.1109/COMST.2017.2717482
https://doi.org/10.1109/COMST.2017.2717482
https://doi.org/10.1109/COMST.2017.2717482
https://doi.org/10.1109/COMST.2017.2717482
https://doi.org/10.1109/COMST.2017.2717482
https://arxiv.org/abs/2106.10014
https://arxiv.org/abs/2106.10014
http://arxiv.org/abs/2106.10014
https://arxiv.org/abs/2106.10014
https://doi.org/10.1016/j.future.2017.11.044
https://doi.org/10.1016/j.future.2017.11.044
https://doi.org/10.1016/j.future.2017.11.044
https://doi.org/10.1016/j.future.2017.11.044
https://doi.org/10.1016/j.jnca.2019.01.001
https://doi.org/10.1016/j.jnca.2019.01.001
https://doi.org/10.1016/j.jnca.2019.01.001
https://doi.org/10.1016/j.jnca.2019.01.001
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1016/j.comcom.2020.04.061
https://doi.org/10.1016/j.comcom.2020.04.061
https://doi.org/10.1016/j.comcom.2020.04.061
https://doi.org/10.1016/j.comcom.2020.04.061
https://doi.org/10.1016/j.comcom.2020.04.061

BIBLIOGRAPHY

[151] A. Lèbre, J. Pastor, A. Simonet, F. Desprez, Revising openstack
to operate fog/edge computing infrastructures, in: 2017 IEEE
International Conference on Cloud Engineering, IC2E 2017, Van-
couver, BC, Canada, April 4-7, 2017, IEEE Computer Society,
2017, pp. 138–148. doi:10.1109/IC2E.2017.35.
URL https://doi.org/10.1109/IC2E.2017.35

[152] H. Sami, A. Mourad, Dynamic on-demand fog formation of-
fering on-the-fly iot service deployment, IEEE Trans. Netw.
Serv. Manag. 17 (2) (2020) 1026–1039. doi:10.1109/TNSM.2019.
2963643.
URL https://doi.org/10.1109/TNSM.2019.2963643

[153] A. Kurniawan, Learning AWS IoT: Effectively manage connected
devices on the AWS cloud using services such as AWS Greengrass,
AWS button, predictive analytics and machine learning, Packt
Publishing, 2018.
URL https://books.google.rs/books?id=7NRJDwAAQBAJ

[154] Linux Foundation, KubeEdge, https://kubeedge.io/ (accessed
November 7, 2020).

[155] General Electric, GE. Predix, https://www.ge.com/digital/
iiot-platform/ (accessed November 7, 2020).

[156] Y. Mao, J. Zhang, K. B. Letaief, Dynamic computation offloading
for mobile-edge computing with energy harvesting devices, IEEE
J. Sel. Areas Commun. 34 (12) (2016) 3590–3605. doi:10.1109/
JSAC.2016.2611964.
URL https://doi.org/10.1109/JSAC.2016.2611964

[157] C. Shi, K. Habak, P. Pandurangan, M. H. Ammar, M. Naik,
E. W. Zegura, COSMOS: computation offloading as a service
for mobile devices, in: J. Wu, X. Cheng, X. Li, S. Sarkar (Eds.),
The Fifteenth ACM International Symposium on Mobile Ad
Hoc Networking and Computing, MobiHoc’14, Philadelphia, PA,

190

https://doi.org/10.1109/IC2E.2017.35
https://doi.org/10.1109/IC2E.2017.35
https://doi.org/10.1109/IC2E.2017.35
https://doi.org/10.1109/IC2E.2017.35
https://doi.org/10.1109/TNSM.2019.2963643
https://doi.org/10.1109/TNSM.2019.2963643
https://doi.org/10.1109/TNSM.2019.2963643
https://doi.org/10.1109/TNSM.2019.2963643
https://doi.org/10.1109/TNSM.2019.2963643
https://books.google.rs/books?id=7NRJDwAAQBAJ
https://books.google.rs/books?id=7NRJDwAAQBAJ
https://books.google.rs/books?id=7NRJDwAAQBAJ
https://books.google.rs/books?id=7NRJDwAAQBAJ
https://kubeedge.io/
https://www.ge.com/digital/iiot-platform/
https://www.ge.com/digital/iiot-platform/
https://doi.org/10.1109/JSAC.2016.2611964
https://doi.org/10.1109/JSAC.2016.2611964
https://doi.org/10.1109/JSAC.2016.2611964
https://doi.org/10.1109/JSAC.2016.2611964
https://doi.org/10.1109/JSAC.2016.2611964
https://doi.org/10.1145/2632951.2632958
https://doi.org/10.1145/2632951.2632958

BIBLIOGRAPHY

USA, August 11-14, 2014, ACM, 2014, pp. 287–296. doi:10.
1145/2632951.2632958.
URL https://doi.org/10.1145/2632951.2632958

