
UNIVERSITY OF NOVI SAD

FACULTY OF TECHNICAL SCIENCES
NOVI SAD

Application of Deep Learning
Methods in Monitoring and

Optimization of Electric Power
Systems

DOCTORAL DISSERTATION

Advisors: Candidate:
prof. dr Dejan Vukobratović Ognjen Kundačina
dr Dragiša Mišković

 Novi Sad, 2023

УНИВЕРЗИТЕТ У НОВОМ САДУ

ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА У
НОВОМ САДУ

Примена метода дубоког учења за
надгледање и оптимизацију
електроенергетских система

ДОКТОРСКА ДИСЕРТАЦИЈА

Ментори: Кандидат:
проф. др Дејан Вукобратовић Огњен Кундачина
др Драгиша Мишковић

 Нови Сад, 2023. године

�����������	�	�
�
�	���	 														
����	�	��
������	����	�������	���	�����

������	�
�����������	���
������	

������������ 	
��
����������������

�����������
���
����

��������������

���
����
���	�������
����
��� ���
������
!�
� �"���#����$�����$������ �
%�����������&
�
��'���

���
��(�
���	����)����)�
��� ���������������� ������*�����
+����
����
�������������)���������#��������'����

&��#
��������
,��������
������
�
��������������#������
������������
#���
�������$�������

-�������#�������
.����
/�

0��#����.#�������/

"�������
����������

%������
���
'���������12
,
�#��3��4
5!������67
8��#���9
'#����1�
:��!��
���9
,��#
���9

&������
�#����� 0#���
�$����
������������
���*�����

%*���������
�#����
.�������������#���/�

8#�
������������
�����������#�

�3��������;�
��������

���������

��)����
���� �#���
�������������� ����!
�������
����
��* ���������������� ������
�������� �����������
��
�!�������������������������*

5�������������
������

�����
��
������������������3�
�����������
������$��������
�
��
���������3�������<����#�
��������
������
�����������#�������

������������#���
�������$�������=�,�����
����
������������
��
��
����������������!
����$����
����$���*����������<��
���������������#���
�������$�������=�	������3�����������
��
������������!
������������
�����������
����������������������
��
�!�������������������������*=�0!�����
������#
*��$���
��
���
���<��������
�����$������������������#�����=

	��������$�������
���
��������
���#*�
������

(7=��=(9((=

	�����
�������
.,
�������

��
����������#�*��/

��>��
���
��
���������������
�����
��������#
*�
��#�����������
?��@��������
����
�����A
?��@��������B����
���
����)���������#���
������������
�#�������
������A
?��@��������
��
��)���=
���������������������!���#������)������
����#���
���
��
�#���������
�����������
�=

C#��
����
�������
.����#� ��� �
����� ����� �
�����������/

,������������8�������D
����+8�����#
 ���
������
!�
� �"���#���
�$�����$������ �%�����������&
�
��'���

C#���������#���5����� ���
������
!�
� �"���#����$�����$������ �
%�����������&
�
��'���

C#�������,���������
��� �����������
!�
� �"���#����$�����$�
����� �%�����������&
�
��'���

C#��������������E
�
��� ��
��� �0#���
�$������!���#�� �
%�����������'������

���
������	�������
����
��� ���
������
!�
� �"���#����$�����$�
����� �%�����������&
�
��'���

���
������	����)����)�
��� ���������������� ������*�����
+
����
�����������������)���������#��������'����

&��
�����

���� !"�#$	%&	�%��	"�'
&�(�)#$	%!	(�# !

* $	+%!'	'%(�, �#�#�%�-	

FBGHIJKL�LMNJ�� FBGLBOPQ�RSTTJOLPLSBK

UHLVBO�� WXKYJK�ZHKRP[SKP

\HNJO]STBO��
RO�FJYPK�^H_B`OPLB]Sa �bHQQ�NOBbJTTBO �cPGHQLM�Bb�dJGVKSGPQ�\GSJKGJT �
eKS]JOTSLM�Bb�fB]S�\PR

\HNJO]STBO�(
RO�FOPXSgP�hSg_B]Sa �TGSJKGJ�PTTBGSPLJ �dVJ�iKTLSLHLJ�bBO�UOLSbSGSPQ�iKLJQQSXJKGJ�
jJTJPOGV�PKR�FJ]JQBNIJKL�Bb�\JO`SP

dVJTST�LSLQJ��
UNNQSGPLSBK�Bb�FJJN�kJPOKSKX�hJLVBRT�SK�hBKSLBOSKX�PKR�WNLSISlPLSBK�Bb�
mQJGLOSG�nBoJO�\MTLJIT�

kPKXHPXJ�Bb�LJpL�
.TGOSNL/� mKXQSTV�QPKXHPXJ�.QPLSK/

nVMTSGPQ�RJTGOSNLSBK��

fHI`JO�Bb��
nPXJT��12
qVPNLJOT�4
jJbJOJKGJT��67
dP`QJT��9
iQQHTLOPLSBKT�1�
rOPNVT�9
UNNJKRSGJT�9

\GSJKLSbSG�bSJQR��
mQJGLOSGPQ�PKR�GBINHLJO�JKXSKJJOSKX

\GSJKLSbSG�TH`bSJQR�
.TGSJKLSbSG�RSTGSNQSKJ/��

dJQJGBIIHKSGPLSBKT�PKR�TSXKPQ�NOBGJTTSKX

\H`YJGL �ZJM�oBORT��
hPGVSKJ�QJPOKSKX �NBoJO�TMTLJIT �XOPNV�KJHOPQ�KJLoBO_T �TLPLJ�JTLSIPLSBK �
OJSKbBOGJIJKL�QJPOKSKX �RMKPISG�RSTLOS`HLSBK�KJLoBO_�OJGBKbSXHOPLSBK

U`TLOPGL�SK�mKXQSTV�
QPKXHPXJ��

dVST�nVF�LVJTST�LVBOBHXVQM�JpPISKJT�LVJ�HLSQSlPLSBK�Bb�RJJN�QJPOKSKX�
LJGVKSsHJT�PT�P�IJPKT�LB�PR]PKGJ�LVJ�PQXBOSLVIT�JINQBMJR�SK�LVJ�IBKSLBOSKX�
PKR�BNLSISlPLSBK�Bb�JQJGLOSG�NBoJO�TMTLJIT=�dVJ�bSOTL�IPYBO�GBKLOS`HLSBK�Bb�LVST
LVJTST�SK]BQ]JT�LVJ�PNNQSGPLSBK�Bb�XOPNV�KJHOPQ�KJLoBO_T�LB�JKVPKGJ�NBoJO�
TMTLJI�TLPLJ�JTLSIPLSBK=�dVJ�TJGBKR�_JM�PTNJGL�Bb�LVST�LVJTST�bBGHTJT�BK�
HLSQSlSKX�OJSKbBOGJIJKL�QJPOKSKX�bBO�RMKPISG�RSTLOS`HLSBK�KJLoBO_�
OJGBKbSXHOPLSBK=�dVJ�JbbJGLS]JKJTT�Bb�LVJ�NOBNBTJR�IJLVBRT�ST�PbbSOIJR�
LVOBHXV�JpLJKTS]J�JpNJOSIJKLPLSBK�PKR�TSIHQPLSBKT=

UGGJNLJR�BK�\GSJKLSbSG�
tBPOR�BK��

(7=��=(9((=

FJbJKRJR��
.cSQQJR�`M�LVJ�bPGHQLM�
TJO]SGJ/

dVJTST�FJbJKR�tBPOR��
.LSLQJ �bSOTL�KPIJ �QPTL�

nOJTSRJKL��RO�dPLYPKP�kBK[PO�dHOH_PQB �bHQQ�NOBbJTTBO �cPGHQLM�Bb�dJGVKSGPQ
\GSJKGJT �eKS]JOTSLM�Bb�fB]S�\PR

��dVJ�PHLVBO�Bb�RBGLBOPQ�RSTTJOLPLSBK�VPT�TSXKJR�LVJ�bBQQBoSKX�\LPLJIJKLT��
��?��@�\LPLJIJKL�BK�LVJ�PHLVBOSLM
��?��@�\LPLJIJKL�LVPL�LVJ�NOSKLJR�PKR�J+]JOTSBK�Bb�RBGLBOPQ�RSTTJOLPLSBK�POJ�SRJKLSGPQ�PKR�P`BHL�NJOTBKPQ�RPLP
��?��@�\LPLJIJKL�BK�GBNMOSXVL�QSGJKTJT=
��dVJ�NPNJO�PKR�J+]JOTSBKT�Bb�\LPLJIJKLT�POJ�VJQR�PL�VJ�bPGHQLM�PKR�POJ�KBL�SKGQHRJR�SKLB�LVJ�NOSKLJR�LVJTST=

KPIJ �NBTSLSBK �
SKTLSLHLSBK/

hJI`JO��RO�hSQPK�jPNPSa �bHQQ�NOBbJTTBO �cPGHQLM�Bb�dJGVKSGPQ
\GSJKGJT �eKS]JOTSLM�Bb�fB]S�\PR

hJI`JO��RO�nOJROPX�^SRB]Sa �PTTBGSPLJ�NOBbJTTBO �cPGHQLM�Bb�dJGVKSGPQ
\GSJKGJT �eKS]JOTSLM�Bb�fB]S�\PR

hJI`JO��RO�hSOTPR�uBTB]Sa �PTTSTLPKL�NOBbJTTBO �cPGHQLM�Bb�mQJGLOSGPQ�
mKXSKJJOSKX �eKS]JOTSLM�Bb�\POPYJ]B

\HNJO]STBO��RO�FJYPK�^H_B`OPLB]Sa �bHQQ�NOBbJTTBO �cPGHQLM�Bb�dJGVKSGPQ�
\GSJKGJT �eKS]JOTSLM�Bb�fB]S�\PR

\HNJO]STBO��RO�FOPXSgP�hSg_B]Sa �TGSJKGJ�PTTBGSPLJ �dVJ�iKTLSLHLJ�bBO�UOLSbSGSPQ�
iKLJQQSXJKGJ�jJTJPOGV�PKR�FJ]JQBNIJKL�Bb�\JO`SP

fBLJ��

Application of Deep Learning Methods

in Monitoring and Optimization

of Electric Power Systems

by

Ognjen Kunda�cina

M.Sc.El.Comp.Eng. Power, Electronic and Telecommunication Engineering,

University of Novi Sad, Serbia, 2018.

B.Sc.El.Comp.Eng. Power, Electronic and Telecommunication Engineering,

University of Novi Sad, Serbia, 2017.

for the degree of

Doctor of Technical Sciences

A dissertation submitted to the

Department of Power, Electronics

and Communication Engineering,

Faculty of Technical Sciences,

University of Novi Sad,

Serbia.

Advisors:

Dr Dejan Vukobratovi�c, Full Professor

Department of Power, Electronics and Communication Engineering,

University of Novi Sad, Serbia.

Dr Dragi�sa Mi�skovi�c, Science Associate

The Institute for Arti�cial Intelligence Research and Development of Serbia.

Thesis Committee Members:

Dr Tatjana Lon�car-Turukalo, Full Professor

Department of Power, Electronics and Communication Engineering,

University of Novi Sad, Serbia.

Dr Milan Rapai�c, Full Professor

Department of Computing and Control Engineering,

University of Novi Sad, Serbia.

Dr Predrag Vidovi�c, Associate Professor

Department of Power, Electronics and Communication Engineering,

University of Novi Sad, Serbia.

Dr Mirsad �Cosovi�c, Assistant Professor,

Faculty of Electrical Engineering,

University of Sarajevo, Bosnia and Herzegovina.

This research has received funding from the European Union’s Horizon 2020

research and innovation programme under Grant Agreement number 856967.

Contents

List of Publications 9

List of Figures 11

List of Tables 15

Abstract 17

Abbreviations 21

1 Introduction 23
1.1 Deep Learning Fundamentals . 24
1.2 Convolutional Neural Networks . 26
1.3 Recurrent Neural Networks . 27
1.4 Graph Neural Networks . 28
1.5 Deep Reinforcement Learning . 30
1.6 Power System State Estimation using Graph Neural Networks 32
1.7 Dynamic Distribution Network Recon�guration based on Deep Rein-

forcement Learning . 35

I State Estimation and Graph Neural Networks 41

2 Power System State Estimation 43

6 Contents

2.1 Foundational Concepts . 43
2.2 Linear State Estimation . 46
2.3 Nonlinear State Estimation . 48

3 Graph Neural Networks 51
3.1 Overview of Machine Learning on Graphs 51

3.1.1 Graphs . 51
3.1.2 Common Tasks of Machine Learning on Graphs 54
3.1.3 The Need for Graph Representation Learning 54
3.1.4 Graph Representation Learning 56
3.1.5 Graph Representation Learning using GNNs 58

3.2 Theoretical Foundations of Spatial Graph Neural Network 61
3.2.1 Graph Attention Networks . 64

3.3 Practical Aspects of Graph Neural Networks 65

4 Graph Neural Network-based State Estimation 69
4.1 Power System Factor Graph Augmentation 69
4.2 Proposed GNN Architecture . 72

4.2.1 Computational Complexity and Distributed Inference 73
4.3 Numerical results . 74

4.3.1 Linear State Estimation . 75
4.3.2 Scalability and Sample E�ciency Analysis of Linear State Esti-

mation . 82
4.3.3 Nonlinear State Estimation . 86

4.4 Summary and future work . 89

II Dynamic Distribution Network Recon�guration and Re-
inforcement Learning 93

5 Dynamic Distribution Network Recon�guration 95
5.1 Distribution Network Recon�guration 95
5.2 Mathematical Formulation of the DDNR Problem 97

5.2.1 Objective Function . 98
5.2.2 Constraints . 99

6 Reinforcement Learning 103
6.1 Finite Markov Decision Processes . 103
6.2 Q-Learning . 106
6.3 Deep Q-learning . 107

Contents 7

7 Reinforcement Learning based Dynamic Distribution Network Re-
con�guration 109
7.1 Modelling Dynamic Distribution Network Recon�guration as a Markov

Decision Process . 109
7.2 Training and Evaluation Algorithms 111
7.3 Numerical Results . 113

7.3.1 Benchmark Test Examples . 113
7.3.2 Real-Life Large-Scale Distribution Network 119
7.3.3 IEEE 33-bus Radial System . 120

7.4 Summary and future work . 123

8 Conclusions 125

Bibliography 127

List of Publications

Journal Publications:

O. Kundacina, M. Cosovic, D. Miskovic, and D. Vukobratovic, \Graph Neural Net-
works on Factor Graphs for Robust, Fast, and Scalable Linear State Estimation with
PMUs," in Sustainable Energy, Grids and Networks, 2023.

O. Kundacina, P. Vidovic, and M. Petkovic, \Solving dynamic distribution network
recon�guration using deep reinforcement learning," in Electrical Engineering, 2021.

Conference Publications:

O. Kundacina, M. Cosovic, D. Miskovic, and D. Vukobratovic, \Distributed Nonlin-
ear State Estimation in Electric Power Systems using Graph Neural Networks," in
2022 IEEE International Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm), Singapore, 2022, pp. 1{6.

O. Kundacina, M. Forcan, M. Cosovic, D. Raca, M. Dzaferagic, D. Miskovic, M.
Maksimovic, and D. Vukobratovic, \Near Real-Time Distributed State Estimation via
AI/ML-Empowered 5G Networks," in 2022 IEEE International Conference on Commu-
nications, Control, and Computing Technologies for Smart Grids (SmartGridComm),
Singapore, 2022, pp. 1{6.

O. Kundacina, M. Cosovic, and D. Vukobratovic, \State estimation in electric power
systems leveraging graph neural networks," in 2022 17th International Conference on
Probabilistic Methods Applied to Power Systems (PMAPS), online, 2022, pp. 1{6.

O. Stanojev, O. Kundacina, U. Markovic, E. Vrettos, P. Aristidou, and G. Hug,
\A reinforcement learning approach for fast frequency control in low-inertia power
systems," in 52nd North American Power Symposium (NAPS), online, 2021, pp. 1{6.

O. Kundacina, G. Gojic, M. Cosovic, D. Miskovic, and D. Vukobratovic, \Scalability
and Sample E�ciency Analysis of Graph Neural Networks for Power System State
Estimation," in Sixth International Balkan Conference on Communications and
Networking (BalkanCom), Istanbul, 2023, pp. 1{6.

O. Kundacina, G. Gojic, M. Mitrovic, D. Miskovic, and D. Vukobratovic, \Support-
ing Future Electrical Utilities: Using Deep Learning Methods in EMS and DMS
Algorithms," in 22nd International Symposium INFOTEH-JAHORINA (INFOTEH),
Jahorina, 2023, pp. 1{6.

List of Figures

1 Introduction 23
1.1 A simple fully connected neural network containing an input layer, two

hidden layers, and an output layer. 25

2 Power System State Estimation 43
2.1 Simple two-bus power system containing a PMU at the bus 1, one legacy

active power ow measurement, and one legacy voltage magnitude
measurement at the bus 2. 46

3 Graph Neural Networks 51
3.1 Example of the simple undirected graph containing six nodes and seven

edges. 52
3.2 Node embeddings - a simpli�ed example of graph representation learn-

ing algorithm's outputs. 56
3.3 A GNN layer, which represents a single message passing iteration,

includes multiple trainable functions, depicted as yellow rectangles.
The number of �rst-order neighbours of the node j is denoted asnj . . 62

4 Graph Neural Network-based State Estimation 69

4.1 Sub�gure (a) shows a simple two-bus power system with two phasor
measurements from a PMU placed at the bus 1. Sub�gure (b) displays
the corresponding factor graph (full-line edges) and augmented factor
graph (all edges). Variable nodes are depicted as circles, and factor
nodes are as squares. 70

4.2 Sub�gure (a) shows a simple two-bus power system containing a PMU
at the bus 1, one legacy active power ow measurement, and one
legacy voltage magnitude measurement at the bus 2. Sub�gure (b)
displays the corresponding factor graph (full-line edges) and augmented
factor graph (all edges). Variable nodes are represented as circles, and
factor nodes are depicted as squares, coloured di�erently to distinguish
between phasor and legacy measurements. 71

4.3 Sub�gure (a) shows a high-level computational graph that starts with
the loss function for the output of a variable node v. Sub�gure (b)
depicts the detailed structure of a single GNNLayerv . Functions with
trainable parameters are highlighted in yellow. 74

4.4 GNN predictions and labels for one test example with optimally placed
PMUs. 77

4.5 GNN predictions and labels for one test example with phasors from two
neighbouring PMUs removed. Vertical black lines indicate unobserved
buses, while green lines represent buses that are a�ected by the loss of
measurement data. 78

4.6 Properties of augmented factor graphs along with the system's mea-
surement redundancy for di�erent test power systems, labelled with
their corresponding number of buses. 83

4.7 Validation losses for trainings on four di�erent training set sizes. . . . 84

4.8 Test set results for various power systems and training set sizes. 86

4.9 A ratio of the execution times for WLS SE and GNN SE inference on
a test set of 100 samples, as a function of the power system size. . . . 86

4.10 The test set MSE between the predictions and the labels per each bus
for voltage magnitudes and angles in the IEEE 30-bus test case. 88

4.11 Average MSEs of test sets created by randomly excluding measurements.89

4.12 GNN predictions and labels for one test example, with all measurements
connected to two neighbouring buses removed. Dashed lines indicate
the buses in the 1-hop neighbourhood of the excluded measurements. . 89

4.13 GNN predictions and GN based SE solutions for one test example with
corrupted input data. 90

5 Dynamic Distribution Network Recon�guration 95
5.1 An example of distribution network before (sub�gure a) and after

(sub�gure b) the recon�guration. 97

6 Reinforcement learning 103
6.1 The agent-environment interaction process. 104
6.2 An example of a deep Q-network. 107

7 Reinforcement Learning based Dynamic Distribution Network Re-
con�guration 109
7.1 The agent-environment interaction process for DDNR. 110
7.2 Single-line diagram for 15-bus test benchmark. 114
7.3 Daily load pro�les for three feeders. Full lines represent average load

values, and dashed lines represent limits between which training set
loads are sampled. 115

7.4 Average DQN loss per episode (top) and total reward per episode along
with its moving average (bottom). 116

7.5 Switch status changes during the 24-hour period. 118
7.6 Loss reduction using DDNR. 118
7.7 Voltage pro�le for 15-bus test benchmark. 119
7.8 Switch status changes during the 24-hour period when the maximal

number of switch manipulations is two. 120
7.9 IEEE 33-bus radial system. 122
7.10 Voltage pro�le for IEEE 33-bus radial system. 122

List of Tables

3.1 Comparison of various deep learning models from the inductive bias
perspective. 59

4.1 List of GNN hyperparameters. 75
4.2 Comparison of GNN and approximative SE test set MSEs for various

measurement variances. 76
4.3 A comparison of the performance of GNN and DNN models trained

on di�erent training set sizes, as measured by test set MSE and the
number of trainable parameters. 79

4.4 A comparison of the results of various approaches for two test sets with
di�erent degrees of outlier intensity. 82

4.5 Epoch until validation loss minimum for various power systems and
training set sizes. 85

7.1 Total load, active power losses and switch status changes in the 24-
hour time optimization period for the 15-bus test benchmark (O{open;
C{close). 117

7.2 Total losses, number of switch status changes, and total cost in the
24-hour time optimization period. 117

7.3 Active power losses and switch status changes in the 24-hour time
optimization period for the large-scale radial distribution network
(O{open; C{close). 121

7.4 Active power losses and switch status changes in the 24-hour time
optimization period for the IEEE 33-bus radial system (O{open; C{close).123

Abstract

Electric power systems consist of generation, distribution, and transmission systems,
which are all traditionally coordinated from the corresponding control centres. System
operators use specialized software solutions for monitoring and optimization of electric
power systems, installed in control centres. Typical algorithms implemented in
mentioned software solutions should satisfy near real-time operation requirements,
while delivering accurate information for power system monitoring and optimizing its
operation.