[158] Z. Wang, Z. Zhao, G. Min, X. Huang, Q. Ni, R. Wang, User mo-
bility aware task assignment for mobile edge computing, Future
Gener. Comput. Syst. 85 (2018) 1–8. doi:10.1016/j.future.
2018.02.014.
URL https://doi.org/10.1016/j.future.2018.02.014

[159] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, N. Fullagar, Native client: a sandbox
for portable, untrusted x86 native code, Commun. ACM 53 (1)
(2010) 91–99. doi:10.1145/1629175.1629203.
URL https://doi.org/10.1145/1629175.1629203

[160] M. Beck, M. Werner, S. Feld, T. Schimper, Mobile edge
computing: A taxonomy, in: The Sixth International Conference
on Advances in Future Internet (AFIN 2014), 2014.
URL https://www.researchgate.net/publication/
267448582_Mobile_Edge_Computing_A_Taxonomy

[161] R.-A. Cherrueau, M. Delavergne, A. Lebre, Geo-Distribute Cloud
Applications at the Edge, in: EURO-PAR 2021 - 27th Interna-
tional European Conference on Parallel and Distributed Com-
puting, Lisbon, Portugal, 2021, pp. 1–14.
URL https://hal.inria.fr/hal-03212421

[162] S. Miloš, S. Goran, Z. Miroslav, M. Branko, Infrastructure as
software in micro clouds at the edge, Sensors 21 (21) (2021).
doi:10.3390/s21217001.
URL https://www.mdpi.com/1424-8220/21/21/7001

[163] M. Bertier, F. Desprez, G. Fedak, A. Lebre, A.-C. Orgerie, J. Pas-
tor, F. Quesnel, J. Rouzaud-Cornabas, C. Tedeschi, Beyond The

191

https://doi.org/10.1145/2632951.2632958
https://doi.org/10.1145/2632951.2632958
https://doi.org/10.1145/2632951.2632958
https://doi.org/10.1016/j.future.2018.02.014
https://doi.org/10.1016/j.future.2018.02.014
https://doi.org/10.1016/j.future.2018.02.014
https://doi.org/10.1016/j.future.2018.02.014
https://doi.org/10.1016/j.future.2018.02.014
https://doi.org/10.1145/1629175.1629203
https://doi.org/10.1145/1629175.1629203
https://doi.org/10.1145/1629175.1629203
https://doi.org/10.1145/1629175.1629203
https://www.researchgate.net/publication/267448582_Mobile_Edge_Computing_A_Taxonomy
https://www.researchgate.net/publication/267448582_Mobile_Edge_Computing_A_Taxonomy
https://www.researchgate.net/publication/267448582_Mobile_Edge_Computing_A_Taxonomy
https://www.researchgate.net/publication/267448582_Mobile_Edge_Computing_A_Taxonomy
https://hal.inria.fr/hal-03212421
https://hal.inria.fr/hal-03212421
https://hal.inria.fr/hal-03212421
https://www.mdpi.com/1424-8220/21/21/7001
https://www.mdpi.com/1424-8220/21/21/7001
https://doi.org/10.3390/s21217001
https://www.mdpi.com/1424-8220/21/21/7001
https://hal.inria.fr/hal-01067888
https://hal.inria.fr/hal-01067888
https://hal.inria.fr/hal-01067888

BIBLIOGRAPHY

Clouds, How Should Next Generation Utility Computing Infras-
tructures Be Designed?, in: Z. Mahmood (Ed.), Cloud Comput-
ing: Challenges, Limitations and R and D Solutions, Springer,
2014.
URL https://hal.inria.fr/hal-01067888

[164] N. Hayashibara, X. Défago, R. Yared, T. Katayama, The Φ
accrual failure detector, in: 23rd International Symposium on
Reliable Distributed Systems (SRDS 2004), 18-20 October 2004,
Florianpolis, Brazil, IEEE Computer Society, 2004, pp. 66–78.
doi:10.1109/RELDIS.2004.1353004.
URL https://doi.org/10.1109/RELDIS.2004.1353004

[165] B. Satzger, A. Pietzowski, W. Trumler, T. Ungerer, Variations
and evaluations of an adaptive accrual failure detector to enable
self-healing properties in distributed systems, in: P. Lukowicz,
L. Thiele, G. Tröster (Eds.), Architecture of Computing Systems
- ARCS 2007, 20th International Conference, Zurich, Switzerland,
March 12-15, 2007, Proceedings, Vol. 4415 of Lecture Notes in
Computer Science, Springer, 2007, pp. 171–184. doi:10.1007/
978-3-540-71270-1_13.
URL https://doi.org/10.1007/978-3-540-71270-1_13

[166] M. Simic, M. Stojkov, G. Sladic, B. Milosavljević, Crdts as
replication strategy in large-scale edge distributed system: An
overview, in: CRDTs as replication strategy in large-scale edge
distributed system: An overview, 2020.

[167] A. Farshin, A. Roozbeh, G. Q. M. Jr., D. Kostic, Make the most
out of last level cache in intel processors, in: G. Candea, R. van
Renesse, C. Fetzer (Eds.), Proceedings of the Fourteenth EuroSys
Conference 2019, Dresden, Germany, March 25-28, 2019, ACM,
2019, pp. 8:1–8:17. doi:10.1145/3302424.3303977.
URL https://doi.org/10.1145/3302424.3303977

192

https://hal.inria.fr/hal-01067888
https://hal.inria.fr/hal-01067888
https://hal.inria.fr/hal-01067888
https://hal.inria.fr/hal-01067888
https://hal.inria.fr/hal-01067888
https://doi.org/10.1109/RELDIS.2004.1353004
https://doi.org/10.1109/RELDIS.2004.1353004
https://doi.org/10.1109/RELDIS.2004.1353004
https://doi.org/10.1109/RELDIS.2004.1353004
https://doi.org/10.1007/978-3-540-71270-1_13
https://doi.org/10.1007/978-3-540-71270-1_13
https://doi.org/10.1007/978-3-540-71270-1_13
https://doi.org/10.1007/978-3-540-71270-1_13
https://doi.org/10.1007/978-3-540-71270-1_13
https://doi.org/10.1007/978-3-540-71270-1_13
https://doi.org/10.1145/3302424.3303977
https://doi.org/10.1145/3302424.3303977
https://doi.org/10.1145/3302424.3303977
https://doi.org/10.1145/3302424.3303977

BIBLIOGRAPHY

[168] D. Gannon, R. S. Barga, N. Sundaresan, Cloud-native ap-
plications, IEEE Cloud Comput. 4 (5) (2017) 16–21. doi:
10.1109/MCC.2017.4250939.
URL https://doi.org/10.1109/MCC.2017.4250939

[169] J. J. M. M. Rutten, Behavioural differential equations: a coinduc-
tive calculus of streams, automata, and power series, Theor. Com-
put. Sci. 308 (1-3) (2003) 1–53. doi:10.1016/S0304-3975(02)
00895-2.
URL https://doi.org/10.1016/S0304-3975(02)00895-2

[170] A. S. Abdelhamid, A. R. Mahmood, A. Daghistani, W. G. Aref,
Prompt: Dynamic data-partitioning for distributed micro-batch
stream processing systems, in: D. Maier, R. Pottinger, A. Doan,
W. Tan, A. Alawini, H. Q. Ngo (Eds.), Proceedings of the 2020
International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June
14-19, 2020, ACM, 2020, pp. 2455–2469. doi:10.1145/3318464.
3389713.
URL https://doi.org/10.1145/3318464.3389713

[171] J. hung Ding, C. jung Lin, P. hao Chang, C. hao Tsang, W. chung
Hsu, Y. ching Chung, Armvisor: System virtualization for arm,
in: In Proceedings of the Ottawa Linux Symposium (OLS, 2012,
pp. 93–107.

[172] M. Simić, M. Stojkov, G. Sladic, B. Milosavljević, M. Zarić, On
container usability in large-scale edge distributed system, in: On
container usability in large-scale edge distributed system, 2019.

[173] S. Kuenzer, V. Badoiu, H. Lefeuvre, S. Santhanam, A. Jung,
G. Gain, C. Soldani, C. Lupu, S. Teodorescu, C. Raducanu,
C. Banu, L. Mathy, R. Deaconescu, C. Raiciu, F. Huici, Unikraft:
Fast, specialized unikernels the easy way, CoRR abs/2104.12721
(2021). arXiv:2104.12721.
URL https://arxiv.org/abs/2104.12721

193

https://doi.org/10.1109/MCC.2017.4250939
https://doi.org/10.1109/MCC.2017.4250939
https://doi.org/10.1109/MCC.2017.4250939
https://doi.org/10.1109/MCC.2017.4250939
https://doi.org/10.1109/MCC.2017.4250939
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1145/3318464.3389713
https://doi.org/10.1145/3318464.3389713
https://doi.org/10.1145/3318464.3389713
https://doi.org/10.1145/3318464.3389713
https://doi.org/10.1145/3318464.3389713
https://arxiv.org/abs/2104.12721
https://arxiv.org/abs/2104.12721
http://arxiv.org/abs/2104.12721
https://arxiv.org/abs/2104.12721

BIBLIOGRAPHY

[174] Y. Yu, P. Manolios, L. Lamport, Model checking tla+ specifica-
tions, in: L. Pierre, T. Kropf (Eds.), Correct Hardware Design
and Verification Methods, 10th IFIP WG10.5 Advanced Research
Working Conference, CHARME ’99, Bad Herrenalb,Germany,
September 27-29, 1999, Proceedings, Vol. 1703 of Lecture Notes
in Computer Science, Springer, 1999, pp. 54–66. doi:10.1007/
3-540-48153-2_6.
URL https://doi.org/10.1007/3-540-48153-2_6

[175] M. Hennessy, A distributed Pi-calculus, Cambridge University
Press, 2007.