Modern electric power systems have been increasing in size, complexity, as well as
dynamics due to the growing integration of renewable energy resources, which have
sporadic power generation. This necessitates the development of near real-time power
system algorithms, demanding lower computational complexity regarding the power
system size. Considering the growing trend in the collection of historical measurement
data and recent advances in the rapidly developing deep learning �eld, the topic
of this dissertation is the application of deep learning algorithms, namely graph
neural networks (GNNs) and deep reinforcement learning (DRL), for monitoring and
optimization of electric power systems.

The �rst part of this thesis presents a GNN approach to solving the power system
state estimation (SE) problem, which aims to estimate complex bus voltages based
on available measurements. Two formulations of the SE problem are considered: the
�rst is a linear SE formulation that uses measurements from phasor measurement
units (PMUs), while the second is a nonlinear SE formulation that incorporates both

PMU measurements and legacy measurements from the supervisory control and data
acquisition (SCADA) system.

As PMUs become more widely used in transmission power systems, a fast state
estimation algorithm that can take advantage of their high sampling rates is needed.
To accomplish this, we present a method that uses GNNs to solve the linear formulation
of SE problem by learning complex bus voltage estimates from PMU voltage and
current measurements. We propose an original implementation of GNNs over the
power system's factor graph to simplify the integration of various types and quantities
of measurements on power system buses and branches. Furthermore, we augment
the factor graph to improve the robustness of GNN predictions. The proposed GNN
model is highly e�cient and scalable, as its computational complexity is linear with
respect to the number of nodes in the power system. Training and test examples were
generated by randomly sampling sets of power system measurements and annotating
them with the exact solutions of linear SE with PMUs, obtained using a traditional
weighted least squares-based method. The numerical results demonstrate that the
GNN model provides an accurate approximation of the SE solutions. Furthermore,
errors caused by PMU malfunctions or communication failures that would normally
make the SE problem unobservable have a local e�ect and do not deteriorate the
results in the rest of the power system.

Alongside the linear SE problem formulation, in this thesis, we consider nonlinear
SE, which takes into account all types of measurements available in the power system,
and is usually solved using the iterative Gauss-Newton (GN) method. The nonlinear
SE formulation presents some di�culties when considering inputs from both PMUs and
SCADA system. These include numerical instabilities, convergence time depending
on the starting point of the iterative method, and the quadratic computational
complexity of a single iteration regarding the number of state variables. Analogously
to the GNN-based linear SE, we apply GNN over the augmented factor graph of the
nonlinear power system SE. Once trained, the proposed regression model has linear
computational complexity during the inference time, with a possibility of distributed
implementation. Since the method is noniterative and non-matrix-based, it is resilient
to the problems that the GN solver is prone to. In addition to good prediction accuracy
on the test set, the proposed model demonstrates robustness during the simulation of
cyberattacks and unobservable scenarios due to communication irregularities.

In the second part of this thesis, we focus on distribution network recon�gura-
tion (DNR), which is critical for enhancing energy e�ciency by coordinating switch
operations in the distribution network. The su�cient number of remote switching
devices in the distribution network enables dynamic distribution network recon�gu-
ration (DDNR), which determines the optimal network topologies over a speci�ed

time interval. To achieve this, we propose a data-driven approach for DDNR using
DRL. The proposed DDNR controller aims to minimize the objective function which
includes active energy losses and the cost of switching manipulations, while ensuring
that all constraints are satis�ed. The following constraints are considered: allowed
bus voltages, allowed line apparent powers, a radial network con�guration with all
buses being supplied, and the maximal allowed number of switching operations. This
optimization problem is modelled as a Markov decision process by de�ning the possible
states and actions of the DDNR agent (controller) and rewards that lead the agent to
minimize the objective function while satisfying the constraints. Switching operation
constraints are modelled by modifying the action space de�nition instead of including
the additional penalty term in the reward function, to increase the computational
e�ciency. The proposed algorithm was tested on three test examples: small bench-
mark network, real-life large-scale test system and IEEE 33-bus radial system and
the results con�rmed the robustness and scalability of the proposed algorithm.

Abbreviations

CNN : : : : : : : Convolutional neural network

DDNR : : : : : : Dynamic distribution network recon�guration

DMS : : : : : : : Distribution management system

DNN : : : : : : : Deep neural network

DNR : : : : : : : Distribution network recon�guration

DRL : : : : : : : Deep reinforcement learning

DQN : : : : : : : Deep Q-network

EMS : : : : : : : Energy management system

GAT : : : : : : : Graph attention network

GN : : : : : : : : Gauss-Newton

GNN : : : : : : : Graph neural network

GRU : : : : : : : Gated recurrent unit

LSTM : : : : : : Long short-term memory

MADRL : : : : : Multi-agent deep reinforcement learning

MDP : : : : : : : Markov decision process

MSE : : : : : : : Mean square error

PMU : : : : : : : Phasor measurement unit

ReLU : : : : : : : Recti�ed linear unit

RNN : : : : : : : Recurrent neural network

RL : : : : : : : : Reinforcement learning

SCADA : : : : : : Supervisory control and data acquisition

SE : : : : : : : : State estimation

WAMS : : : : : : Wide area measurement system

WLS : : : : : : : Weighted least-squares

5G : : : : : : : : Fifth-Generation

Chapter 1

Introduction

Power systems are undergoing a transition due to the increased integration of renewable
energy resources, and as a result they are facing new challenges in their operations.
These challenges include the unpredictable nature of renewable energy resources,
maintaining stability within the power system, managing the impacts of distributed
generation, and the challenges presented by reverse power ows [1]. Consequently, the
mathematical formulations of traditional algorithms that solve these problems have
become increasingly complex and nonlinear, with larger dimensionality, making their
practical implementation and real-time operation more challenging. These algorithms
are usually implemented as parts of specialized software solutions, such as energy
management systems (EMS) for transmission networks and distribution management
systems (DMS) used in distribution networks, which are installed in power system
control centres and used by power system operators on a daily basis. Some of the
algorithms typically used as EMS and DMS functionalities include state estimation
(SE), fault detection and localization, demand and generation forecast, voltage and
transient stability assessment, voltage control, optimal power ow, economic dispatch,
etc. Increasing amounts of data generated by power systems [2] and collected by EMS
and DMS are enabling the development of new deep learning-based algorithms to
overcome the limitations of traditional ones.

Deep learning is a sub�eld of arti�cial intelligence that involves training neural
network models to �nd patterns and make predictions based on the available set of
data samples [3]. Some of the advantages of employing deep learning methods in the
�eld of power systems include:

� Speed: Once trained, a deep learning algorithm usually operates quickly, even
when processing large amounts of data [4]. This is crucial for applications where
fast decision-making is required, as is the case in many power system operation
problems.

� Accuracy: Universal approximation theorem [5] states that neural networks can

24 1. Introduction

approximate any function to a desired degree of accuracy, if it consists of a
su�cient number of trainable parameters. Practically, this implies that neural
networks can be employed to tackle a wide range of problems, including those
in power systems, and that di�erent network architectures and sizes can be used
to adapt to the complexity of the problem.

� Adaptability: Deep learning methods are easily adaptable, meaning that they
can be retrained when the underlying data generation process changes [6]. This
makes them suitable for dynamic environments, such as when the power system's
operating conditions change.

� Robustness: Traditional model-based algorithms can encounter problems when
faced with uncertain or unreliable power system parameters [7]. As a model-free
alternative, deep learning methods alleviate these problems by not relying on
power system parameters.

� Automation: Since deep learning algorithms can learn from human responses
in various situations given enough training data, they can be used to reduce
the need for human intervention in certain power system tasks. For instance,
in applications such as predictive maintenance [8], which are integral parts of
asset management systems, deep learning can be applied within an automated
real-time monitoring system.

In the continuation, we shortly introduce the basic deep learning terminology, de-
scribe the most common deep learning approaches and review their recent applications
in the �eld of monitoring and optimization of electric power systems [9].

1.1 Deep Learning Fundamentals
Deep learning is a �eld of machine learning that involves training neural networks on
large datasets [3], with a goal of generating accurate predictions on unseen data samples.
Therefore, neural networks can be seen as trainable function approximators, composed
of interconnected units called neurons, which process and transmit information. In
a simple fully connected neural network, the information processing is organized
in layers, where input information from the previous layer is linearly transformed
using a function f i (�), where i denotes the layer index. The linear transformation is
de�ned using a matrix of trainable parameters W i , i.e., the weights of the connections
between the neurons, shown in Fig. 1.1. Trainable parameters also include biases,
which are free terms associated with each neuron, and are omitted in the �gure. The
information is then passed through a nontrainable nonlinear functiongi (�) to create
the outputs of that layer. Inputs and outputs of the whole neural network are denoted
as xj and yk in Fig. 1.1, where j and k denote the indices of input and output neurons.

1.1. Deep Learning Fundamentals 25

Figure 1.1: A simple fully connected neural network containing an input layer, two
hidden layers, and an output layer.

Neural network training assumes adjusting the trainable parameters (i.e., weights
and biases of the neurons) using the knowledge in the collected data, so that accurate
predictions can be performed based on the new inputs. The training process is
formulated as an optimization problem which searches through the trainable parameter
space to minimize the distance function between the predicted output and the true
output. The problem is usually solved using gradient-based optimization methods
such as gradient descent, or some of its variants [10].

In practice, when using deep learning to solve a problem, it is common to train
multiple instances with di�erent neural network model structures. This structure is
de�ned by hyperparameters, such as the number of layers and the number of neurons
in each layer. By �nding the optimal set of hyperparameters, the neural network
structure that best �ts the problem being solved can be identi�ed. The hyperparameter
search can be done manually or with the use of specialized optimization methods [11].
Commonly, the collected data is split into three sets: a training set, a validation set,
and a test set. The training set is used in a neural network training process, the
validation set is used to evaluate the performance of a single training instance, and
the test set is used to evaluate the overall performance of the trained model.

Adjusting the architecture of a deep learning model to match the structure of the
input data can enhance training speed and performance and reduce required training
data. For example, convolutional neural networks (CNNs) use shared parameters to
process grid data, exploiting local relations between neighboring pixels and achiev-

26 1. Introduction

ing spatial translation invariance. Recurrent neural networks (RNNs) use shared
parameters to process sequential data, resulting in time translation invariance, while
graph neural networks (GNNs) aim for permutation invariance and are particularly
e�cient when applied to graph structured data. Since ordinary, fully connected neural
networks have been widely used for solving power systems problems, we focus on
applications of more advanced deep learning architectures.

1.2 Convolutional Neural Networks
Convolutional Neural Networks are a well studied class of deep learning architectures
primarily designed for analysing spatial patterns in grid-structured data such as
images [3]. They consist of multiple convolutional layers, each of which acts as a
trainable convolutional �lter that extracts local information from the image, transforms
it into more abstract, grid-shaped representations, and feeds it into the succeeding
layer. Applying multiple CNN layers enables CNN to extract useful features from an
image, which can then be used for various tasks such as classi�cation or regression.

Although power system data is not inherently arranged in the format of an image,
CNNs have been e�ectively used to address power system problems, mostly involved
with processing data sequences. To meet the requirements of CNNs, power system
data is transformed and reshaped in various ways, some of which include:

� One approach for dealing with the time-varying nature of power systems is to
utilize 1D CNNs on univariate time series data. For example, in study [12],
1D CNNs were used to predict power system inertia using only frequency
measurements. The process involves stacking time series of changes in frequency
measurements, along with their rates of change, into a one-dimensional array
and then processing it using 1D CNNs.

� A more e�ective method is to group signals into a matrix, where each row
represents a single univariate signal. By using a 2D CNN to process this matrix,
we can perform multivariate time series analysis, which allows us to analyse
patterns across multiple time series and how they interact with each other.
This approach has been used in recent research, such as in the study [13], to
detect faults in power systems through analysing series of voltage, current, and
frequency measurements.

� Time series data can be subjected to time-frequency transformation, allowing
for analysis of the frequency content of the signal while maintaining its tem-
poral localization. These transformations can be visually represented in two
dimensions, and therefore can be analysed using various image processing tools,
including CNNs. For instance, in [14] a CNN was trained to classify faults in

1.3. Recurrent Neural Networks 27

power systems by analysing 2D scalograms, which were generated by applying
the continuous wavelet transform to time series of phasor measurements.

� Another approach is to use a CNN over the matrix of electrical quantities
created for a single time instance, where each row contains the values of a
speci�c electrical quantity for each power system element. This approach, which
does not consider time series data, has been shown to be e�ective in certain
applications. The study [15] solves the DC optimal power ow problem by
using this approach and taking node-level active and reactive power injections
as inputs, with labels obtained using the traditional DC optimal power ow
approach.

It's important to note that these approaches use only aggregated inputs from all
the elements of the power system, without considering the connectivity between them.

1.3 Recurrent Neural Networks
Recurrent neural networks represent a signi�cant development in deep learning
algorithms, particularly in the processing of sequential data such as speech, text,
and time series. [3]. Each of the recurrent layers acts as a memory cell that takes in
information from previous steps in the sequence, processes it, and generates a hidden
state representation that is passed on to the next step. The �nal hidden state of RNNs
encapsulates the information of the entire input sequence and can be applied to tasks
such as natural language processing, speech recognition, and time-series prediction.
While 1D CNNs are limited to �xed length sequences, meaning that all time series
in the training and test samples must have the same number of elements, RNNs are
adaptable to varying sequence lengths, making them more versatile and useful for
analysing sequential data.

The fundamental building blocks of RNNs are memory units, such as gated recurrent
units (GRUs) and long short-term memory units (LSTMs) [16]. These architectures
are created to tackle the challenge of longer-term dependencies in sequential data.
Both GRUs and LSTMs include an internal memory, which allows them to selectively
retain or discard information from previous steps in the sequence, thus enhancing their
ability to handle inputs of varying lengths. LSTMs are more complex and powerful,
capable of handling longer-term dependencies, while GRUs are computationally
simpler and faster, yet may not be as e�ective in certain tasks.

In the �eld of power demand and generation forecasting, various time series
prediction algorithms, including RNNs, have been utilized. One recent study, [17]
uses LSTM RNNs to predict multistep-ahead solar generation based on recorded
measurement history while also addressing missing records in the input time series.

28 1. Introduction

RNNs can also be used to predict the exibility of large consumers' power demand in
response to dynamic market price changes, as demonstrated in [18]. This approach
combines two LSTM RNNs, one for predicting market price and the other for predicting
a consumer's demand exibility metric, with a focus on uncommon events such as
price spikes. An interesting technical aspect of this method is that the two RNNs
share some LSTM-based layers, resulting in more e�cient and faster training, as well
as improved prediction capabilities.

RNNs can also be applied to other data available in DMS and EMS, other than
power and energy. The work [19] proposes using an RNN to classify the voltage
stability of a microgrid after a fault, using time series of measurement deviations,
providing power system operators with valuable information, needed to take corrective
actions. The employed RNN architecture is the bidirectional LSTM, which processes
the time series data in both forward and backward directions, allowing the RNN to
consider both past and future context in each step of the sequence when making
predictions. In the study [20], the authors evaluate di�erent deep learning models for
detecting miscon�gurations in power systems using time series of operational data.
They compare GRU RNN, LSTM RNN, the transformer architecture [21], which has
been successful in natural language processing tasks, and a hybrid RNN-enhanced
transformer [22]. The results show that the RNN-enhanced transformer is the most
e�ective architecture, highlighting the potential of attention-based architectures for
solving time series problems in power systems.

1.4 Graph Neural Networks
Graph Neural Networks, particularly spatial GNNs that utilize message passing, are an
increasingly popular deep learning technique that excels at handling graph structured
data, which makes them well-suited for addressing a wide range of power systems
problems. Spatial GNNs process graph structured data by repeatedly applying a
process called message passing between the connected nodes in the graph [23]. The
goal of GNNs is to represent the information from each node and its connections in a
higher-dimensional space, creating a vector representation of each node, also known
as node embeddings. GNNs are made up of multiple layers, each representing one
iteration of message passing. Each message passing iteration is performed by applying
multiple trainable functions (implemented as neural networks) such as a message
function, an aggregation function, and an update function. The message function
calculates the messages being passed between two node embeddings, the aggregation
function combines the incoming messages in a speci�c way to create an aggregated
message, and the update function calculates the update to each node's embedding.
This process is repeated a prede�ned number of times, and the �nal node embeddings

1.4. Graph Neural Networks 29

are passed through additional neural network layers to generate predictions.

GNNs have several advantages over the other deep learning architectures when
used in power systems. One of them is their permutation invariance property, which
means that they produce the same output for di�erent representations of the same
graph by design. GNNs are able to handle dynamic changes in the topology of power
systems and can e�ectively operate over graphs with varying numbers of nodes and
edges. This makes them well suited for real-world power systems, which may have
varying topologies. Additionally, GNNs are computationally and memory e�cient,
requiring fewer trainable parameters and less storage space than traditional deep
learning methods applied to graph-structured data, which is bene�cial in power
system problems where near real-time performance is critical. Spatial GNNs have the
ability to perform distributed inference with only local measurements, which makes it
possible to use the 5G network communication infrastructure and edge computing to
implement this e�ectively [24]. This enables real-time and low-latency decision-making
in large networks as the computations are done at the network edge, near the data
source, minimizing the amount of data sent over the network.

GNNs have recently been applied to a variety of regression or classi�cation tasks
in the �eld of power systems. The work [25] proposes using GNNs over the bus-
branch model of power distribution systems, with phasor measurement data as inputs,
to perform the fault location task by identifying the node in the graph where the
fault occurred. The use of GNNs for assessing power system stability has been
explored in [26], where the problem is formulated as a graph-level classi�cation task
to distinguish between rotor angle instability, voltage instability, and stability states,
also based on power system topology and measurements. The paper [27] presents
a hybrid neural network architecture which combines GNNs and RNNs to address
the Short-Term Load Forecasting problem. The RNNs are used to process historical
load data and provide inputs to GNNs, which are then used to extract the spatial
information from users with similar consumption patterns, thus providing a more
comprehensive approach to forecast the power consumption. In [28] the authors
propose a GNN approach for predicting the power system dynamics represented as
time series of power system states after a disturbance or failure occurs. The GNN is
fed with real-time measurements from phasor measurement units that are distributed
along the nodes of the graph. In [29] GNNs are applied over varying power system
topologies to detect unseen false data injection attacks in smart grids.

In the previously mentioned studies, GNNs have been applied to the traditional
bus-branch model of power systems, however, a recent trend in the �eld has been to
apply GNNs over other topologies representing the connectivity in power system data.
As it will be further discussed in this thesis, GNNs can be applied in combination with

30 1. Introduction

heterogeneous power system factor graphs to solve the SE problem, both linear [30]
and nonlinear [31]. In these approaches, measurements are represented using factor
nodes, while variable nodes are used to predict state variables and calculate training
loss. These approaches are more exible regarding the input measurement data
compared to traditional deep learning-based SE methods because they provide the
ability to easily integrate or exclude various types of measurements on power system
buses and branches, through the addition or removal of the corresponding nodes in
the factor graph. A di�erent approach that does not use the GNN over the traditional
bus-branch model is presented in [32]. The proposed method solves the power system
event classi�cation problem based on the collected data from phasor measurement
units. The approach starts by using a GNN encoder to infer the relationships between
the measurements, and then employs a GNN decoder on the learned interaction graph
to classify the power system events.

1.5 Deep Reinforcement Learning
So far, we have reviewed deep learning methods that are inherently suited for pre-
dicting discrete or continuous variables based on a set of inputs. In contrast, deep
reinforcement learning (DRL) methods have a direct goal of long-term optimization
of a series of actions that are followed by immediate feedback [33]. Therefore, DRL
methods are powerful tools for multi-objective sequential decision-making, suitable
for application in various EMS and DMS functionalities that involve power system
optimization [34]. In the DRL framework, the agent interacts with the stochastic
environment in discrete time steps and the goal is to �nd the optimal policy that
maximizes the long-term reward while receiving feedback about its immediate per-
formance. The agent receives state variables from the environment, takes an action,
receives an immediate reward signal and the state variables for the next time step.
The DRL training process involves many episodes that include agent-environment
interaction, during which the agent learns by trial and error. Using the collected data
from these episodes, the agent is able to predict the long term rewards in various
situations using neural networks, and these predictions are then used to generate an
optimal decision-making strategy.

There are many studies that apply DRL in the �eld of power system optimization
and control. Some of the examples include distribution network recon�guration [35],
Volt-VAR control in power distribution systems [36], frequency control in low-inertia
power systems [37], and so on. In these studies, an RL agent receives various electrical
measurements as state information and takes a single multidimensional action per
time step, which includes both discrete and continuous set points on controllable
devices within a power system.

1.5. Deep Reinforcement Learning 31

A recent trend in the power system research is transitioning from single agent to
multi-agent deep reinforcement learning (MADRL), which is based on coordinating
multiple agents operating together in a single environment using the mathematical
apparatus developed in the �eld of game theory [38]. MADRL relies on centralized
training and decentralized execution concept, where a centralized algorithm is respon-
sible for training all the agents at once, allowing for coordination and cooperation
among the agents. This centralized training approach results in faster real-life execu-
tion due to signi�cantly reduced communication delays during decentralized execution,
where each agent can act independently based on the knowledge acquired during the
centralized training. Reducing these communication delays is particularly important
in large transmission power systems where the individual agents may be signi�cantly
geographically separated.

For example, a decentralized Volt-VAR control algorithm for power distribution
systems based on MADRL is proposed in [39]. In this algorithm, the power system
is divided into multiple independent control areas, each of which is controlled by
a corresponding DRL agent. These agents observe only the local measurements of
electrical quantities within their corresponding area, and the action of each agent
contains set points on all the reactive power resources in that area. Similarly, in [40],
a MADRL algorithm is used to solve the secondary voltage control problem in isolated
microgrids in a decentralized fashion by coordinating multiple agents, each of which
corresponds to a distributed generator equipped with a voltage-controlled voltage
source inverter. The action of each agent is a single secondary voltage control set
point of the corresponding generator. The fundamental di�erence compared to [39] is
that the agent in [40] uses not only the local measurements of electrical quantities
for the state information, but also messages from the neighbouring agents, leading to
improved performance. Work [41] proposes using a MADRL algorithm to perform the
economic dispatch, which minimizes the overall cost of generation while satisfying the
power demand. The agent models an individual power plant in a power system, with
the action being the active power production set point. Another example of using
MADRL for an economic problem in coupled power and transportation networks
is given in [42]. A MADRL method is proposed to model the pricing game and
determine the optimal charging pricing strategies of multiple electric vehicle charging
stations, where each individually-owned EV charging station competes using price
signals to maximize their respective payo�s. In all the aforementioned works, multiple
agents are trained in a centralized manner to optimize the reward function de�ned
globally based on the nature of the particular problem at hand.

32 1. Introduction

1.6 Power System State Estimation using Graph
Neural Networks

The power system state estimation is a problem of determining the state of the power
system represented as the set of complex bus voltages, given the available set of
measurements [43]. The dominant part of the input data for the SE model consists
of legacy measurements coming from the supervisory control and data acquisition
(SCADA) system, which have relatively high variance, high latency, and low sampling
rates. Increasingly deployed phasor measurement units (PMUs), provided by the
wide area measurement system (WAMS), have low variance and high sampling rates
and are a potential enabler of real-time system monitoring. There are two main
SE formulations that emerge based on the type of input measurements taken into
account:

� Nonlinear SE: Taking into account both legacy and phasor measurements
results in the SE model formulated by the system of nonlinear equations and
is traditionally solved using the iterative Gauss-Newton (GN) method [43].
Di�erent approaches can be used to integrate phasor measurements into the
well established model with legacy measurements. A standard way to include
voltage and current phasors coming from PMUs is to represent them in the
rectangular coordinate system [44]. The main disadvantage of this approach is
related to measurement errors, where measurement errors of a single PMU are
correlated, and the covariance matrix does not have diagonal form. Despite that,
because of the lower computational e�ort, the measurement error covariance
matrix is usually considered as diagonal matrix, which has the e�ect on the
accuracy of the nonlinear SE. The diagonal form of the covariance matrix could
be preserved by representing voltage and current phasors coming from PMUs in
the polar coordinate system, which requires a large computational e�ort with a
convergence time signi�cantly depending on the state variables' initialization [45].
Additionally, using magnitudes of branch current measurements can cause
numerical instabilities such as unde�ned Jacobian elements due to the \at
start" [46, Sec. 9.3]. Furthermore, di�erent orders of magnitude of phasor
and legacy measurement variances can make the SE problem ill-conditioned by
increasing the condition number of the estimator's gain matrix [44]. A single
iteration of the GN method involves solving a system of linear equations, which
results in near O(n2) computational complexity for sparse matrices, wheren is
the number of power system buses.

� Linear SE: When a su�cient number of PMUs is installed in a power system,
the SE algorithm can consider only phasor measurements as inputs, without

1.6. Power System State Estimation using Graph Neural Networks 33

the need to include legacy measurements in the calculation. In this case, the
SE problem can then be expressed as a system of linear equations if both state
variables and phasor measurements are represented in a rectangular coordinate
system. This approach provides non-iterative solutions which are faster than the
nonlinear SE, and utilize high sampling rates of PMUs more. Solving linear SE is
traditionally done by solving a linear weighted least-squares (WLS) problem [44],
which involves matrix inversions or factorizations, which can be di�cult in cases
where the matrix is ill-conditioned due to varying orders of magnitudes of power
system parameters. It is common practice to neglect the phasor measurement
covariances represented in rectangular coordinates [44]. This can make the SE
problem much easier to solve, but it also results in a computational complexity
of nearly O(n2) for sparse matrices.

In both SE problem formulations, real-time monitoring of large power systems
can be challenging using traditional approaches due to their high computational
complexity of O(n2) and mentioned numerical di�culties associated with them.
Recent advancements in GNNs [23,47] open up novel possibilities for developing power
system algorithms with linear computational complexity and potential distributed
implementation. GNNs (as well as other deep learning methods) can be particularly
useful for the SE problem because they are not based on the matrix model of the
power system, which eliminates numerical di�culties associated with traditional SE
solvers. These approaches, when trained on relevant datasets, are able to provide
solutions even when traditional methods fail.

Generally, the popularity of deep learning in the �eld of power systems analysis
has been well-documented in recent research, with several studies showing that it can
be used to learn the solutions to computationally intensive algorithms such as power
system SE. In [48], the authors used a combination of recurrent and feed-forward
neural networks to solve the SE problem using measurement data and the history
of network voltages. Another study, [49], provides an example of training a feed-
forward neural network to initialize the network voltages for a Gauss-Newton power
distribution system SE solver.

As the use of GNNs in power systems becomes more common, several studies
suggest applying GNNs to power ow problems, which are similar to the SE problem in
some aspects. In [50] and [51], power ows in the system are predicted based on power
injection data labelled by a traditional power ow solver. Similarly, [52] suggests using
a trained GNN as an alternative to computationally expensive probabilistic power ow
methods, which calculate probability density functions of unknown variables. Di�erent
approaches propose training a GNN in an unsupervised manner to perform power
ow calculations by minimizing the violation of Kirchho�'s law [53] or power balance

34 1. Introduction

error [54] at each bus, thus avoiding the need for labelled data from a conventional
power ow solver.

In [55], the authors propose a combined model- and data-based approach using
GNNs for power system parameter and state estimation. The model predicts power
injections and consumptions in nodes where voltage and phase measurements are taken,
but it does not consider branch measurements and other types of node measurements
in its calculations. In [56], the authors train a GNN by propagating simulated or
measured voltages through the graph to learn the voltage labels from a historical
dataset, and then use the GNN as a regularization term in the nonlinear SE loss
function. However, the proposed GNN only uses node voltage measurements and
does not consider other types of measurements, although they are handled in other
parts of the algorithm. Another feed-forward neural network learns the solutions that
minimize the SE loss function, resulting in an acceleration of the nonlinear SE solution
with O(n2) computational complexity at inference time. In [57], state variables are
predicted based on a time-series of node voltage measurements, and the authors solve
the nonlinear SE problem using GNNs with gated recurrent units.

Contributions: This thesis proposes specialized GNN models for solving linear
and nonlinear SE problems in positive sequence power transmission systems. To
provide fast and accurate predictions during the evaluation phase, GNNs is trained
using the inputs and solutions from traditional SE solvers. The following are the main
contributions of our work regarding GNN-based SE, also published in [30,58] and [31]:

� Inspired by [59], we present the �rst use of GNNs on factor graphs [60] for the
SE problem, instead of using the bus-branch power system model. This enables
trivial integration and exclusion of any type and number of measurements on the
power system buses and branches, by adding or removing the corresponding nodes
in the factor graph, and therefore is applicable to both linear and nonlinear SE
problem formulations. Furthermore, the factor graph is augmented by adding direct
connections between variable nodes that are 2nd -order neighbours to improve infor-
mation propagation during neighbourhood aggregation, particularly in unobservable
scenarios when the loss of the measurement data occurs.

� We present a graph attention network (GAT) [61] model, with the architecture
customized for the proposed heterogeneous augmented factor graph, to solve the SE
problem. GNN layers that aggregate into factor and variable nodes have separate
sets of trainable parameters. Furthermore, separate sets of parameters are used for
variable-to-variable and factor-to-variable message functions in GNN layers that
aggregate into variable nodes.

� Given the sparsity of the power system's graph, and the fact that node degree

1.7. Dynamic Distribution Network Recon�guration based on Deep Reinforcement
Learning 35

does not increase with the total number of nodes, the proposed approach hasO(n)
computational complexity, making it suitable for large-scale power systems. The
inference of the trained GNN is easy to distribute and parallelize. Even in the case
of centralized SE implementation, the processing can be done using distributed
computation resources, such as graphical-processing units.

� We demonstrate that the number of trainable parameters in the proposed GNN-
based SE model is constant, while it grows quadratically with the number of
measurements in conventional deep learning approaches.

� We evaluated the performance of the proposed method by testing on various
data samples, including unobservable cases caused by communication errors or
measurement device failures, and scenarios corrupted by malicious data injections.
Furthermore, we study the local-processing nature of the proposed model and
show that signi�cant degradation of results in these scenarios a�ects only the local
neighbourhood of the node where the failure or malicious data injection occurred.

� In addition to the standalone application, the proposed GNN-based nonlinear SE
can be used as a fast and accurate initializer of the GN method by providing it
with a starting point near the exact solution.

1.7 Dynamic Distribution Network Recon�guration
based on Deep Reinforcement Learning

Distribution network recon�guration (DNR) is a widely used distribution system
optimization procedure, which has the goal of �nding the optimal topology of the
distribution network by manipulating the statuses of switching devices. Primarily,
DNR is used to achieve objectives such as the minimization of power loss and voltage
deviations [62, 63], and secondarily, it can be used for load balancing, Volt-VAR
optimization, supply restoration, etc. [64]. Therefore, DNR is an important feature
of software systems used for distribution network management. In the research
literature, DNR is a common name for a static formulation of the DNR problem,
which is determined for the �xed operation point, de�ned by load and generation
in the one time instance. In the cases of limited distribution network automation,
static DNR is performed once per interval ranging up to one year, due to the time-
variability of the distribution system state. The number of possible solutions to
the static DNR problem is 2N sw , where Nsw is the number of switches available for
network recon�guration. The other formulation of the DNR problem is the dynamic
distribution network recon�guration (DDNR), which optimizes the network operations
over the speci�ed time period. This makes DDNR suitable for real-time applications
due to the time-varying nature of load, generation, and other network conditions.

36 1. Introduction

Using DDNR instead of static DNR can result in larger bene�ts and increased network
operation performance, with the drawback of requiring the use of the fully automated
distribution network. Since the aim of developing DDNR is to be executed more
often than the static DNR, it must consider the number of switching manipulations in
the cost and the constraint functions. The large number of switching manipulations
can reduce the life span of switching devices and cause instability in the distribution
network operation in the case of complex topology changes. Therefore, DDNR resolves
the trade-o� between performing the optimal recon�guration too often and changing
the network topology less frequently to reduce the number of switching manipulations.
The DDNR problem introduces discretization of the optimization horizon into T
time intervals, resulting in increased problem complexity with the total of 2N sw T

possible solutions. Since operation planning based on DDNR can be performed daily
or every hour, the aim of this work is to develop a DDNR algorithm that optimizes the
operation of the distribution network and is fast during the evaluation time, making
it applicable to real-world scenarios.

The �rst studies on DNR address problems such as power loss reduction [65{ 67]
and load balancing [67] among distribution feeders in the scope of static DNR. Some
extensions of the standard DNR problem for the optimization over time period have
been developed for the specialized cases like energy loss reduction [68], and operation
cost reduction [69]. The static DNR is often solved using the standard deterministic
optimization tools from the classical optimization theory. For example, DNR based
on the mixed-integer linear programming is presented in [70{ 74], with the main
advantage of �nding the global optimum using the standard solvers, with the expense
of computational complexity. The "path-to-node" concept for DNR proposed in [75]
e�ciently models the radiality of the distribution network and solves the formulated
problem using a mixed-integer linear programming solver. The main drawback of this
concept is the signi�cant increase in the number of decision variables with an increase
in the optimization problem dimension. In [76], DNR integrated with the optimal
power ow based on the Benders decomposition approach is presented.

Heuristic methods utilize physics and engineering knowledge about a speci�c
problem to produce practically e�ective solutions. One type of these methods used
for the DNR problem performs a heuristic search through the distribution network
topologies by opening switches with minimal current ows obtained from power
ow solutions [66,77,78]. Branch exchange methods [65,67,79,80] provide a faster
alternative by performing only a local heuristic topology search starting from the
current distribution network topology. These methods are often used in practice
because of their robustness and explainability; however, they do not provide a
theoretical guarantee of optimality because they search only through the subset of all

1.7. Dynamic Distribution Network Recon�guration based on Deep Reinforcement
Learning 37

possible network topologies.

In addition to performing local and heuristic searches, or applying classical op-
timization techniques or exhaustive searches, one can use stochastic optimization
algorithms that perform approximate searches through the whole search space. There-
fore, a set of tools often used for solving static DNR are nature-inspired metaheuristic
algorithms, which are more computationally e�cient than the classical optimization
approaches and can provide better solutions compared to the heuristic algorithms.
Representative metaheuristic algorithms used to solve the DNR problem are the
genetic algorithm [74, 81{ 83], evolutionary algorithms [84, 85], particle swarm op-
timization [86, 87], simulated annealing algorithm [88, 89], and others. The main
drawbacks of these methods are their stochastic nature and suboptimal solutions
when the problem dimensionality increases.

Ref. [90] uses a di�erent methodology that performs DNR without solving opti-
mization based or power ow-based programs. It presents a simple and fast strategy
speci�c to the DNR problem for selecting candidate solutions using only primitive
network topology information. Several supervised learning approaches to static DNR
using arti�cial neural networks have been presented in [91,92]. In both references,
neural networks output the radial distribution network topology given the input set of
variables describing the power system state, directly or indirectly. Neural networks are
trained on datasets labelled by classical optimization-based DNR solvers and try to
mimic them during the evaluation time. Outputs of these methods are deterministic,
and the evaluation time is fast, since it is determined by the computational complexity
of several matrix-vector multiplications. The main drawbacks of these approaches
include the need for DNR solver to the training set, and signi�cantly deteriorated
results in the case where inputs signi�cantly di�er from the training set samples.

Besides the typical DNR problem formulation, some extensions regarding the
optimization function and the constraints are emerging. The study [93] presented
the DNR for reducing power loss with a budget limit as a hard constraint for the
planning purposes of distribution networks. The modern distribution network is being
transformed from passive to active due to increasingly deployed renewable energy
resources and, consequently, the use of distributed generators for the DNR problem is
becoming a study of importance [63,94].

A signi�cantly lower number of studies tackle the dynamic DNR problem for-
mulation. Ref. [95] formulates day-ahead scheduling as a mixed-integer nonlinear
optimization problem that minimizes total operational costs. The scheduling problem
consists of control of distributed generations and responsive loads, as well as per-hour
network recon�guration with switching manipulation constraints, and is solved using

38 1. Introduction

the genetic algorithm. Study [96] also solves DDNR with switching manipulation
constraints in a multi-agent fashion, by dividing the problem into multiple time inter-
vals, generating multiple instances of a problem solved separately by particle swarm
optimization based agents. Both of these studies are numerically tested on small dis-
tribution networks and have the problem of computation time increasing signi�cantly
with the increase of the problem dimension. DNR can reduce active power losses by
being performed hourly, daily, or monthly, as in [97{ 99]; however, these references do
not consider the limits of the number of switching operations in the mentioned time
periods. DNR studies for annual network recon�guration that consider variable loads
are presented in [100,101]. The study [100] additionally deals with minimizing the
cost of switching operations using dynamic programming combined with the harmony
search algorithm. While solving the annual DDNR using the genetic algorithm, the
study [101] considers the stochastic power generation of distributed generators. The
study [102] also attempts to solve DDNR using the genetic algorithm, by calculating
the optimal intervals between the two topology changes. Ref. [103] presents the DDNR
based on the rule-based algorithm which ranks per-hour DNR solutions and using that
�nds the optimal time for the network recon�guration. Multi-objective DDNR using
the combination of the heuristic exchange market algorithm and the population-based
wild goats algorithm with the possibility of parallel implementation is presented
in [104]. The proposed method optimizes active power loss and reliability indexes
while satisfying radiality, bus voltage, and branch apparent power constraints, where it
does not consider switching manipulation constraints. References [105,106] proposed
single- and multi-objective formulation of DDNR based on the Lagrange relaxation
approach. In the single-objective formulation, the objective function models the active
power loss reduction, while in the multi-objective formulation, the objective function
minimizes the costs of energy losses, network reliability, and switching operations.
The study [35] presents a data-driven DDNR for active power loss reduction without
using the network parameter information. DDNR is formulated as a Markov decision
process (MDP) and is solved using an o�-policy reinforcement learning algorithm
trained on a historical operation data set.

Contributions: This thesis proposes DDNR based on the DRL algorithm. The
proposed expression of the DDNR problem in the RL framework, that is, the de�nition
of the state variables, leads to lower observability requirements compared to the
approach proposed in [35]. The amount of information needed for the algorithm
execution is decreased since the topology information and the information about
the power ows in the network are compressed into a single set of variables. This
reduces the number of telemetered measurements needed for the possible execution of
the algorithm in the real world. The reduced state size is also convenient from the
algorithm training perspective, since it decreases the required size of the neural network.

1.7. Dynamic Distribution Network Recon�guration based on Deep Reinforcement
Learning 39

We also propose a way of considering switching operation constraints that improves the
algorithm training computational e�ciency. The proposed approach assumes selecting
the actions from the available subset of the action set, which is updated during the
episode, so that switching operation constraints are not violated. This approach
simpli�es the reward function when compared to the approach that allows actions
that violate constraints but penalizes them with a large amount of negative reward.
This way of selecting actions can be used for optimization problem constraints whose
violation can be detected without the feedback from the environment (by evaluating
only the agent's action) and it can be applied to similar power system control and
optimization problems treated with RL such as Volt-VAR optimization, energy storage
scheduling, supply restoration, etc. The total cost bene�ts and execution times of the
proposed algorithm are compared with the state-of-the-art method from [105]. The
main contributions of our work regarding DDNR, published in [107], are:

� Suggested multi-objective and scalable DRL-based approach is computationally
e�cient during the algorithm execution, with the expense of high computation cost
during the algorithm training.

� We introduce a novel de�nition for the state variables of the RL agent, resulting in
decreased observability requirements.

� We proposed a computationally e�cient way of considering switching operation
constraints by creating the available subset of the action set and updating it during
the episode.

In Chapter 5 we introduce the main idea of DNR and formulate the DDNR problem.
Chapter 6 presents the theoretical foundations of MDPs and RL. Chapter 7 presents
the expression of the DDNR problem in the RL framework, description and discussion
of the numerical experiments, and the conclusion along with the possible future work
directions.

Part I

State Estimation and Graph
Neural Networks

Chapter 2

Power System State Estimation

In this chapter, we review two most common formulations of the power transmission
system SE problem. The SE algorithm is a key component of the energy management
system that provides an accurate and up-to-date representation of the current state
of the power system. Its purpose is to estimate complex bus voltages using available
measurements, power system parameters, and topology information [43, 108]. In
this sense, the SE can be seen as a problem of solving large, noisy, sparse, and
generally nonlinear systems of equations. The measurement data used by the SE
algorithm usually come from two sources: the SCADA system and the WAMS system.
The SCADA system provides low-resolution measurements that cannot capture
system dynamics in real-time, while the WAMS system provides high-resolution data
from PMUs that enable real-time monitoring of the system. The SE problem that
considers measurement data from both WAMS and SCADA systems is formulated
in a nonlinear way and traditionally solved in a centralized manner using the Gauss-
Newton method [43]. On the other hand, the SE problem that considers only PMU
data provided by WAMS has a linear formulation, providing faster, non-iterative
solutions. In the following sections, we provide a detailed description of both linear
and nonlinear SE problem formations.

2.1 Foundational Concepts
This section provides the fundamentals of SE state variables and input data, which
are necessary for speci�c SE problem formulations. For clarity, all variables are
expressed in per unit and all transformer ratios are normalized to unity (cancelled
out). Additionally, without loss of generality, we make the assumption that the power
system does not include phase-shifting transformers.

As mentioned, the outputs of the SE algorithm, i.e., the state variables consist of
voltage phasors of all the buses in the power system, where each voltage phasor is
represented using a complex number. LetH = f 1; : : : ; ng represents the set of buses,
where n is the number of buses in the power system. The complex bus voltages can

44 2. Power System State Estimation

be represented both in polar and rectangular coordinate system:

Vi = Vi ej � i = < (Vi) + j = (Vi); (2.1)

where i 2 H represents the bus index. Vi and � i represent magnitude and phase
angle, while < (Vi) and = (Vi) represent real and imaginary parts of the complex bus
voltage Vi . Since the state variable vectorx is a vector of real numbers, it can also
be represented in polar:

x = [� ; V]T

� = [� 1; : : : ; � n]

V = [V1; : : : ; Vn];

(2.2)

as well as in rectangular coordinate system:

x = [V re ; V im]T

V re =
�
< (V1); : : : ; < (Vn)

�

V im =
�
= (V1); : : : ; = (Vn)

�
:

(2.3)

For simplicity, we omit the concept of the slack bus whose angle value is �xed and
acts as a reference value, as it does not impact the way in which the GNN-based SE
will be realized in Chapter 4.

Traditionally, the input data for the SE algorithm consists of the network topology
and parameters, and measured values obtained from the measurement devices spread
across the power system. The power system network topology is described by the
bus-branch model and can be represented using a graphG = (H ; E), where the set of
nodes in the graph is equal to the already de�ned set of buses in the power system
H, while the set of edgesE � H � H represents the set of branches of the power
network. Power system parameters are characteristics of a power system, such as
impedance, admittance, etc., that describe the system's behaviour. These parameters
are used to build a set of equations that describe the power system via the two-port
� -model of branches in the network. More precisely, the branch (i; j) 2 E between
busesf i; j g 2 H can be modelled using complex expressions:

�
I ij

I ji

�
=

�
yij + ysi � yij

� yij yij + ysj

� �
Vi

Vj

�
; (2.4)

where the parameteryij = gij + jbij represents the branch series admittance, while
branch shunt admittances are given asysi = gsi + jbsi and ysj = gsj + jbsj . The
complex expressionsI ij and I ji de�ne branch currents from the bus i to the bus j ,
and from the bus j to the bus i , respectively. The complex bus voltages at buses

2.1. Foundational Concepts 45

f i; j g are given asVi and Vj , respectively.