[176] J. Upadhyay, Review of: Distributed computing through combi-
natorial topology by maurice herlihy and dmitry kozlov and
sergio rajsbaum, SIGACT News 47 (2) (2016) 18–20. doi:
10.1145/2951860.2951867.
URL https://doi.org/10.1145/2951860.2951867

[177] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduc-
tion to Algorithms, 3rd Edition, MIT Press, 2009.
URL http://mitpress.mit.edu/books/
introduction-algorithms

[178] S. Tarkoma, C. E. Rothenberg, E. Lagerspetz, Theory and prac-
tice of bloom filters for distributed systems, IEEE Commun.
Surv. Tutorials 14 (1) (2012) 131–155. doi:10.1109/SURV.2011.
031611.00024.
URL https://doi.org/10.1109/SURV.2011.031611.00024

[179] B. Burns, D. Oppenheimer, Design patterns for container-based
distributed systems, in: A. Clements, T. Condie (Eds.), 8th
USENIX Workshop on Hot Topics in Cloud Computing,
HotCloud 2016, Denver, CO, USA, June 20-21, 2016, USENIX
Association, 2016.
URL https://www.usenix.org/conference/hotcloud16/
workshop-program/presentation/burns

194

https://doi.org/10.1007/3-540-48153-2_6
https://doi.org/10.1007/3-540-48153-2_6
https://doi.org/10.1007/3-540-48153-2_6
https://doi.org/10.1007/3-540-48153-2_6
https://doi.org/10.1007/3-540-48153-2_6
https://doi.org/10.1145/2951860.2951867
https://doi.org/10.1145/2951860.2951867
https://doi.org/10.1145/2951860.2951867
https://doi.org/10.1145/2951860.2951867
https://doi.org/10.1145/2951860.2951867
https://doi.org/10.1145/2951860.2951867
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1109/SURV.2011.031611.00024
https://doi.org/10.1109/SURV.2011.031611.00024
https://doi.org/10.1109/SURV.2011.031611.00024
https://doi.org/10.1109/SURV.2011.031611.00024
https://doi.org/10.1109/SURV.2011.031611.00024
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns

BIBLIOGRAPHY

[180] M. A. Tamiru, J. Tordsson, E. Elmroth, G. Pierre, An ex-
perimental evaluation of the kubernetes cluster autoscaler in
the cloud, in: 12th IEEE International Conference on Cloud
Computing Technology and Science, CloudCom 2020, Bangkok,
Thailand, December 14-17, 2020, IEEE, 2020, pp. 17–24. doi:
10.1109/CloudCom49646.2020.00002.
URL https://doi.org/10.1109/CloudCom49646.2020.00002

[181] E. Cohen, E. Halperin, H. Kaplan, Performance aspects of dis-
tributed caches using ttl-based consistency, Theor. Comput. Sci.
331 (1) (2005) 73–96. doi:10.1016/j.tcs.2004.09.033.
URL https://doi.org/10.1016/j.tcs.2004.09.033

[182] C. G. Gray, D. R. Cheriton, Leases: An efficient fault-tolerant
mechanism for distributed file cache consistency, in: G. R. An-
drews (Ed.), Proceedings of the Twelfth ACM Symposium on
Operating System Principles, SOSP 1989, The Wigwam, Litch-
field Park, Arizona, USA, December 3-6, 1989, ACM, 1989, pp.
202–210. doi:10.1145/74850.74870.
URL https://doi.org/10.1145/74850.74870

[183] K. Mathews, C. Kramer, R. Gotzhein, Token bucket based traffic
shaping and monitoring for wlan-based control systems, in: 28th
IEEE Annual International Symposium on Personal, Indoor,
and Mobile Radio Communications, PIMRC 2017, Montreal,
QC, Canada, October 8-13, 2017, IEEE, 2017, pp. 1–7. doi:
10.1109/PIMRC.2017.8292201.
URL https://doi.org/10.1109/PIMRC.2017.8292201

[184] Kubernetes.io, Running in multiple zones, https://kubernetes.
io/docs/setup/best-practices/multiple-zones/ (accessed
November 7, 2020).

[185] P. Andrade, T. Bell, J. Eldik, G. Mccance, B. Panzer-Steindel,
M. Santos, S. and, U. Schwickerath, Review of cern data centre

195

https://doi.org/10.1109/CloudCom49646.2020.00002
https://doi.org/10.1109/CloudCom49646.2020.00002
https://doi.org/10.1109/CloudCom49646.2020.00002
https://doi.org/10.1109/CloudCom49646.2020.00002
https://doi.org/10.1109/CloudCom49646.2020.00002
https://doi.org/10.1109/CloudCom49646.2020.00002
https://doi.org/10.1016/j.tcs.2004.09.033
https://doi.org/10.1016/j.tcs.2004.09.033
https://doi.org/10.1016/j.tcs.2004.09.033
https://doi.org/10.1016/j.tcs.2004.09.033
https://doi.org/10.1145/74850.74870
https://doi.org/10.1145/74850.74870
https://doi.org/10.1145/74850.74870
https://doi.org/10.1145/74850.74870
https://doi.org/10.1109/PIMRC.2017.8292201
https://doi.org/10.1109/PIMRC.2017.8292201
https://doi.org/10.1109/PIMRC.2017.8292201
https://doi.org/10.1109/PIMRC.2017.8292201
https://doi.org/10.1109/PIMRC.2017.8292201
https://kubernetes.io/docs/setup/best-practices/multiple-zones/
https://kubernetes.io/docs/setup/best-practices/multiple-zones/

BIBLIOGRAPHY

infrastructure, Journal of Physics Conference Series 396 (2012)
2002–. doi:10.1088/1742-6596/396/4/042002.