Input measurements can be placed on various elements in the power system and
measure di�erent electrical quantities. Each measurement is associated with the
measurement valuezi , the measurement variancevi , and the measurement function
f i (x). Measurement functions are mathematical models that express individual
measurements in terms of state variablesx using the physical laws in the power
system, and can be derived using equations given in(2.4). A typical set of input
measurements includes:

� Legacy measurements: The set of legacy measurements provided by SCADA
includes active and reactive power ow and injection, branch current magnitude,
and bus voltage magnitude measurements. These measurements have low
sampling rates and therefore are not suitable for real-time SE. Measurement
functions that express these measurements are generally nonlinear, regardless of
the coordinate system in which they are represented.

� Phasor measurements: The WAMS supports PMUs and provides phasor mea-
surements of bus voltages and branch currents [109, Sec. 5.6]. More precisely,
phasor measurement is formed by a magnitude, equal to the root-mean-square
value of the signal, and phase angle [109, Sec. 5.6]. The PMU placed at the bus
measures bus voltage phasor and current phasors along all branches incident
to the bus [44]. Phasor measurements have high sampling rates, with values
around 50 samples per second, and also have lower variances compared to legacy
measurements. When phasor measurements and state variables are expressed in
rectangular coordinate system, the corresponding measurement functions are
linear; otherwise they are nonlinear.

Values of both legacy and phasor measurements can be stacked together in a vector
of measurement valuesz = [z1; : : : ; zm]T . Corresponding measurement functions
form their own vector f (x) = [f 1(x), : : : , f m (x)]T , where m denotes the number of
measurement values.

An example of a simple two-bus power system is given in Fig.2.1. Its state variables
consist of two complex bus voltages,V1 and V2, and the state variable vector is given
in polar coordinates as:

x = [� 1; � 2; V1; V2]T : (2.5)

The system has a PMU placed at the bus 1 which measures the voltage phasor given
on that bus Vm 1 = Vm 1ej � m 1 and the current phasor I 12 = I 12ej � I 12 on the branch
which connects the two buses. The system also contains a legacy active power ow
measurementP12 on the same branch and the legacy voltage magnitude measurement

46 2. Power System State Estimation

Vm 2 on the bus 2. The vector of measurement values of this system can be given as:

z = [Vm 1; � m 1; I 12; � I 12 ; V2; P12]T : (2.6)

Vm 1= Vm 1ej � m 1

V1 = V1ej � 1

Bus 1

I 12= I 12ej � I 12 P12

V2 = V2ej � 2

Bus 2

Vm 2

Figure 2.1: Simple two-bus power system containing a PMU at the bus 1, one legacy
active power ow measurement, and one legacy voltage magnitude measurement at
the bus 2.

2.2 Linear State Estimation
Since measurement functions corresponding to phasor measurements can be expressed
as a linear combination of state variables when represented in rectangular coordinate
system, the SE problem formulation which considers only phasor measurements is
linear. This formulation is viable in cases when the power system is fully observable
using PMUs, and a fast SE solver is then needed to fully utilize their high sampling
rates.

PMUs measure complex bus voltages and complex branch currents, and originally
output phasor measurements in polar coordinates. In addition, PMU outputs can
be observed in the rectangular coordinates with real and imaginary parts of the bus
voltage and branch current phasors. In that case, the vector of state variablesx
can also be given in rectangular coordinatesx � [V re ; V im]T . Using rectangular
coordinates, we obtain the linear system of equations de�ned by voltage and current
measurements. The measurement functions corresponding to the bus voltage phasor
measurement on the busi 2 H are simply equal to:

f <f V i g(x) = <f Vi g

f =f V i g(x) = =f Vi g:
(2.7)

According to the two-port � branch model (2.4), functions corresponding to the

2.2. Linear State Estimation 47

branch current phasor measurement are given as:

f < (I ij) (�) = (gij + gsi)< (Vi) � (bij + bsi)= (Vi) � gij < (Vj) + bij = (Vj)

f = (I ij) (�) = (bij + bsi)< (Vi) + (gij + gsi)= (Vi) � bij < (Vj) � gij = (Vj):
(2.8)

The presented model represents the system of linear equations, where the solution
can be found by solving the linear weighted least-squares problem:

�
JT � � 1J

�
x = JT � � 1z; (2.9)

where the Jacobian matrix J 2 Rm � 2n is de�ned according to measurement functions
(2.7)-(2.8), m is the total number of linear equations, the measurement error covariance
matrix is given as � 2 Rm � m , and the vector z 2 Rm contains measurement values
given in rectangular coordinate system.

The main disadvantage of this approach is that measurement errors are originally
given in polar coordinates (i.e., magnitude and angle errors); therefore, the covariance
matrix must be transformed from polar to rectangular coordinates [110]. As a result,
measurement errors are correlated and the covariance matrix� does not have a
diagonal form. Despite that, because of the lower computational e�ort, the non-
diagonal elements of the covariance matrix� are usually neglected, which has an
e�ect on the accuracy of the SE [44]. Using the classical theory of propagation of
uncertainty [111], the variance in the rectangular coordinate system can be obtained
using variances in the polar coordinate system. For example, let us observe the
voltage phasor measurement at the busi , where PMU outputs the voltage magnitude
measurement valuezjVi j with corresponding variancevjVi j , and voltage phase angle
measurementz� i with variance v� i . Then, variances in the rectangular coordinate
system can be obtained as:

v<f Vi g = vjVi j (cosz� i)
2 + v� i (zjVi j sinz� i)

2

v=f Vi g = vjVi j (sin z� i)
2 + v� i (zjVi j cosz� i)

2:
(2.10)

Analogously, we can easily compute variances related to current measurementsv<f I ij g,
v=f I ij g or v<f I ji g, v=f I ji g. We will refer to the solution of (2.9) in which measurement
error covariances are neglected to avoid the computationally demanding inversion of
the non-diagonal matrix � as anapproximative WLS SE solution.

In this work, we will investigate if the GNN model trained with measurement
values, variances, and covariances labelled with the exact solutions of(2.9) is more
accurate than the approximative WLS SE, which neglects the covariances. Inference
performed using the trained GNN model scales linearly with the number of power

48 2. Power System State Estimation

system buses, making it signi�cantly faster than both the approximate and the exact
solver of (2.9).

2.3 Nonlinear State Estimation
Today's power systems are often not fully monitored with PMUs, therefore, SE
that incorporates both phasor and legacy measurements is required. As previously
discussed, that SE formulation is nonlinear and uses state variables expressed in a
polar coordinate systemx = [� ; V]T .

Below, we present expressions for measurement functions corresponding to legacy
measurements:

� Measurement function for the bus voltage magnitude measurements is simply
given as voltage magnitude state variable corresponding to that bus:

f Vi (x) = Vi : (2.11)

� Measurement functions for active and reactive power ow measurements on
branches are given as:

f P ij (x) = V 2
i (gij + gsi) � Vi Vj (gij cos� ij + bij sin � ij)

f Q ij (x) = � V 2
i (bij + bsi) � Vi Vj (gij sin � ij � bij cos� ij):

(2.12)

� Measurement function for current magnitude measurements on branches are:

f I ij (x) = [AcV 2
i + BcV 2

j � 2Vi Vj (Cc cos� ij � D c sin � ij)]1=2; (2.13)

where the coe�cients of the function are given as:

Ac = (gij + gsi)2 + (bij + bsi)2; Bc = g2
ij + b2

ij

Cc = gij (gij + gsi) + bij (bij + bsi); D c = gij bsi � bij gsi :

� Measurement functions for active and reactive power injection measurements
are described as:

f P i (x) = Vi

X

j 2N i [i

Vj (Gij cos� ij + B ij sin � ij)

f Q i (x) = Vi

X

j 2N i [i

Vj (Gij sin � ij � B ij cos� ij);
(2.14)

2.3. Nonlinear State Estimation 49

where N i 2 H is the set containing �rst order neighbours of the bus i . Gij

and B ij are the elements of bus admittance matrix often used in power system
analysis [112], and can be calculated using:

Yij = Gij + j B ij =

8
<

:

P

j 2N i

(yij + ysi); if i = j (diagonal element)

� yij ; if i 6= j (non � diagonal element):
(2.15)

Next, we provide expressions for measurement functions corresponding to phasor
measurements expressed in polar coordinate system:

� Measurement functions for bus voltage phasors measurements are given as:

f Vi (x) = Vi

f � i (x) = � i :
(2.16)

� The measurement function for the magnitude of the branch current phasor is
given in (2.13), while the function for the measured angle of the branch current
phasor is:

f � I 12
(x) = arctan

"
(Aa sin � i + Ba cos� i)Vi � (Ca sin � j + Da cos� j)Vj

(Aa cos� i � Ba sin � i)Vi � (Ca cos� j � Da sin � j)Vj

#

;

(2.17)
where the function's coe�cients are as follows:

Aa = gij + gsi ; Ba = bij + bsi

Ca = gij ; Da = bij :

Finally, the SE model can be expressed as the following system of nonlinear
equations:

z = f (x) + u; (2.18)

where u 2 Rm is a vector of uncorrelated measurement errors, whereui � N (0; vi)
represents a zero-mean Gaussian distribution with variancevi . The GN method
is typically used to solve the nonlinear SE model(2.18), where the measurement
functions f (x) precisely follow the physical laws derived on the basis of (2.4):

h
J(x (�))T � J (x (�))

i
� x (�) = J(x (�))T � r (x (�)) (2.19a)

x (� +1) = x (�) + � x (�) ; (2.19b)

50 2. Power System State Estimation

where � = f 0; 1; : : : ; � max g is the iteration index and � max is the number of iterations,
� x (�) 2 R2n is the vector of increments of the state variables,J(x (�)) 2 Rm x2n is the
Jacobian matrix of measurement functionsf (x (�)) at x = x (�) , � 2 Rm xm is in this
case a diagonal matrix containing inverses of measurement variances, andr (x (�)) = z
� f (x (�)) is the vector of residuals. Note that the nonlinear SE represents a nonconvex
problem arising from nonlinear measurement functionsf (x) [113]. Due to the fact
that the values of the state variablesx usually uctuate in narrow boundaries, the
GN method can be used.

The SE model (2.18) that considers both legacy and phasor measurements, where
the vector of state variablesx = [V ; �]T and phasor measurements are represented in
the polar coordinate system, is known as simultaneous. The simultaneous SE model
takes measurements provided by PMUs in the same manner as legacy measurements.
More precisely, the PMU generates measurements in the polar coordinate system,
which delivers more accurate state estimates than the other representations [44], but
requires more computing time [45] and produces ill-conditioned problems [44]. To
address these issues, we propose a non-matrix-based and noniterative GNN base SE,
which can be used as a standalone approach to solve(2.18), or as a fast and accurate
initializer of the GN method (2.19).

Chapter 3

Graph Neural Networks

Graph neural networks are an increasingly popular deep learning method used for
e�cient learning over graph-structured data. Various real-world objects and phe-
nomena can be represented as graphs; therefore, GNNs found application in a wide
variety of domains, such as chemistry for molecular property prediction [47], antibiotic
discovery [114], social sciences for fake news detection [115], complex physics simu-
lations [116], wireless communications [117], analysis and optimization of electrical
power systems [118], etc. In this chapter, we provide a short overview of machine
learning on graphs, the foundation of the GNN theory used in the rest of the thesis,
and list some practical aspects in using GNNs in real-world applications.

3.1 Overview of Machine Learning on Graphs
The main goal of this section is to provide the context necessary to understand
GNNs. Firstly, we introduce the de�nition of a graph and categorize the most
common machine learning on graphs tasks. We provide a short reference to the
traditional machine learning on graphs methods to emphasize the necessity for graph
representation learning. Finally, we provide an overview of graph representation
learning methods, including deep learning-based GNNs.

3.1.1 Graphs
Graphs are often used to describe a set of entities and the relationships between
them. Formally, a graph is de�ned as a tuple (V; E), where V denotes the set of
nodes, andE denotes the set of edges between the nodes. The graph is commonly
represented with the corresponding adjacency matrixA 2 RjVj�jVj . If there is an edge
between the nodesa; b2 V , then a matrix element A [a; b] is equal to one; otherwise,
it is equal to zero. Graphs can contain self-loops, i.e., edges that connect nodes to
themselves, resulting in diagonal elements of the adjacency matrix equal to one. An
undirected graph assumes bidirectional connections between all the nodes, resulting
in a symmetric adjacency matrix. An example of a simple undirected graph is given

52 3. Graph Neural Networks

in Fig.3.1, with the corresponding adjacency matrix given in (3.1):

A =

2

6
6
6
6
6
6
6
4

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 1
0 0 1 0 0 0
1 1 0 0 0 1
0 0 1 0 1 0

3

7
7
7
7
7
7
7
5

: (3.1)

1

2 3

4

5 6

Figure 3.1: Example of the simple undirected graph containing six nodes and seven
edges.

There are many extensions of the simplest form of graph presented above. Some
of them are the following:

� Directed graph, in which the adjacency matrix is generally not symmetric
since a connection from one node to another does not imply the existence of a
connection in the reverse direction;

� Heterogeneous and multi-relational graphs, where there can be multiple types
of the nodes and the edges;

� Weighted graphs, which have weights associated with the edges, and consequently
their adjacency matrices contain real number scalars instead of only zeros and
ones.

Real-world graphs can contain a large number of nodes, reaching hundreds of
millions in the cases of the most popular social networks. The adjacency matrices
of these graphs are sparse and space-ine�cient, necessitating a more compact graph
storage. Therefore, in practise large and sparse graphs are usually stored in adjacency
lists, which are implemented as unordered lists of di�erent sizes containing neighbours
of each node.

Additional input data can be incorporated into the graph data structure, usually at
the node level via real-valued feature vectors, introducing the need for machine learning

3.1. Overview of Machine Learning on Graphs 53

methods on graphs. Less often, the input data are provided using the edge-level
features, or at the graph level using a single feature vector. In the case of supervised
learning on nodes, edges, and graphs, training labels are usually concatenated into
the corresponding feature vectors. From the graph signal processing perspective,
node-level features can be viewed as signals on a graph. A vector containing one scalar
feature per node de�nes a one-channel graph signalx 2 RjVj 1, while multichannel
graph signals can be represented with a matrixX 2 RjVj� N c , where Nc denotes the
number of input features per node.

Another matrix that represents fundamental properties of a graph and will be
referred to throughout this chapter is the graph Laplacian matrix L 2 RjVj�jVj , de�ned
as:

L = D � A ; (3.2)

whereD 2 RjVj�jVj is diagonal and represents the node degree matrix, whose diagonal
elements are equal to corresponding node degrees. This matrix is positive semi-de�nite,
and it can always be eigendecomposed. The Laplacian matrix of the graph is given in
Fig. 3.1 is:

L =

2

6
6
6
6
6
6
6
4

2 � 1 0 0 � 1 0
� 1 3 � 1 0 � 1 0
0 � 1 3 � 1 0 � 1
0 0 � 1 1 0 0

� 1 � 1 0 0 3 � 1
0 0 � 1 0 � 1 2

3

7
7
7
7
7
7
7
5

: (3.3)

The normalized version of the graph Laplacian is also often used:

L = I � D � 1
2 AD � 1

2 : (3.4)

The eigendecomposition of the Laplacian matrix, also known as the spectrum of
the graph Laplacian, is given as follows:

L = U�U T ; (3.5)

where � 2 RjVj�jVj is a diagonal matrix containing the eigenvalues, while the columns
of U 2 RjVj�jVj contain the eigenvectors ordered by their corresponding eigenvalues.
The Laplacian spectrum reveals some information about the grouping of the graph's
nodes. The multiplicity of null eigenvalues is equal to the number of connected

1 In Chapters 2 and 4, x was used as notation for state variables. In this chapter, it is used to
denote signals on a graph. No overlap in meaning occurs between chapters, avoiding any potential
confusion.

54 3. Graph Neural Networks

components in a graph, while the second-smallest eigenvalue and the corresponding
eigenvector can be used to perform the optimal node clustering into two.

3.1.2 Common Tasks of Machine Learning on Graphs
Generally, learning problems on graphs can be reduced to supervised and unsupervised
problems; however, due to graph-related speci�cities there is a need for a more detailed
categorization. Before introducing graph representation learning concepts, we provide
descriptions of most common tasks of machine learning on graphs:

� Node-level tasks, in which classi�cation or regression is performed on individual
nodes, based on a dataset containing nodes labelled with target values. Typical
supervised learning approaches perform poorly in this task, as the nodes in a
graph are not independent and identically distributed.

� Edge-level tasks, with the most common being prediction of edge presence in
a graph, also known as link prediction. Models for these tasks are trained on
graphs with an incomplete set of edges to predict the missing edges between the
pairs of nodes. By minimizing the loss similar to logistic regression, this task is
usually reduced to the classi�cation problem, given data from the node pairs as
inputs. Less common tasks are classi�cation and regression of individual edges.

� Node clustering, often also called community detection, is a form of unsupervised
learning with the goal of grouping similar nodes according to their features and
connectivity information.

� Graph-level tasks can also be formulated as supervised and unsupervised learning
problems, once a useful set of graph features is extracted. Supervised learn-
ing on graphs assumes predicting the class or a real-number value associated
with a graph, whereas unsupervised learning on graphs usually involves tasks
that calculate a measure of similarity between pairs of graphs, such as graph
clustering.

� Inuence maximization, often used for viral marketing purposes, is de�ned as
the problem of �nding the subset of nodes in a graph such as a social network
that maximizes the spread of inuence. The main goal of inuence maximization
is �nding small subsets that provide a high number of a�ected nodes in the rest
of the graph.

3.1.3 The Need for Graph Representation Learning
In the standard applications, trivial usage of common machine learning models such as
neural networks expect input structured as multidimensional arrays, making the usage
of adjacency lists more di�cult. An additional problem with using common machine

3.1. Overview of Machine Learning on Graphs 55

learning models for graph learning problems is that they expect all the node and
connectivity data as an input, yielding machine learning models with a high number
of parameters, which are ine�cient from the storage perspective and hard to train
as well. Furthermore, common neural networks are not permutation invariant; the
same graph topology can be represented with multiple di�erent adjacency matrices
or lists, but it can not be ensured that all of them can be mapped to the same
output [119]. Therefore, machine learning algorithms specialized for operating on
graphs that preserve permutation invariance become necessary.

Traditional approaches to machine learning on graphs methods are out of the scope
of this thesis. Based on the overview given in [23], we briey refer to some of these
methods to motivate the need to develop graph representation learning algorithms:

� Node-level tasks can be solved by extracting multiple node-level features using
common node statistics such as node degree, node centrality, clustering coef-
�cient, etc., and feeding them to the inputs of the common machine learning
algorithms.

� Solving graph-level tasks traditionally involves extracting graph-level features
that can be later used in common machine learning models. One of the trivial
graph-level feature extractions is de�ned as a simple aggregation of node-
level features, which can miss some important global information about the
graph because it is solely based on local node statistics. More advanced graph
kernel methods [120], perform iterative neighbourhood aggregation of node-level
features, to capture global information about the graph. Additional graph-
level information can be provided by counting the number of small subgraph
structures or by analysing various types of paths in the graph. Information
about paths is created by collecting the node statistics along the shortest paths
or random walks on the graph [121].

� Neighbourhood overlap detection methods quantify how much two nodes are
related by analysing similarities between their corresponding neighbourhoods.
These statistics can be used for edge-level relationship prediction tasks [122]. In
addition to trivial k 2 N-hop neighbourhoods, more advanced random walk and
shortest path-based neighbourhood functions can be used.

� Node clustering tasks can be traditionally solved using graph Laplacian matrix
and the spectral methods. Many node clustering methods rely on determining
and analysing its eigenvalues and eigenvectors, that is, its spectrum [123]. As
mentioned in 3.1.1, the spectrum of the graph Laplacian can be used to perform
some variants of node clustering. Additionally, the Laplacian spectrum can be
used to create vector representations of nodes in a graph, which can be used as

56 3. Graph Neural Networks

input to a typical clustering algorithm.

The main drawback of these methods is the need for manual feature engineering, which
can be an expensive and time-consuming process. Additionally, designed feature
extractors are inexible and cannot generalize well on new graphs with di�erent
topologies. In the Subsection 3.1.4 we will consider the most common approaches to
learning node vector representations, instead of extracting them manually.

3.1.4 Graph Representation Learning
The most common objective of a graph representation learning is to create the
representation vectors called node embeddings, that encode the information about
graph's local structure2. This process can also be interpreted as a transformation of
the graph data into the latent feature space, also known as the embedding space. The
distances between the points in the embedding space reect the node similarity with
respect to the relative positions of the nodes. Node embeddings can be a direct output
of a graph representation learning algorithm or an intermediate result, as in the case
of end-to-end GNNs. In either case, node embeddings, their pairs, or aggregated node
embeddings of the whole graph can be used as an input to node, edge, or graph-level
tasks mentioned in Subsection 3.1.2. Fig. 3.2 displays the simpli�ed output of a typical
graph representation learning algorithm, where each node is assigned a corresponding
node embedding of size three.

1[0:0; 0:2; 2:0]

2[0:1; 0:3; 3:0] 3 [0:2; 0:3; 3:0]

4 [0:3; 0:3; 1:0]

5[0:1; 0:4; 3:0] 6 [0:2; 0:5; 2:0]

Figure 3.2: Node embeddings - a simpli�ed example of graph representation learning
algorithm's outputs.

Prior to introducing deep learning-based graph representation learning methods,
we will briey list the types of shallow embedding methods which fundamentally
create unique node embeddings for all the nodes, based on their identi�ers and their
neighbourhood structure. All of these methods follow the idea of the graph encoder-
decoder framework, containing an encoder function which maps each node into the
real-number vector representation, and a decoder function which maps learned node
embedding vectors to the structural information of that node. We will consider the

2 In this thesis we do not consider less common graph representation learning methods that create
edge and graph-level embeddings.

3.1. Overview of Machine Learning on Graphs 57

most often used pairwise decoders, which take two node embeddings as an input,
and predict some measure of similarity between the two nodes. Encoder-decoder
models de�ned in this way are trained on pairs of similar nodes by minimizing the
discrepancy between the similarity of the nodes (e.g. the neighbourhood overlap) and
the similarity of the node embeddings obtained as outputs of the decoder. If the
graph structure information can be successfully decoded, the learned node embeddings
represent the graph well, and can be used as inputs to some of the common machine
learning algorithms. The most common types of shallow embedding methods that �t
into the encoder-decoder framework are:

� Factorization-based methods that express the encoder-decoder loss in matrix
form and use matrix-factorization algorithms to minimize it. In these methods,
the decoder is usually de�ned as an L2-norm of the di�erence between the two
node embeddings [124], or their inner product [125]. An example of the measure
of similarity between two nodes in a matrix form is the Leicht-Holme-Newman
similarity [126], which provides the expected number of paths of all lengths
between two nodes by solving the geometric series of the adjacency matrix.

� Random walk embedding methods use stochastic node similarity measures based
on random walk statistics, since similar pairs of nodes should occur together in
short random walks [127,128].

For example, the DeepWalk shallow embedding algorithm [127] embeds the nodes
based on the random walk sequences, similarly like the word2vec algorithm [129]
embeds words based on the set of sentences. After a dataset of short �xed-length
random walks is generated, the model is optimized to closely embed the nodes that
co-occur in the same random walks:

max
H

X

u2V

X

v2 N RW (u)

logPr(vju): (3.6)

NRW (u) denotes the multiset of nodes visited on random walks starting from the node
u, while V denotes the set of all nodes.H 2 Rd�jVj is the trainable node embedding
matrix, containing the node embeddings for individual nodeshv 2 Rd; v 2 V , where d
denotes the embedding size. Probability that the nodev is in the neighbourhood of
the node u is parametrized using the softmax function and the node embedding inner
products in the following way:

Pr(vju) =
exphu

T hv
P

n 2V exphu
T hn

: (3.7)

In other words, by going through the pairs of nodes that co-occurred in random

58 3. Graph Neural Networks

walks, the algorithm maximizes the inner product of the node embedding pairs,
maximizing the probability that the trained algorithm will categorize those node pairs
as neighbours. The softmax function also enforces the minimization of inner products
of embeddings of nodes that did not co-occur in random walks, making them further
apart in the embedding space.

The main drawback of the listed shallow embedding approaches is that they are
trained to create unique vector representations of all the nodes of one graph, meaning
that they do not have the ability to generalize to new graphs. A more exible approach
would be to learn a function that encodes the local neighbour structure and can
be trained and used on graphs with di�erent topologies simultaneously. Another
drawback of shallow embedding methods is that they can encode only the graph
structure, without taking into account node, edge, and graph-level input features. In
the following subsection, we will introduce deep learning-based encoders, which map
local node neighbourhoods and all the input feature vectors they contain to node
embeddings.

3.1.5 Graph Representation Learning using GNNs
GNNs are becoming the most popular tool for machine learning on graphs problems
because of their successful application in various domains. Throughout this chapter
we have been motivating the development of specialized machine learning methods
for graphs and methods for learning vector representations of nodes in the graphs,
until we have motivated the need for training deep learning functions to encode the
graph data. Unlike shallow, node embeddings are not the �nal output of the GNN
algorithm, but an intermediate result in end-to-end machine learning on a graph task,
either supervised or unsupervised.

We make an introduction to GNNs from the deep learning model's architecture
perspective by comparing them to the other common deep learning approaches in
Table 3.1. Adjusting the model's architecture to the speci�c structure of the input
data can increase the training speed and performance and reduce the amount of
needed training data. This way of exploiting the regularity of the input data space by
imposing the structure of the trainable function space is known by the term relational
inductive bias [130]. One of the most successful examples of exploiting relational
inductive biases are CNN layers, producing algorithms that surpass human experts
in many computer vision tasks. CNNs use the same set of trainable parameters
(known as the convolutional kernel) to operate over parts of the input grid data
independently, achieving locality and spatial translation invariance. Locality exploits
the fact that neighbouring grid elements are more related than further ones, while
spatial translation invariance is the ability to map various translations if the input

3.1. Overview of Machine Learning on Graphs 59

Table 3.1: Comparison of various deep learning models from the inductive bias
perspective.

Neural network
layer type

Input data
structure

Relational
inductive bias

Property

Fully connected Arbitrary
Input elements
weakly related

-

Convolutional Grids, images Local relation
Spatial translation

invariance

Recurrent Sequences Sequential relation
Time translation

invariance

GNN layer Graphs Arbitrary relation
Permutation invariance

and equivariance

data into the same output. Similarly, recurrent units utilize trainable parameter
sharing to process the segments of the sequential data, resulting in a time translation
invariant algorithm. From an inductive bias perspective, the main goal of GNNs is
to achieve permutation invariance, so that various adjacency matrix representations
of the same graph map into the same output. An additional goal of GNNs is to
achieve permutation equivariance for node and edge-level tasks, so that node and edge
permutations in the input data should manifest only in the corresponding outputs.

The main classi�cation of GNN methods is the following:

� Spectral GNNs are based on trainable graph convolutions in the spectral domain,
achieved using the graph Fourier transform, and involve the eigendecomposition
of the graph Laplacian [131]. In spectral domain, the graph convolution reduces
to element-wise multiplication of the trainable convolution �lter with the graph
signal. These methods have some important theoretical implications, but also
a few drawbacks that make them less applicable in practise; therefore they
will not be studied in detail in this thesis. One of the drawbacks is the high
computational cost for large graphs, since the eigendecomposition has aO(jVj3)
computational complexity, and the fact that the number of trainable parameters
grows with the input graph size. Additionally, spectral �lters on which they rely
cannot localize in the original domain of the graph, and they cannot generalize
to new graphs whose eigendecompositions are di�erent from the graphs the
model was trained on. Finally, these methods are limited to undirected graphs
which have symmetric Laplacian matrices, and cannot include edge-level input
features.

� Spatial GNNs are a widely used class of GNN methods based on trainable

60 3. Graph Neural Networks

neighbourhood aggregation of node input features, performed in the original
(spatial) domain of the graph. The neighbourhood aggregation process is applied
locally and independently over the parts of the input graph, making the spatial
GNNs easily generalizable to new graphs. Since the spatial GNNs act as local
graph �lters, the number of trainable parameters does not grow with the input
graph size and their inference can be distributed, making them convenient for
large scale applications.

Before presenting spatial GNNs in detail, we will give a theoretical overview of
graph convolution operation in spectral domain and derive a spectral GNN layer using
it. The Laplacian matrix eigendecomposition L = U�U T de�nes a graph Fourier
transform F (�) providing a way to project a graph signal x 2 RjVj into the spectral
domain:

F (x) = U T x: (3.8)

The graph convolutional �lter g� 2 RjVj has the same size as the graph signal, and
when employed in spectral GNNs, its elements are trainable, i.e. learned from data.
In spectral domain, the graph convolution reduces to element-wise multiplication of
the graph signal with the �lter F (x) � F (g�). By performing the inverse Fourier
transform F � 1(�) to the signal �ltered in the spectral domain, we obtain the result of
the graph convolution � G in the original domain:

x � G g� = F � 1(F (x) � F (g�)) = U (U T x � U T g�): (3.9)

This expression can further be simpli�ed by expressing the �lter in the spectral domain
U T g� as a diagonal matrix � = diag(U T g�):

x � G g� = U�U T x: (3.10)

A spectral GNN layer transforms a multichannel input into the multichannel output
by performing multiple graph convolutions and summing them per output channel.
This process is repeatedK times, starting with the input multichannel graph signal
X 2 RjVj� N c , and ending with the �nal node embedding matrix X 2 RjVj� f K , where
f K denotes the size of the �nal node embeddings. Generally, each spectral GNN
layer can have a di�erent number of input and output channels, and a separate set of
trainable parameters. Operations performed inkth GNN layer can be described as:

H k
:;j = � (

f k � 1X

i =1

U� k
i;j U T H k � 1

:;i); j = 1 ; 2; : : : f k : (3.11)

3.2. Theoretical Foundations of Spatial Graph Neural Network 61

� represents some nonlinear function, whilef k � 1 and f k denote the number of GNN
layer's input and output channels. H k � 1 2 RjVj� f k � 1 is the input graph signal for
kth layer, with H 0 = X . Finally, � k

i;j contains trainable �lter's parameters for every
input-output channel combination. The �nal node embeddings are used as inputs of
the additional trainable functions which perform node, edge, or graph-level tasks, and
the whole model is trained in an end-to-end fashion.

To make spectral GNNs applicable to large graphs, approximations using Chebyshev
polynomials of the diagonal matrix of eigenvalues [132] are often employed. Some of
these approximations exhibit spatial GNN properties like localization, which blurs the
border between spatial and spectral GNNs. The best example are graph convolutional
networks [133], whose neighbourhood aggregation process is theoretically equivalent
to the graph convolutional �ltering in the original spectral version of the algorithm.

In the next section, we will give the theoretical foundations of spatial GNN methods,
which will be applied to the power system state estimation problem in Chapter 4.

3.2 Theoretical Foundations of Spatial Graph Neu-
ral Network

The spatial GNNs perform recursive neighbourhood aggregation, also known as
message passing [47], over the local subsets of graph-structured inputs to create a
meaningful representation of the connected pieces of data. More precisely, a GNN
acts as a trainable local graph �lter which has a goal of transforming the inputs
from each node and its connections to a higher dimensional space, resulting in a
s-dimensional vector embeddingh 2 Rs per node. In other words, the goal of the
node embedding is to represent the information about the node's position in the
graph, as well as its own and the input features of the neighbouring nodes. The GNN
layer, which implements one iteration of the recursive neighbourhood aggregation,
consists of several di�erentiable functions that can be represented using a trainable
set of parameters, usually in the form of the feed-forward neural networks. These
functions co-operate to produce updated versions of node embeddings based on the
previous ones, as shown in Fig. 3.3. We will discuss the role of each of the functions
and the intermediate values that they exchange in the continuation of the text. In
the rest of the section, nodes into which the messages are aggregated will be denoted
with index j , while their 1-hop neighbours, which are the sources of the messages,
will be denoted with index i .

The message functionMessage(�j � Message) : R2s 7! Ru outputs the messagem i;j 2
Ru between the embeddings of a pair of connected nodes,h i and h j . Many GNN
architectures do not explicitly de�ne this function, but instead simply use node

62 3. Graph Neural Networks

Message

Message

...

Message

Aggregate Updateh2
k � 1; h j

k � 1

h1
k � 1; h j

k � 1

hn j
k � 1; h j

k � 1

m 1;j
k � 1

m 2;j
k � 1

m n j ;j
k � 1

m j
k � 1

h j
k

h j
k � 1

Figure 3.3: A GNN layer, which represents a single message passing iteration, includes
multiple trainable functions, depicted as yellow rectangles. The number of �rst-order
neighbours of the nodej is denoted asnj .

embeddings of the 1-hop neighboursi as messages:Message(h i ; h j j� Message) = h i .
The expressive power of a GNN model can be increased by including a set of trainable
parameters� Message to the message function de�nition [47]. The message function can
also be de�ned in a way to include the data from the edge input features; however,
that consideration is out of the scope of this thesis.

The aggregation function Aggregate(�j � Aggregate) : Rdeg(j) �u 7! Ru de�nes in which
way incoming neighbouring messages are combined, and outputs the aggregated
messages denoted asm j 2 Ru for node j . The aggregation function is designed to take
the set of messages as an input, which makes it permutation invariant. Some of the
commonly used are element-wise average, sum, minimum, and maximum, optionally
followed by some kind of trainable function. In some GNN architectures, the incoming
messages are weighted before being aggregated. For example, in graph convolutional
networks [133], the messages are normalized by the product of node degrees of source
and target nodes. In some of the more advanced aggregation functions, weights for
the messages are learned. One of the most popular examples are GATs [61], which
will be discussed in greater detail in Subsection 3.2.1.

The output of one iteration of the neighbourhood aggregation process is the updated
node embedding obtained by applying the update functionUpdate(�j � Update) : Ru+ s 7!
Rs on the aggregated messages concatenated with the embedding of the nodej prior
to the update. In this way, the update of the node embedding does not rely only on the
aggregated messages, but also on its previous values. When the number of recursive
neighbourhood aggregations is large, this can help a GNN model distinguish node
embeddings of similar nodes3. The update function can be implemented using GRUs

3However, this problem, known as over-smoothing, limits the use of deep GNN models and is still
an open area of GNN research [134].

3.2. Theoretical Foundations of Spatial Graph Neural Network 63

or LSTM units, in which node embedding values are maintained as a hidden state
while aggregated messages are taken as new inputs during multiple neighbourhood
aggregations [135,136].

The recursive neighbourhood aggregation process is repeated a prede�ned number
of iterations K , also known as the number of GNN layers, where the initial node em-
bedding values are equal to thel-dimensional node input features, linearly transformed
to the initial node embedding h j

0 2 Rs. The iteration that the node embeddings and
calculated messages correspond to is indicated by the superscript. One iteration of
the neighbourhood aggregation process for thekth GNN layer, depicted in Fig. 3.3,
can also be described analytically by equations (3.13):

m i ;j
k � 1 = Message(h i

k � 1; h j
k � 1)

m j
k � 1 = Aggregate(f m i;j

k � 1ji 2 N j g)

h j
k = Update(m j

k � 1; h j
k � 1)

k 2 f 1; : : : ; K g;

(3.12)

where N j denotes the 1-hop neighbourhood of the nodej , and the vector superscript
corresponds to the message passing iteration. Either the same or di�erent trainable
parameters can be used across di�erent GNN layers; will consider only the former
since it results in a smaller GNN model, and also has a regularization e�ect (i.e.,
reduces over�tting) due to parameter sharing.

As an example, we present a simple GNN layer architecture in which the message
passing process is described using a single equation:

h j
k = �

0

B
@W (k)

self h j
k � 1 + W (k)

neigh

X

i 2N j

h i
k � 1

1

C
A : (3.13)

This GNN layer uses node embeddings of the 1-hop neighboursh i
k � 1 as messages,

while the aggregation function is de�ned as the sum of messages linearly transformed
using the matrix W (k)

neigh which contains trainable parameters. Finally, the update
function is de�ned by applying the nonlinear function � (�) element-wise on the sum of
the aggregated messages and the current embedding of the nodej linearly transformed
using an additional trainable matrix W (k)

self .

The outputs of the message passing process are �nal node embeddingsh j
K which

can be used for the classi�cation or regression over the nodes, edges, or the whole
graph, or can be used directly for the unsupervised node or edge analysis of the

64 3. Graph Neural Networks

graph. In the case of supervised learning over the nodes, the �nal embeddings are
passed through the additional nonlinear function, creating the outputs that represent
the predictions of the GNN model for the set of inputs fed into the nodes and their
neighbours. GNN training is performed by optimizing the model parameters using
variants of the gradient descent algorithm [137], with the loss function being some
measure of the distance between the labels and the predictions. We refer the reader
to [23] for a more comprehensive introduction to graph representation learning and
GNNs.

It is important to note that since nearby nodes have a signi�cant overlap of the
corresponding k� hop neighbourhoods, GNN's message passing process results in
similar node embeddings for those nodes by design, even for suboptimal values of
trainable parameters. Works [138,139] report that untrained, randomly initialized
GNNs can match the performance of trained random walk-based shallow embedding
methods.

3.2.1 Graph Attention Networks
An important decision to be made while creating the GNN model is to select the
GNN's aggregation function. Aggregation functions that are commonly used include
sum, average, minimum and maximum pooling, and graph convolution [133]. One
common drawback of these approaches is that incoming messages from all the node's
neighbours are weighted equally, or using weights calculated using the structural
properties of the graph (e.g., node degrees) prior to training. GATs [61] propose
using the attention-based aggregation, in which the weights that correspond to
the importance of each neighbour's message are learned from their corresponding
embeddings, increasing the representational capacity of a GNN model. The weights
are calculated using the attention mechanism [140] which is traditionally used in
transformer models for sequential data [21] and has achieved signi�cant success in the
�eld of natural language processing.

The attention mechanism introduces an additional set of trainable parameters
in the aggregation function, usually implemented as a feed-forward neural network
Attend (�j � Attend) : R2s 7! R applied over the concatenated embeddings of the nodej
and each of its neighbours:

ei;j = Attend(h i ; h j j� Attend): (3.14)

We obtain the �nal attention weights ai;j 2 R by normalizing the output ei;j 2 R

3.3. Practical Aspects of Graph Neural Networks 65

using the softmax function:

ai;j =
exp(ei;j)

P
i 02N j

exp(ei 0;j)
: (3.15)

To add a regularization e�ect and stabilize the learning process, GAT implementa-
tions usually include the multi-head attention concept [61]. It introduces calculating
multiple attention weights for each message using separate attention layers, which
are trained independently. Multiple replicas of the same message are then aggregated
in some way, usually using concatenation followed by a trainable function such as
feed-forward neural network.

3.3 Practical Aspects of Graph Neural Networks
This section discusses some of the aspects of applying GNNs to real-world problems,
like scalability, mini-batch training, and application to various types of graphs. Addi-
tionally, we discuss graph augmentation methods when the graphs are too sparse or
lack input features, as well as applying GNNs in a semi-supervised and self-supervised
setting, which is useful in the cases of sparsely labelled data.

The GNN model presented in the previous section may su�er from scalability issues
when applied to large graphs in which some of the nodes have very high degrees.
An example of this kind of graph would be social networks, in which nodes that
correspond to popular members have a large number of connections. The problem
arises during theK - hop neighbourhood aggregation process, which would aggregate
neighbours of high-degree nodes multiple times, resulting in large computational
graphs and high training and inference computational complexity. GraphSAGE [141]
is one of the �rst GNN models successfully applied to large graphs, with one of his
variants deployed at the Pinterest's recommendation system over the graph containing
3 billion nodes and 18 billion edges [142]. During both the training and inference
processes, GraphSAGE employs stochastic neighbourhood aggregation, in which only
a subset of neighbouring messages is calculated during each message passing iteration.
However, sampling is not done uniformly at random, but with a strategy in which
important neighbours are sampled with a higher probability instead of numerous
low-degree nodes. As a side e�ect, stochastic neighbourhood aggregation improves
robustness to the changes in the graph during the inference time, but also increases
the variance of the training process, making it less stable.

Deep learning models are usually trained using a mini-batch gradient descent
algorithm, which calculates a loss function and model updates over a group (i.e., a
mini-batch) of training examples rather than over individual examples or a whole

66 3. Graph Neural Networks

training dataset. This strategy can be easily applied in the case of GNNs when graphs
have small sizes, allowing multiple graphs from the dataset to be grouped together in
mini-batches without violating memory constraints of the hardware being used for
the training. The issue of how to split up graph elements into mini-batches arises
in the case of large graphs that require more memory than is available. Making the
subgraphs using graph cuts is a simple solution, but doing so results in the loss of
connectivity information between the nodes in di�erent subgraphs, which disables
message passing between them. GraphSAGE authors [141] propose groupingK -hop
neighbourhoods of nodes into mini-batches, in which each mini-batch can include
multiple nodes with their neighbourhoods. Although this approach may result in the
use of overlapping neighbourhoods, it preserves the message passing in the original
graph while allowing the training process to meet the memory requirements.

The GNN methods previously presented can be tailored to speci�c types of graphs
that may arise in practise. Without going into too much detail, here are some examples
of how the neighbourhood aggregation process needs to be modi�ed for the speci�c
use cases:

� Directed graphs introduce a notion of direction to each edge. In social networks,
an example would be the concept of following, in which one member of the
network can be connected to another but not vice versa. In these cases, the
process of aggregation into a node is typically carried out by gathering only the
incoming messages de�ned by the edge directions.

� Temporal graphs are used to model dynamic networks in which nodes and edges
appear and disappear over time. Temporal graph networks [143] introduce
the spatio-temporal aggregation which gathers the messages from the current
and past 1-hop neighbours in each time step. Every node is given a memory
component that serves as a representation of its interaction history, much like
the hidden state concept in recurrent neural networks. The message between
two nodes is determined by the current values of their memory components,
the interaction time step, and, if present, the edge features. The aggregation
function employs the attention mechanism, which computes the importance
score for all 1-hop neighbours throughout the history.

� Heterogeneous and multi-edge graphs contain di�erent types of nodes and edges.
GNNs can use distinct sets of trainable parameters for aggregation and update
functions that operate over di�erent types of nodes. Likewise, di�erent message
functions can be used for di�erent edge types.

� Graph-structured data can contain hierarchical information, like in the cases
of networks of molecules [144] or object-oriented data models. These data

3.3. Practical Aspects of Graph Neural Networks 67

structures can be e�ciently represented as hypernode-based nested graphs [145],
which are composed of hypernodes, which are themselves graphs. Learning
over these types of graphs is done using multiple levels of GNNs, which operate
at di�erent hierarchy levels and exchange information at particular message
passing iterations.