[186] A. Forestiero, C. Mastroianni, M. Meo, G. Papuzzo, M. Sheikhal-
ishahi, Hierarchical approach for green workload management in
distributed data centers, in: Euro-Par 2014: Parallel Processing
Workshops - Euro-Par 2014 International Workshops, Porto, Por-
tugal, August 25-26, 2014, Revised Selected Papers, Part I, Vol.
8805 of Lecture Notes in Computer Science, Springer, 2014, pp.
323–334. doi:10.1007/978-3-319-14325-5_28.
URL https://doi.org/10.1007/978-3-319-14325-5_28

[187] M. Al-Khafajiy, T. Baker, C. Chalmers, M. Asim, H. Kolivand,
M. Fahim, A. Waraich, Remote health monitoring of elderly
through wearable sensors, Multim. Tools Appl. 78 (17) (2019)
24681–24706. doi:10.1007/s11042-018-7134-7.
URL https://doi.org/10.1007/s11042-018-7134-7

[188] Y. J. Jeon, S. J. Kang, Wearable sleepcare kit: Analysis and
prevention of sleep apnea symptoms in real-time, IEEE Access 7
(2019) 60634–60649. doi:10.1109/ACCESS.2019.2913849.
URL https://doi.org/10.1109/ACCESS.2019.2913849

[189] G. Chiarini, P. Ray, S. Akter, C. Masella, A. Ganz, mhealth
technologies for chronic diseases and elders: A systematic review,
IEEE J. Sel. Areas Commun. 31 (9-Supplement) (2013) 6–18.
doi:10.1109/JSAC.2013.SUP.0513001.
URL https://doi.org/10.1109/JSAC.2013.SUP.0513001

[190] F. Fitzek, S. Li, S. Speidel, T. Strufe, M. Simsek, M. Reisslein,
Tactile Internet: With Human-in-the-Loop, Elsevier Science,
2021.
URL https://books.google.rs/books?id=es4hEAAAQBAJ

[191] A. A. Omar, M. Z. A. Bhuiyan, A. Basu, S. Kiyomoto, M. S.
Rahman, Privacy-friendly platform for healthcare data in cloud

196

https://doi.org/10.1088/1742-6596/396/4/042002
https://doi.org/10.1007/978-3-319-14325-5_28
https://doi.org/10.1007/978-3-319-14325-5_28
https://doi.org/10.1007/978-3-319-14325-5_28
https://doi.org/10.1007/978-3-319-14325-5_28
https://doi.org/10.1007/s11042-018-7134-7
https://doi.org/10.1007/s11042-018-7134-7
https://doi.org/10.1007/s11042-018-7134-7
https://doi.org/10.1007/s11042-018-7134-7
https://doi.org/10.1109/ACCESS.2019.2913849
https://doi.org/10.1109/ACCESS.2019.2913849
https://doi.org/10.1109/ACCESS.2019.2913849
https://doi.org/10.1109/ACCESS.2019.2913849
https://doi.org/10.1109/JSAC.2013.SUP.0513001
https://doi.org/10.1109/JSAC.2013.SUP.0513001
https://doi.org/10.1109/JSAC.2013.SUP.0513001
https://doi.org/10.1109/JSAC.2013.SUP.0513001
https://books.google.rs/books?id=es4hEAAAQBAJ
https://books.google.rs/books?id=es4hEAAAQBAJ
https://doi.org/10.1016/j.future.2018.12.044
https://doi.org/10.1016/j.future.2018.12.044
https://doi.org/10.1016/j.future.2018.12.044

BIBLIOGRAPHY

based on blockchain environment, Future Gener. Comput. Syst.
95 (2019) 511–521. doi:10.1016/j.future.2018.12.044.
URL https://doi.org/10.1016/j.future.2018.12.044

[192] M. Simic, G. Sladic, B. Milosavljević, A case study iot and
blockchain powered healthcare, in: A Case Study IoT and
Blockchain powered Healthcare, 2017.

[193] Y. Shen, D. Guo, F. Long, L. A. Mateos, H. Ding, Z. Xiu, R. B.
Hellman, A. King, S. Chen, C. Zhang, H. Tan, Robots under
COVID-19 pandemic: A comprehensive survey, IEEE Access 9
(2021) 1590–1615. doi:10.1109/ACCESS.2020.3045792.
URL https://doi.org/10.1109/ACCESS.2020.3045792

[194] V. Ivančević, M. Knežević, M. Simić, I. Luković, D. Mandić, Pub-
lic healthcare and epidemiology with dr warehouse, International
Journal on Advances in Software 6 (3-4) (2013) 329–342.