Because data in real-world problems is typically sparsely labelled due to high
labelling costs, techniques that make the best use of both unlabelled and labelled data
samples are required. Semi-supervised learning techniques fall somewhere between
supervised and unsupervised learning, with the goal of making predictions on unseen
data based on small sets of labelled data while utilizing large amounts of unlabelled
data. The self-training method [146], also known as self-labelling, is a simple form
of semi-supervised learning for classi�cation problems in which an initial classi�er
is trained on a small labelled dataset and then used to label the rest of the data
using the most con�dent predictions. Then, using the larger labelled dataset, a
new classi�er is trained, and the process is repeated several times. More advanced
approaches employ generative models to learn the distribution of real-world data
from unlabelled samples [147]. Generative models are then used to enrich the labelled
dataset by generating new data samples with the desired label. GNNs can adapt well
to the semi-supervised concept when dealing with node-level prediction problems in
graph-structured data, where labels are only available to a small subset of nodes [133].
In this scenario, the GNN model is trained by backpropagating the supervised learning
loss function calculated using only the labelled nodes. However, because all nodes
and their incident edges participate in the message passing process, the node input
features and connectivity data from unlabelled nodes also contribute to prediction
generation.

Self-supervised learning [148] is another type of methods that falls somewhere
between supervised and unsupervised learning. It uses unlabelled data samples to
create a supervised learning objective using pseudo-labels, resulting in useful data
representations (i.e., embeddings) that can be used as inputs for other, so-called
downstream tasks. Similarly to semi-supervised learning, it became popular because
of its ability to avoid annotating large amounts of data. Because no manual data
labelling is required, some classi�cations consider self-supervised learning to be a
subset of unsupervised learning. One of the most common forms of self-supervised
learning is contrastive learning [149], in which data samples are associated with positive
and negative pseudo-labels automatically. A subset of data samples, for example, can
be intentionally corrupted by adding some noise and labelled as negative, whereas
uncorrupted data samples are labelled as positive. Models de�ned in this manner are
trained using the binary classi�cation loss (e.g., cross-entropy) as a learning objective

68 3. Graph Neural Networks

and produce data representations that can be reused for downstream tasks as an
intermediate result.

To make use of unlabelled graph-structured data, GNNs can also be used in
self-supervised setting. Link prediction can be thought of as a simple form of self-
supervised contrastive learning based on GNNs. It is essentially a binary classi�cation
task in which pairs of nodes are sampled, and classi�cation labels are generated
based on the presence of direct connections between the nodes. This task can be
generalized so that positive pseudo-labels indicate that a pair of nodes is close in
terms of some neighbourhood metric (e.g.,k-hop or random walk-based), and negative
pseudo-labels indicate that they are not. Node embeddings obtained using these
positive and negative label de�nitions can be useful for tasks which rely on local graph
information. To obtain more relevant node embeddings for global tasks, contrastive
learning methods that distinguish between original and corrupted graphs can be
used [138].

We conclude the overview of the practical aspects of GNNs by discussing the
augmentation methods that are commonly used with graph-structured data. In
real-world problems, the original, raw graph data is rarely used as an input for GNNs
without being augmented in some way. Since nodes in a graph can lack input features,
feature augmentation in the form of expanding the node input feature vectors is often
used. Let's consider a case of a graph in which nodes do not have any input features.
A trivial form of feature augmentation is adding a constant feature (e.g., a scalar with
a value of 1:0) to every node. As a result, the GNN is able to learn the structural
information of a graph using the aggregation function, which is not possible when
aggregating zeroes. More advanced types of feature augmentation, such as one-hot
vector encoding, cycle counts, node centralities, and clustering coe�cients, can reveal
more information about the graph structure and increase the expressive power of
GNN. Aside from feature augmentation, graph augmentation is used when the input
graph is either too sparse, making the message passing process ine�cient, or has
long-range dependencies between nodes. Some common graph augmentation methods
include connecting pairs of nodes using virtual edges and adding virtual nodes that
connect all the nodes in a certain subset.

Chapter 4

Graph Neural Network-based State
Estimation

In this chapter, we explain how GNNs can be applied to both linear and nonlinear SE,
using the power system factor graph-like structures. Since we used similar methodolo-
gies for both linear and nonlinear formulations, they are presented simultaneously,
with speci�c di�erences highlighted as necessary. First, we present the augmentation
techniques for the power system's factor graph, then the details of the proposed GNN
architecture, and analyse the computational complexity and the distributed imple-
mentation of the GNN model's inference. Finally, we demonstrate the e�ectiveness of
our proposed method through numerical evaluations on various test cases.

4.1 Power System Factor Graph Augmentation
Inspired by recent work on using probabilistic graphical models for power system
SE [150], we �rst create a GNN over a graph with a factor graph topology. This
bipartite graph consists of factor and variable nodes connected by edges, and it is
established in accordance with di�erent SE problem formulations:

� Linear SE: Variable nodes are used to calculate as-dimensional node embedding
for all real and imaginary parts of the bus voltages,< (Vi) and = (Vi), i = 1 ; : : : ; n,
using which state variable predictions can be generated. Factor nodes, two per
each measurement phasor, serve as inputs for the measurement values, variances,
and covariances, also given in rectangular coordinates. These values are then
transformed and sent to variable nodes via GNN message passing. Unlike the
approximative WLS SE de�ned in 2.2, which neglects measurement covariances,
the GNN includes them, leading to accurate solutions without increasing the
computational complexity. The upper sub�gure of Fig. 4.1 illustrates a two-bus
power system, with a PMU on the �rst bus, containing one voltage and one
current phasor measurement. The nodes connected by full lines represent the
corresponding factor graph in the lower sub�gure.

70 4. Graph Neural Network-based State Estimation

� Nonlinear SE: In this case, pairs of variable nodes generates-dimensional
node embeddings for magnitudesVi and phase angles� i of complex bus voltages
Vi = Vi ej � i . The inputs to the factor nodes are the values and variances of
both phasor and legacy measurements. Phasor measurements are expressed in
polar coordinates, which eliminates any correlation between measurement errors.
Therefore, in contrast to linear SE, in nonlinear SE measurement covariances do
not need to be included as inputs into factor nodes. When creating the factor
graph from the bus-branch power system model, each phasor measurement
generates two factor nodes, while each legacy measurement generates one factor
node. As an example, in the upper sub�gure of Fig. 4.2 we consider a simple
two-bus power system, in which we placed one voltage phasor measurement on
the �rst bus and one legacy voltage magnitude measurement on the second bus.
Additionally, we placed one current phasor measurement and one legacy active
power ow measurement on the branch connecting the two nodes. The factor
graph of this simple power system consists of the generated factor and variable
nodes, connected by full-line edges, as shown in the lower sub�gure of Fig. 4.2.

Vm 1= < (Vm 1) + j = (Vm 1)

V1= < (V1) + j = (V1)

Bus 1

I 12= < (I 12) + j = (I 12)

V2= < (V2) + j = (V2)

Bus 2

(a)

f < (V 1) f = (V 1)

< (V1) = (V1)

f < (I 12) f = (I 12)

< (V2) = (V2)

(b)

Figure 4.1: Sub�gure (a) shows a simple two-bus power system with two phasor mea-
surements from a PMU placed at the bus 1. Sub�gure (b) displays the corresponding
factor graph (full-line edges) and augmented factor graph (all edges). Variable nodes
are depicted as circles, and factor nodes are as squares.

4.1. Power System Factor Graph Augmentation 71

Vm 2= Vm 1ej � m 1

V1 = V1ej � 1

Bus 1

I 12= I 12ej � I 12 P12

V2 = V2ej � 2

Bus 2

Vm 2

(a)

f Vm 1 f � m 1

V1 � 1

f I 12
f � I 12

V2 � 2

f Vm 2

f P12

(b)

Figure 4.2: Sub�gure (a) shows a simple two-bus power system containing a PMU
at the bus 1, one legacy active power ow measurement, and one legacy voltage
magnitude measurement at the bus 2. Sub�gure (b) displays the corresponding factor
graph (full-line edges) and augmented factor graph (all edges). Variable nodes are
represented as circles, and factor nodes are depicted as squares, coloured di�erently
to distinguish between phasor and legacy measurements.

Unlike approaches that apply GNNs over the bus-branch power system model,
such as in [55, 57], the using GNNs over factor-graph-like topology allows for the
incorporation of various types and quantities of measurements on both power system
buses and branches. The ability to simulate the addition or removal of various
measurements can be easily achieved by adding or removing factor nodes from any
location in the graph. In contrast, using a GNN over the bus-branch power system
model would require allocating a single input vector to each bus that includes all
potential measurement data for that bus and its neighbouring branches. This can
cause problems, such as having to �ll elements in the input vector with zeros when
not all possible measurements are available, and making the output sensitive to the
order of measurements in the input vector. This can make it di�cult to accurately
model the system and generate reliable results.

72 4. Graph Neural Network-based State Estimation

Augmenting the factor graph topology by connecting the variable nodes in the 2-hop
neighbourhood signi�cantly improves the model's prediction quality in unobservable
scenarios. This is because the graph should remain connected even when we remove
factor nodes to simulate measurement loss. This will allow the messages to be still
propagated in the wholeK -hop neighbourhood of the variable node. In other words,
a factor node corresponding to a branch current measurement can be removed while
still preserving the physical connection between the power system buses. This requires
an additional set of trainable parameters for the variable-to-variable message function.
Although the augmented factor graph displayed with both full and dashed lines in
Figs. 4.1 and 4.2 is not a factor graph because it is no longer bipartite, we will still
refer to the nodes as factor and variable nodes for simplicity.

To achieve better representation of node's neighbourhood structure, we perform
variable node feature augmentation using binary index encoding. Since variable nodes
have no additional input features, this encoding allows the GNN to better capture the
relationships between nodes. Compared to one-hot encoding used in [30], binary index
encoding signi�cantly reduces the number of input neurons and trainable parameters,
as well as training and inference time.

4.2 Proposed GNN Architecture
Since the proposed GNN operates on a heterogeneous graph, we use two di�erent
types of GNN layers: one for aggregation in factor nodes, and one for variable nodes.
These layers, denoted asLayerf (�j � Layer f

) : Rdeg(f) �s 7! Rs and Layerv (�j � Layer v
) :

Rdeg(v) �s 7! Rs, have their own sets of trainable parameters� Layer f
and � Layer v

,
allowing their message, aggregation, and update functions to be learned separately.
Additionally, we use di�erent sets of trainable parameters for variable-to-variable

and factor-to-variable node messages,Messagef! v (�j � Messagef! v
) : R2s 7! Ru and

Messagev! v (�j � Messagev! v
) : R2s 7! Ru , in the Layerv (�j � Layer v

) layer. In both GNN
layers, we use two-layer feed-forward neural networks as message functions, single layer
neural networks as update functions and the attention mechanism in the aggregation
function. Furthermore, we apply a two-layer neural network Pred(�j � Pred) : Rs 7! R
to the �nal node embeddings hK of variable nodes only, to create state variable
predictions xpred . For factor and variable nodes with indicesf and v, neighbourhood
aggregation and state variable prediction can be described as:

hv
k = Layer v (f h i

k � 1ji 2 N v gj� Layer v
)

h f
k = Layer f (f h i

k � 1ji 2 N f gj� Layer f
)

xv
pred = Pred(hv

K j� Pred)

k 2 f 1; : : : ; K g;

(4.1)

4.2. Proposed GNN Architecture 73

where Nv and N f denote the 1-hop neighbourhoods of the nodesv and f . All the
trainable parameters � of the GNN are updated by applying gradient descent, using
backpropagation, to a loss function calculated over a mini-batch of graphs. This loss
function is the mean-squared di�erence between the predicted state variables and
their corresponding ground-truth values:

L (�) =
1

2nB

2nBX

i =1

(x i
pred � x i

label)2

� = f � Layer v
[� Layer f

[� Pred g

� Layer v
= f � Messagef! v

[� Messagev! v
[� Aggregate v

[� Update v
g

� Layer f
= f � Messagev! f

[� Aggregate f
[� Update f

g;

(4.2)

where the total number of variable nodes in a graph is 2n, and the number of graphs
in the mini-batch is B . In this work, we chose the loss function for training the
GNN based on the fundamental SE problem, where state variables are obtained from
available measurement information. However, if there is a requirement to include
additional constraints in the SE calculation, it is possible to achieve this by adding
new terms to the loss function de�ned in (4.2). For example, the loss function can
be augmented with the power balance error at each bus where the constraints are
imposed, in addition to minimizing the prediction error from the labels. A similar
approach has been proposed in [54], where the power ow problem is solved using GNN
by minimizing the power balance errors at each bus. Adding additional constraints
(e.g., zero injection constraints) to the GNN SE loss function can improve the SE
results, especially in distributed power systems with limited measurement coverage.

Fig. 4.3 shows the high-level computational graph for the output of a variable
node from the augmented factor graph given in Fig. 4.1. For simplicity, only one
unrolling of the neighbourhood aggregation is shown, as well as only the details of
the parameters � Layer v

.

4.2.1 Computational Complexity and Distributed Inference
Because the node degree in the power system graph does not increase with the total
number of nodes, the same is true for the node degrees in the augmented factor graph.
This means that the inference time per variable node remains constant, as it only
requires information from the node's K -hop neighbourhood, whose size also does
not increase with the total number of nodes. This implies that the computational
complexity of inferring all state variables is O(n). To avoid the over-smoothing
problem in GNNs [134], a small value is assigned toK , thus not a�ecting the overall

74 4. Graph Neural Network-based State Estimation

Layerf

Layerv

h f
K � 1

hv2
K � 1

hv
K

Layerv

PredLoss

:::

:::

:::

:::

output

label

(a)

Messagef! v

Messagev! v GAT v Updatevhv2
K � 1; hv

K � 1

h f
K � 1; hv

K � 1

:::

::: hv
K

hv
K � 1

(b)

Figure 4.3: Sub�gure (a) shows a high-level computational graph that starts with the
loss function for the output of a variable nodev. Sub�gure (b) depicts the detailed
structure of a single GNN Layerv . Functions with trainable parameters are highlighted
in yellow.

computational complexity of the inference.

To make the best use of the proposed approach for large-scale power systems, the
inference should be performed in a computationally and geographically distributed
manner. This is necessary because the communication delays between the PMUs and
the central processing unit can hinder the full utilization of the PMUs' high sampling
rates. The distributed implementation is possible as long as all the measurements
within a node's K -hop neighbourhood in the augmented factor graph are fed into the
computational module that generates the predictions. For any arbitrary K , the GNN
inference method only requires measurements that are physically located within the
dK=2e-hop neighbourhood of the power system bus.

4.3 Numerical results
In this section, we conduct comprehensive numerical tests to evaluate the e�ectiveness
of proposed augmented factor graph-based GNN approaches for linear and nonlinear
SE problems. We used the IGNNITION framework [151] for building and utilizing
GNN models, with the hyperparameters presented in Table 4.1, the �rst three of

4.3. Numerical results 75

Table 4.1: List of GNN hyperparameters.

Hyperparameters Values
Node embedding sizes 64
Learning rate 4 � 10� 4

Minibatch size B 32
Number of GNN layers K 4
Activation functions ReLU
Gradient clipping value 0:5
Optimizer Adam
Batch normalization type Mean

which were obtained with the grid search hyperparameter optimization using the
Tune tool [152]. All the results presented in this section are normalized using the
corresponding nominal voltages in the test power systems and a base power of 100
MVA.

4.3.1 Linear State Estimation
To evaluate the proposed GNN-based linear SE, we create various scenarios using
the IEEE 30-bus system, the IEEE 300-bus system, and the ACTIVSg 2000-bus
system [153], on which the GNN model is trained and tested. Training, validation,
and test sets are obtained using WLS solutions of the system described in (2.9) to
label various samples of input measurements. Measurements are obtained by adding
Gaussian noise to the exact power ow solutions, with each calculation performed using
a di�erent, randomly sampled load pro�le to capture a wide range of power system
states. Due to the strong interpolation and extrapolation abilities of GNNs [154], our
method of randomly sampling from a wide diversity of loads for training examples is
e�ective for generalizing the GNN algorithm for state estimation under varying load
conditions. GNN models are tested in three di�erent situations: i) optimal number of
PMUs (minimal measurement redundancy, for which the WLS SE o�ers a solution);
ii) underdetermined scenarios; iii) scenarios with maximal measurement redundancy.
We also compare the proposed approach with more conventional deep neural network
(DNN)-based SE algorithms and assess its scalability, sample e�ciency, and robustness
to outliers.

Power System With Optimally Placed PMUs

In this subsection, we conduct a series of experiments on the IEEE 30-bus power
system, using measurement variances of 10� 5, 10� 3, and 10� 1 for the creation of
the training, validation, and test sets. The number and positions of PMUs are �xed
and determined using the optimal PMU placement algorithm [155], which �nds the
smallest set of PMUs that make the system observable. This algorithm has resulted

76 4. Graph Neural Network-based State Estimation

in a total of 10 PMUs and 50 measurement phasors, 10 of which are voltage phasors
and the rest are current phasors.

Table 4.2 shows the 100-sample test set results for all the experiments on the IEEE
30-bus power system, in the form of average mean square errors (MSEs) between
the GNN predictions and the test set labels. These results are compared with the
average MSE between the labels and the approximate WLS SE solutions de�ned in
Sec. 2.2. The results show that for systems with optimally placed PMUs and low
measurement variances, GNN predictions have very small deviations from the exact
WLS SE, although they are outperformed by the approximate WLS SE. For higher
measurement variances, GNN has a lower estimation error than the approximate WLS
SE, while also having lower computational complexity in all cases.

Table 4.2: Comparison of GNN and approximative SE test set MSEs for various
measurement variances.

Variances GNN Approx. SE
10� 5 2:48� 10� 6 1:87� 10� 8

10� 3 8:21� 10� 6 2:25� 10� 6

10� 1 7:47� 10� 4 2:27� 10� 3

In Fig. 4.4, we present the predictions and labels for each of the variable nodes for
one of the samples from the test set created with measurement variance 10� 5. The
results for the real and imaginary parts of the complex node voltages (shown in the
upper and lower plots, respectively) indicate that GNNs can be used as accurate SE
approximations.

Performance in a Partially Observable Scenario

To further assess the robustness of the proposed model, we test it by excluding several
measurement phasors from the previously used test samples with optimally placed
PMUs, resulting in an underdetermined system of equations that describes the SE
problem. These scenarios are relevant even at higher levels of system redundancy,
where partial grid observability can occur due to multiple component (PMU and
communication link) failures caused by natural disasters or cyberattacks. To exclude a
measurement phasor from the test sample, we remove its real and imaginary parts from
the input data, which is equivalent to removing two factor nodes from the augmented
factor graph. We use the previously used 100-sample test set to create a new test
set by removing selected measurement phasors from each sample while preserving
the same labels obtained as SE solutions of the system with all the measurements
present. As an example, we consider a scenario where two neighbouring PMUs fail
to deliver measurements to the state estimator. In this case, all eight measurement

4.3. Numerical results 77

0.95

1

1.05
<

(V
i)

[p
.u

.]
Predictions
Labels

0 5 10 15 20 25 30

-0.3

-0.2

-0.1

0

Bus index (i)

=
(V

i)
[p

.u
.]

Figure 4.4: GNN predictions and labels for one test example with optimally placed
PMUs.

phasors associated with the removed PMUs are excluded from the GNN inputs. The
average MSE for the test set of 100 samples created by removing these measurements
from the original test set used in this section is 3:45 � 10� 3. The predictions and
labels for a single test set sample, per variable node index, are shown in Figure 4.5.
The �gure includes vertical black dashed lines that indicate the indices of unobserved
buses 17 and 18. These buses have higher prediction errors due to the lack of input
measurement data. Neighbouring buses that are not unobserved, but are a�ected by
measurement loss, are indicated with vertical green lines and have lower prediction
errors. It can be observed that signi�cant deviations from the labels occur for some of
the neighbouring buses, while the GNN predictions are a decent �t for the remaining
node labels. This demonstrates the proposed model's ability to sustain error in the
neighbourhood of the malfunctioning PMU, as well as its robustness in scenarios that
cannot be solved using standard WLS approaches. A possible explanation for the
higher susceptibility to errors in the imaginary parts of the voltage is related to their
variance in the training set. The variance of real parts of voltages is 6:6 � 10� 4, while
the variance of imaginary parts of voltages is 4:8 � 10� 3. This indicates that the
imaginary parts of voltages have a higher variability and may therefore be more prone
to errors in the prediction model.

78 4. Graph Neural Network-based State Estimation

0.95

1

1.05

<
(V

i)
[p

.u
.]

Predictions
Labels
Unobserved buses
A�ected buses

0 5 10 15 20 25 30

-0.3

-0.2

-0.1

0

Bus index (i)

=
(V

i)
[p

.u
.]

Figure 4.5: GNN predictions and labels for one test example with phasors from two
neighbouring PMUs removed. Vertical black lines indicate unobserved buses, while
green lines represent buses that are a�ected by the loss of measurement data.

Comparison With the Feed-Forward Deep Neural Network-Based State
Estimation

The main goal of this subsection is to compare the performance of the proposed GNN-
based SE approach with a state-of-the-art deep learning-based approach on a variety
of power systems. We used a 6-layer feed-forward DNN model, proposed by [48], with
the same number of neurons in each layer as the number of input measurement scalars.
This DNN architecture has similar performance as the best architecture proposed in
the same work obtained by unrolling the iterative nonlinear SE solver, which cannot
be applied directly to the linear SE problem we are considering.

We tested both approaches on the IEEE 30-bus, IEEE 118-bus, IEEE 300-bus,
and the ACTIVSg 2000-bus power systems [153], with measurement variances set to
10� 5. In contrast to previous examples, we used maximal measurement redundancies,
ranging from 3:73 to 4:21. We provide a comparison of the number of trainable
parameters for both GNN and DNN models for various power system sizes, which is
often left out in similar analyses. To compare sample e�ciencies between the GNN
and DNN approaches, separate models for each of the test power systems were trained
using smaller and larger datasets, containing 10 and 10000 samples. The results

4.3. Numerical results 79

Table 4.3: A comparison of the performance of GNN and DNN models trained on
di�erent training set sizes, as measured by test set MSE and the number of trainable
parameters.