[195] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar,
J. H. Abawajy, Fog of everything: Energy-efficient networked
computing architectures, research challenges, and a case study,
IEEE Access 5 (2017) 9882–9910. doi:10.1109/ACCESS.2017.
2702013.
URL https://doi.org/10.1109/ACCESS.2017.2702013

197

https://doi.org/10.1016/j.future.2018.12.044
https://doi.org/10.1016/j.future.2018.12.044
https://doi.org/10.1016/j.future.2018.12.044
https://doi.org/10.1016/j.future.2018.12.044
https://doi.org/10.1016/j.future.2018.12.044
https://doi.org/10.1109/ACCESS.2020.3045792
https://doi.org/10.1109/ACCESS.2020.3045792
https://doi.org/10.1109/ACCESS.2020.3045792
https://doi.org/10.1109/ACCESS.2020.3045792
https://doi.org/10.1109/ACCESS.2017.2702013
https://doi.org/10.1109/ACCESS.2017.2702013
https://doi.org/10.1109/ACCESS.2017.2702013
https://doi.org/10.1109/ACCESS.2017.2702013
https://doi.org/10.1109/ACCESS.2017.2702013

BIBLIOGRAPHY

198

Biography

The work in this thesis is a synthesis of a few individual parts:

(1) The experience acquired at a university on the topic of software
engineering,

(2) The research conducted as part of the Ph.D. studies, covering
various aspects of the distributed systems,

(3) The work done in collaboration with prominent software vendors,

(4) The collaboration with researchers from different research areas.

Miloš Simić is a Ph.D. student and teaching assistant within the De-
partment of Computing and Control, Faculty of Technical Sciences,
University of Novi Sad since 2015. He received his B.Sc. degree in 2014,
and M.Sc. degree in 2015, all in Computer Science from the University
of Novi Sad, Faculty of Technical Sciences. He is the owner of two
team awards: (1) Best paper award (academia), and (2) ThinkX in
the category Community and Social Impact (industry).

Over the years, Miloš worked with various prominent software vendors,
in different fields. This allowed him to combine the different skillsets
developed over the years and focus his expertise towards designing and
implementing distributed and non-distributed software systems, for
various usages. His research interests include: (1) distributed systems,
(2) (multi) cloud computing, (3) edge computing, (4) NoSQL engines

and big data, and (5) service-oriented architectures and microservices.

As part of his Ph.D., Miloš has studied different distributed systems
techniques, combined with various software engineering methodologies
and practices covering both standard-defined processes and industry-
proven methods, to solve and answer such complicated questions that
are part of this thesis. The chance to work with different software ven-
dors and combine that knowledge with traditional academic approaches,
helped Miloš to determine what are the main research questions that
need to be answered and guided him to the work that is described in
this thesis.

Through collaboration with people from different research areas, this
thesis is enriched with formal description and formal model that are
important leverage to describe and validate such a complicated system.
The efforts put into this research resulted in reaching only the tip of
the iceberg of future opportunities. In 2021, the portion of the work
that was published in the IEEE Access journal (paper cf. journal
paper (1)) was presented to the eminent professors and colleagues from
the Imperial College London, as an invited lecture.

Further challenges are yet to come.

List of publications

This thesis is the result of years of research and development, and it is
based on the previously presented papers at conferences in journals.

• Journal publications

(1) M. Simić, I. Prokić, J. Dedeić, G. Sladić and B. Milosavljević,
"Towards Edge Computing as a Service: Dynamic Formation
of the Micro Data-Centers," in IEEE Access, vol. 9, pp.
114468-114484, 2021, doi: 10.1109/ACCESS.2021.3104475.

(2) Simić, M.; Sladić, G.; Zarić, M.; Markoski, B. Infrastructure
as Software in Micro Clouds at the Edge. Sensors 2021, 21,
7001. https://doi.org/10.3390/s21217001

(3) Ivančević V., Knežević M., Simić M., Luković I., Mandić D.:
Public Healthcare and Epidemiology with Dr Warehouse,
International Journal on Advances in Software, 2013, Vol.
6, No. 3-4, pp. 329-342, ISSN 1942-2628

• Conference papers

(1) Simić, M., Stojkov, M., Sladić, G., Milosavljević, B. CRDTs
as replication strategy in large-scale edge distributed system:
An overview. In: Zdravković, M., Konjović, Z., Trajanović,
M. (Eds.) ICIST 2020 Proceedings Vol.1, pp.46-50, 2020,
ISBN 978-86-85525-24-7.

(2) Simić M., Stojkov M., Sladić G., Milosavljević B., Zarić
M.: On container usability in large-scale edge distributed
system, 9. International Conference on Information Science
and Technology (ICIST), Kopaonik: Society for Information
Systems and Computer Networks, 10-13 March, 2019, pp.
97-101, ISBN pp.97-101, 2019.

(3) Simić M., Stojkov M., Sladić G., Milosavljević B.: Edge
computing system for large-scale distributed sensing systems,
8. International Conference on Information Science and
Technology (ICIST), Kopaonik: Society for Information
Systems and Computer Networks, 11-14 March, 2018, pp.
36-39, ISBN 978-86-85525-22-3.

(4) Simić M., Sladić G., Milosavljević B.: A Case Study IoT and
Blockchain Powered Healthcare , 8. PSU-UNS International
Conference on Engineering and Technology - ICET, Novi
Sad: University of Novi Sad, Faculty of Technical Sciences ,
8-10 June, 2017, pp. 1-4, ISBN 978-86-7892-934-2.

(5) Simić M.: Clover: Property Graph based metadata manage-
ment service, 6. International Conference on Information
Science and Technology (ICIST), Kopaonik: Society for In-
formation Systems and Computer Networks, 29-2 February,
2016, pp. 81-85, ISBN 978-86-85525-18-6.

(6) Ivančević V., Knežević M., Simić M., Luković I., Mandić D.:
Public Healthcare and Epidemiology with Dr Warehouse,
International Journal on Advances in Software, 2013, Vol.
6, No. 3-4, pp. 329-342, ISSN 1942-2628

Овај Образац чини саставни део докторске дисертације, односно
докторског уметничког пројекта који се брани на Универзитету у Новом
Саду. Попуњен Образац укоричити иза текста докторске дисертације,
односно докторског уметничког пројекта.

План третмана података

Назив пројекта/истраживања

Динамичко формирање дистрибуираног микро окружења у рачунарству у облаку / Dynamic
Formation of the Distributed Micro Clouds

Назив институције/институција у оквиру којих се спроводи истраживање

a) Факултет техничких наука, Универзитет у Новом Саду

Назив програма у оквиру ког се реализује истраживање

Рачунарство и аутоматика – докторска дисертација

1. Опис података

1.1 Врста студије

Укратко описати тип студије у оквиру које се подаци прикупљају

Докторска дисертација

1.2 Врсте података

а) квантитативни

б) квалитативни

1.3. Начин прикупљања података

а) анкете, упитници, тестови

б) клиничке процене, медицински записи, електронски здравствени записи

в) генотипови: навести врсту ________________________________

г) административни подаци: навести врсту _______________________

д) узорци ткива: навести врсту_________________________________

ђ) снимци, фотографије: навести врсту_____________________________

е) текст, навести врсту _Актуелна литература у области истраживања_______

ж) мапа, навести врсту ______________________________________

з) остало: описати ___

Национални портал отворене науке – open.ac.rs

1.3 Формат података, употребљене скале, количина података

1.3.1 Употребљени софтвер и формат датотеке:

a) Excel фајл, датотека __________________

b) SPSS фајл, датотека __________________

c) PDF фајл, датотека ___________________

d) Текст фајл, датотека __________________

e) JPG фајл, датотека ___________________

f) Остало, датотека ____________________

1.3.2. Број записа (код квантитативних података)

а) број варијабли ___

б) број мерења (испитаника, процена, снимака и сл.) ______________________

1.3.3. Поновљена мерења

а) да

б) не

Уколико је одговор да, одговорити на следећа питања:

а) временски размак измедју поновљених мера је ______________________________

б) варијабле које се више пута мере односе се на ________________________________

в) нове верзије фајлова који садрже поновљена мерења су именоване као ____________

Напомене: __

Да ли формати и софтвер омогућавају дељење и дугорочну валидност података?

а) Да

б) Не

Ако је одговор не, образложити __

2. Прикупљање података

2.1 Методологија за прикупљање/генерисање података

2.1.1. У оквиру ког истраживачког нацрта су подаци прикупљени?

а) експеримент, навести тип ___

б) корелационо истраживање, навести тип __

ц) анализа текста, навести тип _Анализа доступне литературе_______________________

Национални портал отворене науке – open.ac.rs

д) остало, навести шта __

2.1.2 Навести врсте мерних инструмената или стандарде података специфичних за одређену
научну дисциплину (ако постоје).

__

__

2.2 Квалитет података и стандарди

2.2.1. Третман недостајућих података

а) Да ли матрица садржи недостајуће податке? Да Не

Ако је одговор да, одговорити на следећа питања:

а) Колики је број недостајућих података? __________________________

б) Да ли се кориснику матрице препоручује замена недостајућих података? Да Не

в) Ако је одговор да, навести сугестије за третман замене недостајућих података

__

2.2.2. На који начин је контролисан квалитет података? Описати

__

__

2.2.3. На који начин је извршена контрола уноса података у матрицу?

__

__

3. Третман података и пратећа документација

3.1. Третман и чување података

3.1.1. Подаци ће бити депоновани у ___________________________________ репозиторијум.

3.1.2. URL адреса ___

3.1.3. DOI __

3.1.4. Да ли ће подаци бити у отвореном приступу?