IEEE 30 IEEE 300 ACTIVSg 2000
Small training set GNN 4:73 � 10� 6 5:94 � 10� 5 5:08 � 10� 4

Small training set DNN 9:29� 10� 4 5:92� 10� 3 4:77� 10� 3

Large training set GNN 2:48 � 10� 6 6:62 � 10� 6 3:91 � 10� 4

Large training set DNN 6:28� 10� 6 2:91� 10� 3 2:61� 10� 3

GNN parameters 4:99 � 104 4:99 � 104 4:99 � 104

DNN parameters 3:16� 105 3:15� 107 1:77� 109

for all test power systems are presented in Table 4.3. The �rst four rows show the
100-sample test set MSE for GNN and DNN models trained using smaller and larger
datasets. The last two rows of the table show the number of trainable parameters for
both approaches, depending on the power system size.

The results show that the GNN approaches result in higher overall accuracy
compared to the corresponding DNN approaches for all the power system and training
set sizes. Furthermore, the number of trainable parameters (i.e., the model size) is
constant1 and relatively low for GNN models, because the number of neurons in a layer
is constant regardless of power system size. In contrast, the number of parameters
grows quadratically for DNN models, because the number of neurons in a layer grows
linearly with the input size, resulting in quadratic growth of the trainable parameter
matrices. When expressed in computer memory units, the GNN models we used had
a signi�cantly smaller memory footprint, taking up only 0.19 MB. In comparison, the
DNN model used for the ACTIVSg 2000 power system required a much larger 6.58
GB of memory, resulting in more challenging training and inference processes. The
high number of trainable parameters required by DNN models increases their storage
requirements, increases the dimensionality of the training process, and directly a�ects
the inference speed and computational complexity. Since the proposed GNNs have a
linear computational complexity in the prediction process, one training iteration of
GNN also has a linear computational complexity. In contrast, one training iteration of
DNN-based SE would have at least quadratic computational complexity per training
iteration, making the overall training process signi�cantly slower. To recall, the reason

1More precisely, the number of trainable parameters in the proposed GNN model remains nearly
constant as the number of buses in the power system increases. This e�ect would only be noticeable
for larger power systems. The only exception is the number of input neurons for the binary index
encoding of the variable nodes, which grows logarithmically with the number of variable nodes.
However, this increase is insigni�cant compared to the total number of GNN parameters.

80 4. Graph Neural Network-based State Estimation

why the GNN has a constant number of parameters and generates predictions with
linear computational complexity is that it takes measurements from a limited K -hop
neighbourhood for every node, regardless of the size of the power system.

The results indicate that the quality of GNN and DNN model predictions improves
with more training data. However, compared to GNNs, DNN models performed
signi�cantly worse on smaller datasets, suggesting that they are less sample e�cient
and more prone to over�tting due to their larger number of hyperparameters. While
we used randomly generated training sets in the experiments, narrowing the learning
space by selecting training samples based on historical load consumption data could
potentially result in even better performance with small datasets.

The use of GNNs for power systems analysis has several additional advantages
over using DNNs. One advantage is exibility: spatial GNNs can produce results
even if the input power system topology changes, whereas conventional DNN methods
are trained and tested on the same topology of the power system. For example, if
some measurements are removed from the inputs (as discussed in Subsection 4.3.1),
a DNN would require retraining from scratch with the new topology. GNNs also
have some theoretical advantages over other deep learning methods in that they are
permutation invariant and equivariant. This means that the output of the GNN is
the same regardless of the order in which the inputs are presented, and that the GNN
output changes in a predictable and consistent way when the inputs are transformed.
This property is useful for problems like SE, where the order of the nodes and edges
is not important and the system can undergo topological changes. In addition, GNNs
incorporate topology information into the learning process by design, whereas many
other deep learning methods in power systems use node-level data as inputs while
ignoring connectivity information. Finally, unlike most deep learning methods, spatial
GNNs can be distributed for evaluation among edge devices.

Similar conclusions can be drawn when comparing GNNs with recurrent and
convolutional neural networks for similar power systems' analysis algorithms, as
they also require information from the entire power system as input. Overall, this
comparison highlights the potential advantages of using GNNs for power system
modelling and analysis.

Robustness to Outliers

To assess how well the proposed model can handle outliers in input data, we carried
out experiments on two separate test sets, each containing samples with di�erent
degrees of outlier intensity. The experiments followed the setup described in Sec.
4.3.1, with the test samples initially generated using a measurement variance of 10� 5.
We replaced one of the existing measurements in each test sample with a randomly

4.3. Numerical results 81

generated value, using a variance of either� 1 = 1 :6 or � 2 = 1 :6 � 102. WLS SE
solutions without outliers in the inputs are used as ground-truth values. The results,
shown in Table 4.4, indicate the performance of four di�erent approaches, as well as
the WLS SE and the approximative WLS SE algorithm on the same test sets.

The �rst approach, which uses the already trained model from Sec. 4.3.1, results in
the highest prediction error on tests set with outliers. The primary factor contributing
to the MSE, particularly in the test set with outliers generated using larger variances,
are signi�cant mismatches from the ground-truth values in the K -hop neighbourhood
of the outlier. This occurs because the ReLU activation function does not constrain
its inputs during neighbourhood aggregation. To address this problem, we propose
a second approach where we train a GNN model with the same architecture as the
previous one, but which uses the tanh (hyperbolic tangent) activation function instead
of ReLU. As presented in Table 4.4, this approach results in a signi�cantly lower test
set MSE for outliers generated using larger variances compared to the proposed GNN
with ReLU activations, WLS SE, and the approximative WLS SE. The saturation
e�ect of tanh prevents high values stemming from outliers from propagating through
the GNN, but also reduces the training quality due to the vanishing gradient problem.
Speci�cally, all the experiments we conducted under the same conditions for GNN
with tanh activations required more epochs to converge to a solution with lower
prediction quality compared to the GNN with ReLU activations. As a third approach,
we propose training a GNN model with ReLU activations on a dataset in which half
of the samples contain outliers, which are generated in the same manner as the test
samples used in this subsection. This approach turned out to be the most e�ective for
both test cases because the GNN learns to neutralize the e�ect of unexpected inputs
from the dataset examples while maintaining accurate predictions in the absence of
outliers in the input data. To con�rm the validity of this methodology, we trained the
DNN introduced in the subsection 4.3.1 using the same datasets containing outliers.
DNN was able to neutralize the e�ect of unexpected inputs because the input power
system is small, resulting in the second-best approach in terms of robustness to
outliers, trailing the GNN trained on the dataset containing outliers.

In summary, as expected, all methods produced better results for the test set
containing outliers with lower variances, while the GNN trained with outliers demon-
strated the best performance for both higher and lower variance outliers. We note
that these are only preliminary e�orts to make the GNN model robust to outliers, and
that future research could combine ideas from standard bad data processing methods
in SE with the proposed GNN approach.

82 4. Graph Neural Network-based State Estimation

Table 4.4: A comparison of the results of various approaches for two test sets with
di�erent degrees of outlier intensity.

Approach
Test set MSE

� 1 = 1:6
Test set MSE
� 2 = 1:6 � 102

GNN 9:48� 10� 3 1:60� 103

GNN with tanh 6 :87� 10� 3 2:39� 10� 2

GNN trained with outliers 4:44 � 10� 6 7:99 � 10� 6

DNN trained with outliers 1 :06� 10� 5 4:21� 10� 5

WLS SE 1:43� 10� 3 1:41� 10� 1

Approximative WLS SE 1:39� 10� 3 1:35� 10� 1

4.3.2 Scalability and Sample E�ciency Analysis of Linear State
Estimation

In the previous subsection, the GNN model for linear SE demonstrated good ap-
proximation capabilities under normal operating conditions and performed well in
unobservable and underdetermined scenarios. This subsection extends the previous
one in the following ways:

� We conduct an empirical analysis to investigate how the same GNN architecture
could be used for power systems of various sizes. We use the IEEE 30-bus system,
the IEEE 118-bus system, the IEEE 300-bus system, and the ACTIVSg 2000-bus
system [153], with measurements placed so that measurement redundancy is
maximal. Our main assumption is that the local properties of the graphs in these
systems are similar, leading to local neighbourhoods with similar structures
which can be represented using the same embedding space size and the same
number of GNN layers.

� To evaluate the sample e�ciency of the GNN model, we run multiple training
experiments on di�erent sizes of training sets. Additionally, we assess the
scalability of the model by training it on various power system sizes and evalu-
ating its accuracy, training convergence properties, inference time, and memory
requirements. For this purpose we create training sets containing 10, 100, 1000,
and 10000 samples for each of the mentioned power systems, while the GNN
models are tested on sets comprising 100 samples.

� As a side contribution, the proposed GNN model is tested in scenarios with high
measurement variances, using which we simulate phasor misalignments due to
communication delays [156]. While this is usually simulated by using variance
values that increase over time, as an extreme scenario we �x the measurement
variances to a high value of 5� 10� 1.

4.3. Numerical results 83

30 118 300 2000
0
2
4
6
8

10
12
14

Number of buses

P
ow

er
sy

st
em

gr
ap

h
pr

op
er

tie
s

Redundancy
Avg. Degree
Avg. Path Length
Avg. Cluster Coe�.

Figure 4.6: Properties of augmented factor graphs along with the system's measure-
ment redundancy for di�erent test power systems, labelled with their corresponding
number of buses.

It is important to note that the conclusions that will be made apply to GNN
based-nonlinear SE as well.

Properties of Power System Augmented Factor Graphs

For all four test power systems, we create augmented factor graphs using the method-
ology described in Section 4.2. Fig. 4.6 illustrates how the properties of the augmented
factor graphs, such as average node degree, average path length, average clustering
coe�cient, along with the system's maximal measurement redundancy, vary across
di�erent test power systems.

The average path length is a property that characterizes the global graph structure,
and it tends to increase as the size of the system grows. However, as a design property
of high-voltage networks, the other graph properties such as the average node degree,
average clustering coe�cient, as well as maximal measurement redundancy do not
exhibit a clear trend of change with respect to the size of the power system. This
suggests that the structures of local,K -hop neighbourhoods within the graph are
similar across di�erent power systems, and that they contain similar factor-to-variable
node ratio. Consequently, it is reasonable to use the same GNN architecture (most
importantly, the number of GNN layers and the node embedding size) for all test
power systems, regardless of their size. In this way, the proposed model achieves
scalability, as it applies the same set of operations to the local,K -hop neighbourhoods
of augmented factor graphs of varying sizes without having to adapt to each individual
case.

84 4. Graph Neural Network-based State Estimation

1 30 60 90 120

150

0

0.05

0.1

Epoch

V
al

id
at

io
n

lo
ss

10 100
1000 10000

Figure 4.7: Validation losses for trainings on four di�erent training set sizes.

Training Convergence Analysis

First, we analyse the training process for the IEEE 30-bus system with four di�erent
sizes of the training set. As mentioned in 4.2, the training loss is a measure of the
error between the predictions and the ground-truth values for data samples used in
the training process. The validation loss, on the other hand, is a measure of the error
between the predictions and the ground-truth values on a separate validation set. In
this analysis, we used a validation set of 100 samples.

The training losses for all the training processes converged smoothly, so we do not
plot them for the sake of clarity. Figure 4.7 shows the validation losses for 150 epochs
of training on four di�erent training sets. For smaller training sets, the validation
loss decreases initially but then begins to increase, which is a sign of over�tting. In
these cases, a common practice in machine learning is to select the model with the
lowest validation loss value. As it will be shown in 4.3.2, the separate test set results
for models created using small training sets are still satisfactory. As the number
of samples in the training set increases, the training process becomes more stable.
This is because the model has more data to learn from and is therefore less prone to
over�tting.

Next, in Table 4.5, we present the training results for the other power systems
and training sets of various sizes. The numbers in the table represent the number of
epochs after which either the validation loss stopped changing or began to increase.
Similarly to the experiments on the IEEE 30-bus system, the trainings on smaller
training sets exhibited over�tting, while others converged smoothly. For the former,
the number in the table indicates the epoch at which the validation loss reached its
minimum and stopped improving. For the latter, the number in the table represents
the epoch when there were �ve consecutive validation loss changes less than 10� 5.

4.3. Numerical results 85

Table 4.5: Epoch until validation loss minimum for various power systems and training
set sizes.

Power system IEEE 118 IEEE 300 ACTIVSg 2000
10 samples 61 400 166

100 samples 38 84 200
1000 samples 24 82 49

10000 samples 12 30 15

Increasing the size of the training set generally results in a lower number of epochs
until the validation loss reaches its minimum. However, the epochs until the validation
loss reaches its minimum vary signi�cantly between the di�erent power systems. This
could be due to di�erences in the complexity of the systems or the quality of the data
used for training.

Accuracy Assessment

Fig. 4.8 reports the MSEs between the predictions and the ground-truth values on
100-sample sized test sets for all trained models and the approximate WLS SE. These
results indicate that even the GNN models trained on small datasets outperform the
approximate WLS SE, except for the models trained on the IEEE 30-bus system
with 10 and 100 samples. These results suggest that the quality of the GNN model's
predictions and the generalization capabilities improve as the amount of training
data increases, and the models with the best results (highlighted in bold) have
signi�cantly smaller MSEs compared to the approximate WLS SE. We assume that
using carefully selected training samples based on historical load consumption data
instead of randomly generated ones could potentially lead to even better results with
small datasets.

Inference Time

The plot in Fig. 4.9 shows the ratio of execution times between WLS SE and GNN SE
inference as a function of the number of buses in the system. These times are measured
on a test set of 100 samples. The di�erence in computational complexity between
GNN, with its linear complexity, and WLS, with more than quadratic complexity,
becomes more apparent on the plot as the number of buses increases. From the results,
it is clear that GNN signi�cantly outperforms WLS in terms of inference time on
larger power systems.

Unlike with GNNs, the hardware implementation of matrix operations in WLS is
a well-established �eld. However, the hardware implementation of GNNs is an active
area of research, and it is possible that inference times may improve even further in
the future [157].

86 4. Graph Neural Network-based State Estimation

Approx. SE (baseline) GNN SE

10 102 103 104
0

0:02

0:04

Number of training samples

Te
st

se
t

M
S

E

(a) IEEE 30

10 102 103 104
0

0:02

0:04

Number of training samples
Te

st
se

t
M

S
E

(b) IEEE 118

10 102 103 104
0

0:02

0:04

Number of training samples

Te
st

se
t

M
S

E

(c) IEEE 300

10 102 103 104
0

0:02

0:04

Number of training samples

Te
st

se
t

M
S

E

(d) ACTIVSg 2000

Figure 4.8: Test set results for various power systems and training set sizes.

30 118 300 2000

1
2

10

64

Number of buses

In
fe

re
nc

e
tim

e
ra

tio

Figure 4.9: A ratio of the execution times for WLS SE and GNN SE inference on a
test set of 100 samples, as a function of the power system size.

4.3.3 Nonlinear State Estimation
Finally, in this subsection, we present the numerical results of the proposed approach
for the nonlinear SE problem formulation. We describe the GNN model's training

4.3. Numerical results 87

process and test the trained model on various examples to validate its accuracy,
and its robustness under measurement data loss due to communication failure and
cyberattacks in the form of malicious data injections.

Demonstration of prediction accuracy

We conducted separate training experiments for IEEE 30 and IEEE 118-bus test
cases, for which we generated a training set containing 10000 samples and validation
and test sets containing 100 samples each. Similarly to the linear SE approach, each
sample is created by randomly sampling the active and reactive power injections and
solving the power ow problem. Measurement values are created by adding Gaussian
noise to the power ow solutions, and the nonlinear SE is solved by GN to label the
input measurement set in each sample. We used a Gaussian noise variance of 10� 5

for phasor measurements, 10� 3 for bus voltage magnitude and active and reactive
power ow legacy measurements, and 10� 1 for active and reactive injection legacy
measurements.

For the IEEE 30-bus test case, we placed 100 legacy measurements and three PMUs
(i.e., three bus voltage phasors and eight branch current phasors) in each sample,
resulting in 2:03 measurement redundancy. The trained model performed well on
the test set, with the average test set mean square error of 1:233� 10� 5 between
predictions and ground truth labels; the average test set MSE for voltage magnitudes
of 5:221� 10� 6; the average test set MSE for voltage angles of 1:944� 10� 5. Fig. 4.10
shows the average test MSE per each bus, where the upper plot corresponds to voltage
magnitudes and the lower one to voltage angles.

For the IEEE 118-bus test case, we placed 500 legacy measurements and seven PMUs
(i.e., seven bus voltage phasors and 26 branch current phasors) in each sample, resulting
in 2:39 measurement redundancy. The average test set mean square error equals
2:038� 10� 5, with the average test set MSE for voltage magnitudes of 1:572� 10� 5

and the average test set MSE for voltage angles of 2:505� 10� 5. Based on the insights
from both experiments, we can conclude that the proposed GNN model is a good
approximator of the nonlinear SE solved by GN.

Robustness to Loss of Input Data

Next, we observe predictions of the GNN models previously trained on IEEE 30 and
IEEE 118-bus test data when exposed to the loss of input data caused by communica-
tion failures or measurement device malfunctions. We simulate the described cases by
randomly removing a percentage of all input measurements, ranging from 0% to 95%
with a step of 5%. We create 20 test sets per IEEE test case, each containing samples
with the same percentage of excluded measurements, and show the average test set
MSEs in Fig. 4.11. Proposed GNN models yields predictions in all examples, with an

88 4. Graph Neural Network-based State Estimation

10� 12

10� 9

10� 6

10� 3
M

S
E

of
V

i

1 5 10 15 20 25 30
10� 12

10� 9

10� 6

10� 3

Bus Index i

M
S

E
of

� i

Figure 4.10: The test set MSE between the predictions and the labels per each bus
for voltage magnitudes and angles in the IEEE 30-bus test case.

expected growing trend in MSE as the number of excluded measurements increases.
In comparison, the GN method could not provide a solution for many examples due
to underdetermined and ill-conditioned systems of nonlinear SE equations. A possible
explanation for signi�cantly lower MSEs for the IEEE 118-test case in these scenarios
is that it contains a greater variety of subgraphs for GNN training. To investigate
the GNN predictions further, we create a test set by excluding �ve measurements
connected to the two directly connected power system buses from each test sample,
resulting in the average test set MSE of 1:488� 10� 4. Fig. 4.12 shows the results
for one test sample, where vertical dashed lines correspond to the buses in the 1-hop
neighbourhood of the excluded measurements. We can observe that the deviation from
the ground truth values manifests mainly in the vicinity of the excluded measurements,
not a�ecting the prediction accuracy in the rest of the power system.

Behaviour Under Malicious Data Injections

We examine the robustness of the proposed GNN model to malicious data injection
type of cyberattacks by randomly altering the values of �ve neighbouring measurements
in each test sample. We compare the proposed GNN model's predictions with the
solutions of the GN method and the ground truth values obtained using the GN
method applied on the uncorrupted measurement data. The GNN model demonstrated
an order of magnitude better performance than the GN method, with the average test
set MSEs 1:281� 10� 4 and 1:034� 10� 3, respectively. Fig. 4.13 depicts the comparison

4.4. Summary and future work 89

0 20 40 60 80 100

10� 5

10� 4

10� 3

10� 2

10� 1

100

Percentage of Excluded Measurements

A
ve

ra
ge

M
S

E

IEEE 30
IEEE 118

Figure 4.11: Average MSEs of test sets created by randomly excluding measurements.

0.97

1

1.03

1.06

1.09

V
ol

ta
ge

M
ag

ni
tu

de
V

i

Predictions
Labels

0 5 10 15 20 25 30

-0.4

-0.3

-0.2

-0.1

0

Bus Index i

V
ol

ta
ge

A
ng

le
� i

Figure 4.12: GNN predictions and labels for one test example, with all measurements
connected to two neighbouring buses removed. Dashed lines indicate the buses in the
1-hop neighbourhood of the excluded measurements.

of the state variable predictions under corrupted input data for one example from the
test set.

4.4 Summary and future work
In this chapter, we introduced methods for linear and nonlinear SE based on the
GNN model specialized for operating on augmented power system factor graphs. The
method avoids the problems that traditional SE solvers face, such as sensitivity to
ill-conditioned cases, numerical instabilities and convergence time depending on the

90 4. Graph Neural Network-based State Estimation

0.96

1

1.04

1.08

1.12
V

ol
ta

ge
M

ag
ni

tu
de

V
i

Predictions
GN based SE
Ground truth

0 5 10 15 20 25 30

-0.4

-0.3

-0.2

-0.1

0

Bus Index i

V
ol

ta
ge

A
ng

le
� i

Figure 4.13: GNN predictions and GN based SE solutions for one test example with
corrupted input data.

state variable initialization. By testing the GNN on power systems of various sizes, we
observed the prediction accuracy in the normal operating states of the power system
and the sensitivity when encountering false data injection cyberattacks and input
data loss due to communication irregularities.

The results showed that the proposed approach provides good results for large
power systems, and is an e�ective approximation method for traditional SE solutions
even with a relatively small number of training samples, indicating its sample e�ciency.
The GNN model used in this approach is also fast and maintains constant memory
usage, regardless of the size of the power system. More speci�cally, the computational
complexity of the proposed GNN model regarding the number of state variables is linear
during the inference phase, and it is possible to distribute the inference computation
across multiple processing units. Given these characteristics, the approach is worthy
of further consideration for real-world applications.

Since the proposed GNN model generates predictions even for underdetermined
systems of equations describing the SE problem, it could be applied to highly unob-
servable distribution power systems. Another application of the proposed model for
nonlinear SE could be the fast and accurate initialization of the traditional nonlinear
SE solver, resulting in a hybrid approach that is both model-based and data-driven.