а) Да

б) Да, али после ембарга који ће трајати до ___________________________________

в) Не

Ако је одговор не, навести разлог __

3.1.5. Подаци неће бити депоновани у репозиторијум, али ће бити чувани.

Образложење

__

Национални портал отворене науке – open.ac.rs

__

3.2 Метаподаци и документација података

3.2.1. Који стандард за метаподатке ће бити примењен? _________________________________

3.2.1. Навести метаподатке на основу којих су подаци депоновани у репозиторијум.

__

__

Ако је потребно, навести методе које се користе за преузимање података, аналитичке и
процедуралне информације, њихово кодирање, детаљне описе варијабли, записа итд.

__

__

3.3 Стратегија и стандарди за чување података

3.3.1. До ког периода ће подаци бити чувани у репозиторијуму? _______________________

3.3.2. Да ли ће подаци бити депоновани под шифром? Да Не

3.3.3. Да ли ће шифра бити доступна одређеном кругу истраживача? Да Не

3.3.4. Да ли се подаци морају уклонити из отвореног приступа после извесног времена?

Да Не

Образложити

__

__

4. Безбедност података и заштита поверљивих информација

Овај одељак МОРА бити попуњен ако ваши подаци укључују личне податке који се односе на
учеснике у истраживању. За друга истраживања треба такође размотрити заштиту и сигурност
података.

4.1 Формални стандарди за сигурност информација/података

Истраживачи који спроводе испитивања с људима морају да се придржавају Закона о заштити
података о личности (https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html) и
одговарајућег институционалног кодекса о академском интегритету.

4.1.2. Да ли је истраживање одобрено од стране етичке комисије? Да Не

Ако је одговор Да, навести датум и назив етичке комисије која је одобрила истраживање

__

4.1.2. Да ли подаци укључују личне податке учесника у истраживању? Да Не

Ако је одговор да, наведите на који начин сте осигурали поверљивост и сигурност информација
везаних за испитанике:

Национални портал отворене науке – open.ac.rs

а) Подаци нису у отвореном приступу

б) Подаци су анонимизирани

ц) Остало, навести шта

__

__

5. Доступност података

5.1. Подаци ће бити

а) јавно доступни

б) доступни само уском кругу истраживача у одређеној научној области

ц) затворени

Ако су подаци доступни само уском кругу истраживача, навести под којим условима могу да их
користе:

__

Ако су подаци доступни само уском кругу истраживача, навести на који начин могу приступити
подацима:
__

__

5.4. Навести лиценцу под којом ће прикупљени подаци бити архивирани.

__

6. Улоге и одговорност

6.1. Навести име и презиме и мејл адресу власника (аутора) података

Милош Симић, milos.simic@uns.ac.rs

6.2. Навести име и презиме и мејл адресу особе која одржава матрицу с подацимa

__

6.3. Навести име и презиме и мејл адресу особе која омогућује приступ подацима другим
истраживачима

__

Национални портал отворене науке – open.ac.rs

	Abstract
	Rezime
	List of Figures
	List of Tables
	Listings
	List of Equations
	List of Abbreviations
	Introduction
	Problem area
	Motivation and Problem Statement
	Research Hypotheses, and Goals
	Structure of the thesis

	Distributed computing
	Distributed systems
	Scalability
	Cloud computing
	Multi-cloud and sky computing

	Membership protocol
	Mobile computing

	Distributed programming
	Big Data
	Microservices
	Distributed Queries

	Observability

	Distribution Models
	Peer-to-peer
	Master-slave
	Replication

	Similar computing models
	Parallel computing
	Decentralized systems

	Transactions
	Distributed transactions
	Sagas

	Garbage collection
	Virtualization techniques
	Deployment
	Infrastructure as software
	Infrastructure as code

	Development roles
	Concurrency vs parallelism
	Actor model

	Research review
	Nodes organization
	Platform models
	Task offloading
	Application models
	Infrastructure management
	Thesis position

	Micro clouds
	Configurable Model Structure
	Separation of concers
	Applications Model
	Execution models
	Packaging options

	As a service model
	Immutable infrastructure
	Deployment in micro clouds

	Formal model
	Multiparty asynchronous session types
	Health-check protocol
	Cluster formation protocol
	Idempotency check protocol
	List detail protocol

	Long-lived transactions in micro clouds
	Garbage collection in micro clouds

	System observability
	Access pattern
	Auto scaling micro clouds
	User data flow in micro clouds
	Extendability
	Repercussion

	Proof of concept
	Platform implementation
	Technologies
	Node daemon
	Separation of concerns details
	Long-lived transactions details
	Garbage collection details
	Limitations

	Operations
	Query
	Mutate
	Queueing
	List
	Logs

	Experimental Results
	Experiment

	The existing solutions enhancement

	Model usability
	Applications
	Area traffic control example

	Conclusion
	Contributions of the thesis
	Limitations
	Discussion

	Future work

	Bibliography