4.4. Summary and future work 91

While our work shows promising results, an important limitation is the inability
to quantify the uncertainty of the GNN predictions. However, we are encouraged
by ongoing research e�orts to address this issue, as quantifying uncertainty for
GNN regression remains an open problem. For instance, [158] proposes a Bayesian
framework that uses assumed density �ltering to quantify aleatoric uncertainty and
Monte Carlo dropout to capture epistemic uncertainty in GNN predictions. In light
of this, we believe implementing a similar approach represents a promising future
research direction.

Part II

Dynamic Distribution
Network Recon�guration and

Reinforcement Learning

Chapter 5

Dynamic Distribution Network
Recon�guration

In this chapter, we introduce the foundations of static and dynamic distribution
network recon�guration, stating their importance in distribution management software.
Furthermore, we provide a mathematical formulation of the dynamic distribution
network recon�guration problem, which will be transformed into the equivalent
reinforcement learning formulation in Chapter 71.

5.1 Distribution Network Recon�guration
The electrical distribution network is the part of the electrical power system which
delivers electric power from the transmission system to individual consumers. Tradi-
tional distribution networks consist of passive elements, with power ows directed
only from the network supply point to the customers. Due to growing power demand,
modern distribution networks exhibit changes such as energy deregulation, increased
installation of the distributed generation coming mainly from renewable energy re-
sources, and the deployment of controllable loads. These changes bring numerous
challenges to the operation of modern distribution networks, such as bidirectional
power ows, increased system dynamics, transient instabilities, short-circuit conditions
supplied by multiple sources, overall operation ine�ciency in terms of increased power
losses, decreased reliability, etc.

To overcome these challenges and improve response time in unforeseen situations,
modern distribution networks increase the level of network automation by using
remotely controlled equipment and employing domain-speci�c software solutions such
as DMS. DMS, which is usually tightly coupled with the SCADA system, is used
for distribution network monitoring, analysis, optimization, and planning [159]. It
includes functionalities like network model management and topology processing, load

1Chapters 5, 6, and 7 introduce a new nomenclature.

96 5. Dynamic Distribution Network Recon�guration

ow, state estimation, short circuit analysis, relay protection-related functionalities,
Volt-VAR optimization, distributed energy resources monitoring and control, etc.

Distribution network recon�guration is one of the most important DMS function-
alities used for the optimization of distribution network operation. In general form,
DNR minimizes the objective function, which usually includes power loss and voltage
deviation, by changing the network topology using manipulations on the switching
devices [63]. During topology changes, it is necessary to satisfy multiple constraints,
such as not exceeding the bus voltage, the apparent power of the branch, and the
number of switching manipulation limits. Additional constraints related to the net-
work topology are those that enforce the radiality of the network and ensure that all
customer buses are connected to the supply point. Some of the reasons for enforcing
network radiality are lower short circuit currents and simpler relay protection setup
than in the distribution networks containing loops. Fig. 5.1 represents an example of
DNR on a simple 15-bus distribution network consisting of three feeders, with black
squares representing closed switches and white squares representing open switches.
The �gure displays two distribution network topologies, before and after the DNR,
both of which are radial and supply all customer buses.

In the scope of the DMS software, DNR functionality can have secondary goals such
as load balancing and Volt-VAR optimization [64], which are achieved by expanding
the DNR objective function. In emergency conditions, DNR can be used to isolate
the part of the distribution network where the fault occurred and restore supply to
the rest of the a�ected customers. In these cases, since all the customers can not be
supplied, DNR is used to minimize the number of the disconnected customers, or the
amount of energy not supplied. However, in this thesis, we will not consider these
emergency scenarios.

Static DNR is de�ned as DNR performed at a prede�ned time point, with �xed
load and generation values. In traditional distribution networks with low network
automation levels, where the customer load patterns change only seasonally, static
DNR was usually performed a few times a year. Due to increasing load and generation
dynamics, caused by controllable loads and renewable energy resources, a need for
more frequent and more exible DNR arises. Dynamic DNR optimizes the DNR
objective function over the speci�ed time interval by �nding the optimal time points
when DNR should be performed. DDNR is enabled by increased levels of network
automation, as frequent changes to the network topology cannot be performed quickly
in a manual way. In a usual formulation, the optimization interval is divided into time
intervals, in each of which a network topology change can be performed. However, since
switching manipulations have their own costs and can cause instabilities during the
topology changes, their number is usually also a subject of minimization, in addition

5.2. Mathematical Formulation of the DDNR Problem 97

(a) (b)

Figure 5.1: An example of distribution network before (sub�gure a) and after (sub�gure
b) the recon�guration.

to being limited in the optimization problem constraints. In other words, as the
switching costs can be larger than the network recon�guration bene�ts, DDNR solves
the trade-o� problem between �nding the optimal topology in each time interval and
performing less frequent network topology changes to reduce the number of switching
manipulations. Operation planning using DDNR can be performed on a daily or
even hourly bases; therefore, it is necessary to develop fast algorithms that produce
high-quality DDNR solutions.

5.2 Mathematical Formulation of the DDNR Prob-
lem

The mathematical model of DDNR, formulated as a mixed-integer nonlinear program-
ming problem like in [72,105] consists of a multi-objective function and constraints.
The multi-objective function de�ned as the total cost of active energy loss and manip-
ulation of switching devices is minimized, subject to the following constraints: active
and reactive power injection constraints, bus voltage constraints, branch capacity con-
straints, switching operation constraints, and a network radiality constraint. Decision
variables of the optimization problem consist of switch statuses in each of the time
intervals, which de�ne the distribution network topology in that time interval.

98 5. Dynamic Distribution Network Recon�guration

5.2.1 Objective Function
The DDNR problem is de�ned using the following multi-objective function:

min
x t

sw

TX

t =1

(CLoss T t
int P t

Loss + CSW s SW t): (5.1)

In (5.1), t 2 1: : : T denotes the index of a time interval, whereT is the total number
of time intervals and T t

int is the duration of a time interval in hours. The decision
variables of the optimization problem are the status of the switches per time interval,
where the status of the switchsw in the time interval t is de�ned as follows:

x t
sw =

(
1; if switch sw is closed in time interval t;

0; if switch sw is opened in time interval t.
(5.2)

CLoss is the cost of energy losses, in $ perkWh, P t
Loss denotes the active power losses

in kW , and CSW s is the cost in $ of the switching action for the sth switch. The
total cost of switching actions in the time interval t is calculated using the number of
switches that had their status changed:

SW t =
N swX

sw =1

yt
sw ; (5.3)

wheresw 2 1: : : Nsw denotes the switch index andNsw is the total number of switches
in the distribution network. yt

sw indicates the status change of a single switchsw in
time interval t:

yt
sw =

(
1; if the switch sw changed its status in time interval t;

0; otherwise.
(5.4)

The active and reactive powers of the branches in the time intervalt are de�ned as:

P t
b = gjk (V t

j)2 � V t
j V t

k [gjk cos(� t
j � � t

k) + bjk sin (� t
j � � t

k)];

Qt
b = � bjk (V t

j)2 + V t
j V t

k [bjk cos(� t
j � � t

k) � gjk sin (� t
j � � t

k)];
(5.5)

where b 2 1: : : Nb denotes the branch index,Nb is the total number of branches,
while j and k denote indices of buses at the ends of the branchb. V t

j and � t
j denote

the voltage magnitude and the phase angle at the busj in the time interval t, while
gjk and bjk represent elements of the nodal conductance and susceptance matrices,

5.2. Mathematical Formulation of the DDNR Problem 99

respectively. Active power losses in the time intervalt are de�ned as follows:

P t
Loss =

N bX

b=1

� t
bRb

(P t
b)2 + (Qt

b)2

(V t
j)2 ; (5.6)

where Rb denotes the resistance of the branch, and� t
b combines information about

the switch status and the existence of a switch on a branch:

� t
b =

(
1; if branch b does not have a switch;

x t
sw ; if branch b has the switch with index sw.

(5.7)

5.2.2 Constraints
The formulation of the DDNR problem considers multiple constraints listed below.

� Active and reactive injection constraints, de�ned by the bus power balances per
time interval, as in the classical load ow model [160]:

P t
j = V t

j

N nX

k=1

V t
k [gjk cos(� t

j � � t
k) + bjk sin (� t

j � � t
k)];

Qt
j = V t

j

N nX

k=1

V t
k [gjk sin (� t

j � � t
k) � bjk cos(� t

j � � t
k)];

j = 1 ; : : : ; Nn ;

(5.8)

where Nn represents the number of buses in the network. Active and reactive
power injections are equal to the di�erence between the corresponding load and
generation in bus j , and they are assumed constant during one time intervalt.

� Slack bus constraints, which specify the voltage magnitude and the phase angle
in the root bus (i.e., the supply point) of the distribution network:

V t
0 = V t

spec ;

� t
0 = 0 ;

(5.9)

where V t
spec represents the speci�ed slack bus voltage magnitude value at time

interval t. The slack bus provides an angular reference for all other buses and
balances the system's active and reactive power [160].

100 5. Dynamic Distribution Network Recon�guration

� Bus voltage constraints:
V min

j � V t
j � V max

j ;

j = 1 ; : : : ; Nn ;
(5.10)

where V min
j and V max

j denote the minimum and maximum voltage magnitude
allowed at the bus j .

� Branch capacity constraints:

(P t
b)2 + (Qt

b)2 � (Smax
b)2;

b = 1 ; : : : ; Nb;
(5.11)

where Smax
b represents the maximum apparent power allowed in thebth branch.

� Switching operation constraints:

TX

t =1

jx t
sw � x t � 1

sw j � N max
sw ;

sw = 1 ; : : : ; Nsw ;

(5.12)

where N max
sw represents the maximum number of allowed operations for the

swth switch during the optimization time interval, which depends on the type
and the lifetime of the switch. x0

sw are the initial switch statuses, and they
do not belong to the decision variables. Constraints containing absolute value
operators can not be used directly in classical mixed-integer algorithms, but
require reformulation by introducing additional variables. In the proposed RL
approach, we will consider these constraints directly by adding a penalty term
to the reward function, resulting in a simpler formulation of the problem.

� Network radiality constraint, which assures there are no loops in the distribution
network:

N bX

b=1

� t
b = Nn � 1: (5.13)

The DDNR problem formulated in this way is NP-hard, since it has 2N sw T possible
solutions, and it can not be solved in polynomial time. In the forthcoming chapters,
we will introduce RL algorithms which are trained to search the solution space based
on the agent-environment interaction concept, and yield quality solutions with low
computational e�ort during the algorithm's evaluation.

The proposed multi-objective formulation of the DDNR problem aims to minimize

5.2. Mathematical Formulation of the DDNR Problem 101

the total cost of active energy loss and manipulation of switching devices. However, in
many practical applications the DDNR, apart from minimizing the cost of active energy
loss and manipulation of switching devices, the DDNR is used for voltage deviation
minimization [62,63], load balancing, Volt/Var optimization, supply restoration [64],
the distribution network reliability maximization [105], limiting the budget [93], etc.
Extension of the DDNR problem formulation assumes incorporating additional criteria
into the objective function. That is achieved by adding the corresponding terms to
the objective function while preserving the constraints (5.8) - (5.13).

Chapter 6

Reinforcement Learning

Reinforcement learning (RL), as a machine learning technique, deals with how software
agents learn to take actions in an environment through experience and exploration,
with the goal of �nding the optimal strategy that maximizes the long-term reward
obtained [33]. In the RL framework, it is assumed that the agent interacts with the
generally stochastic environment in discrete time steps. At the beginning of each
time step, the agent observes the environment, that is, it receives the state variables
from the environment. Based on the state variables, the agent takes an action and
sends it to the environment. The environment then changes its state due to the action
received, as well as due to its internal processes. After that, the environment sends
the immediate reward signal for that time step and the state variables for the next
time step to the agent. The goal of an RL algorithm is to �nd the (close to) optimal
policy, i.e., the action selection that maximizes the long-term reward, while receiving
feedback about its immediate performance. This chapter presents the theoretical
background of RL in Sections 6.1 and 6.2 and the deep Q-learning algorithm in Section
6.3, which is applied to DDNR in Chapter 7.

6.1 Finite Markov Decision Processes
Finite Markov decision processes are discrete-time stochastic control processes that
model decision-making in situations in which the outcome is partially stochastic and
partially under the control of the decision-maker. The result of the solved MDP is
the optimal sequence of actions, that is, the optimal policy. The RL problem can be
mapped onto the MDP, which is de�ned as the following tuple:

� S - �nite set of states,

� A - �nite set of actions,

� R - �nite set of immediate rewards,

� p(s0j s; a) = Pr (St = s0j St � 1 = s; At � 1 = a) - transition probability function.

104 6. Reinforcement Learning

Random variables St , St � 1, Rt , A t � 1 represent the new state, the previous state,
received immediate reward and the action being taken, respectively, whiles0; s 2 S,
r 2 R , a 2 A denote the values of these random variables. The transition function
represents the probability of being in the state s0 on the condition of being in the
state s previously and executing the actiona. The agent and the environment interact
in discrete time steps, as shown in Fig. 6.1. In each time step the agent observes
the state s, makes an actiona, upon which the environment changes, and sends the
feedback to the agent in the form of rewardr , and the next state s0.

Figure 6.1: The agent-environment interaction process.

Additionally, a problem de�ned as MDP must satisfy the Markov property, meaning
that the next state s0 depends only on the current states and the action a, and is
independent of all previous states and actions:

Pr (St j S0; A0; S1; A1; : : : ; St � 1; A t � 1) = Pr (St j St � 1; A t � 1) (6.1)

Problems that do not satisfy the Markov property can be solved exactly using
traditional MDP methods by expanding the state space with data from previous
states or approximately using the RL methods.

Return in time step t, which represents the long-term reward starting from that
time step, is the subject of optimization:

Gt = Rt +1 + R t +2 + 2Rt +3 + � � � =
1X

i =0

 i r t + i +1 ; (6.2)

where 2 [0; 1] represents the discount factor. The case of = 0 corresponds to the
greedy maximization of the immediate reward, while using = 1 implies equal weight

6.1. Finite Markov Decision Processes 105

on all rewards in the optimization horizon. Due to convergence problems in the case
of long optimization horizons, the most often used value of the discount factor is
 2 [0:9; 0:99].

Policy � models the action selection in various states. When optimizing the policy,
the long-term reward is optimized. The policy is in the general case stochastic, i.e., it
maps the probability distribution of actions to states � (ajs) = Pr(A t = ajSt = s), but
it can be also de�ned in a deterministic way a = � (s). The quality of a policy � in a
state s is usually expressed as an expectation of the discounted long-term rewardGt

given the state s, enabling the way to compare di�erent policies and optimize them.
This quantity is called the state value function, and it assigns higher values to the
more desirable states in terms of the long-term reward, if following the policy� 1:

v� (s) = E
�

[Gt j St = s] = E
�

[
1X

i =0

 i Rt + i +1 j St = s]: (6.3)

Similarly, the action value function (Q-function) is a mapping of states-action
pairs to the real numbers, where the value of the state-action pair represents the
expected discounted long-term reward starting from that state, taking that action,
and following a concrete policy� afterward:

q� (s; a) = E
�

[Gt j St = s; At = a] = E
�

[
1X

i =0

 i Rt + i +1 j St = s; At = a]: (6.4)

The state value function has a more compact representation, while the Q-function
provides a simpler way to determine the action that leads to the most desirable future
state. The state value function and the Q-function can be recursively expressed using
the Bellman equations:

v� (s) = E
�

[Rt +1 + v � (St +1) j St = s]

=
X

a2A

� (a j s) (r +
X

s02S

p(s0js; a)v� (s0)) ;
(6.5)

q� (s; a) = E
�

[Rt +1 + q � (St +1 ; A t +1) j St = s]

= r +
X

s02S

p(s0j s; a)
X

a02A

� (a0j s0) q� (s0; a0):
(6.6)

1Superscript � denotes that the quantity is calculated with the assumption that the agent takes
actions according to the policy � .

106 6. Reinforcement Learning

Finding the optimal state value function or the optimal Q-function results in
�nding the optimal policy. The optimal policy can be generated from e.g. the optimal
Q-function by selecting the action with the largest Q-function value in each state. If
the problem is formulated as an MDP, then at least one optimal solution exists, and
an iterative procedure based on dynamic programming and the Bellman equations
that converges to one of those solutions can be established. Some of the commonly
used algorithms are the value iteration algorithm [161], and the policy iteration
algorithm [162].

To �nd the exact solution to the MDP, it has to be fully de�ned, i.e., all transition
probabilities and immediate rewards have to be known, and it has to satisfy the
Markov property. Additionally, for large state and action spaces, solving MDPs
exactly could be computationally infeasible. Partial observability of the environment
state additionally increases the computational time of the traditional algorithms that
solve MDPs [163]. The main idea of RL is to overcome these problems by learning
(close to) optimal policies based on the history of interactions of the agent with the
environment.

6.2 Q-Learning
Our work considers model-free o�-policy RL algorithms, where the optimal policy is
learned directly from the accumulated experience, i.e., the history of the interaction
process between the agent and the environment. On the other hand, in the model-
based RL, the MDP, or the transition probabilities and immediate rewards for all
state-action-next state triplets are learned from the accumulated experience and
solved to obtain the policy.

Q-learning is a basic model-free RL algorithm, where the values of the Q-function
for each state-action pair are stored in the Q-table and updated during algorithm
training [164]. During the evaluation of the algorithm, for each state the agent receives
from the environment, the action with the greatest Q-function value in the table
is selected. During the algorithm training, actions are selected randomly with the
probability � , and the actions with the largest Q-function values for the corresponding
states are selected with the probability 1� � , where � 2 [0; 1] is the exploration
hyperparameter. This way the agent searches the state-action space and avoids the
local optima problem. Algorithm training is performed by repeating the prede�ned
number of episodes, which consist of time steps. One time step contains information
about one interaction of the agent with the environment: the current state, the action
selected by the agent, the received reward, and the next state. The length of episodes,
i.e., the number of time steps in them, is generally variable.

6.3. Deep Q-learning 107

Upon one interaction of the agent with the environment, the values in the Q-table
are updated using the following rule, obtained using the idea from the Bellman
equations:

q(s; a) := (1 � �)q(s; a) + � [r + max
a0

q(s0; a0)]; (6.7)

where � is the learning rate hyperparameter. As well as MDPs, the Q-learning
algorithm assumes discrete state and action spaces and for large state and action
spaces it may be infeasible to learn the Q-function value for all state-action pairs.

6.3 Deep Q-learning
The deep Q-Learning algorithm is one of the basic DRL algorithms, that utilizes the
advances in the deep learning �eld to improve the traditional RL algorithms. The
idea of the algorithm is to use a deep neural network, also called the deep Q-network
(DQN), as an approximator of the Q-function [165]. Inputs to the DQN are state
variables, while output neurons provide the approximation of Q-function values for
each of the actions and for the input state. Therefore, the state variables can be
continuous, which makes the learning feasible for large continuous state spaces which
would have to be discretized when using the Q-learning algorithm. In deep Q-learning,
the action space must be discrete and �nite, since the number of output neurons is
limited. An example of a DQN is shown in Fig. 6.2, whereQ(s; ai) denotes the DQN
output when the agent takes actionai ; i = 1 ; : : : ; z, while being in the state s, where
z = jAj denotes the number of possible actions.

Figure 6.2: An example of a deep Q-network.

Deep Q-learning algorithm introduces target DQN Qtarget which has the same
model architecture as DQN and in which the parameters of DQN are copied at the
prede�ned period during the training process. Target DQN is used for determining
the labels for the DQN training, as de�ned in (6.8), which signi�cantly improves the
training process stability [165]. It reduces the oscillations of the training by �xing the

108 6. Reinforcement Learning

label generation process during multiple training steps, allowing the DQN network
weights to be updated steadily. Target networks are a widely used technique in RL,
and recent RL algorithms propose more advanced variations, such as continuously
updating the time-delayed target network [166].

On-policy RL algorithms [33] are trained by updating the same policy using which
the sequence of actions is generated, which results in unstable and sample ine�cient
training due to correlation between the actions in the sequence. Deep Q-learning is
an example of an o�-policy RL algorithm, which stores the history of the agent's
interaction with the environment in the experience replay memory [167], and samples
data randomly from it to perform the DQN training in a supervised learning manner.
At each time step, tuple (s; a; r; s0) is stored in the replay memory, from which i.i.d.
mini-batch data for DQN training is sampled.

Labels for DQN training are calculated in the following way, using the idea from
the Bellman equations, similarly to the Q-learning algorithm:

Qlabel (s; a) = r + max
a0

Qtarget (s0; a0j� Q target): (6.8)

� Q and � Q target denote the parameters (weights and biases) of the DQN and the target
DQN. DQN is trained using the mini-batch gradient descent algorithm [168], which
minimizes the squared error loss function that expresses the distance between the
labels and the DQN output during training:

L (� Q) =
1

Nmb

N mbX

i =1

(Qlabel (si ; ai) � Q(si ; ai j � Q))2: (6.9)

A trained DQN is evaluated by forwarding the input state s through the network
layers, obtaining the Q-function approximates Q(s; ai) for all actions ai ; i = 1 ; : : : ; jAj ,
and selecting the action with the largest Q-function value.

Chapter 7

Reinforcement Learning based Dynamic
Distribution Network Recon�guration

This chapter describes the way DDNR is expressed as an RL problem, how the
objective function and constraints are considered, and the training and evaluation
algorithms of the proposed DQN-based method. Finally, we evaluate the performance
of the proposed approach on three distribution networks: 15-bus test benchmark,
real-life large-scale distribution network, and the IEEE 33-bus network.

7.1 Modelling Dynamic Distribution Network Re-
con�guration as a Markov Decision Process

The information ow between the DDNR agent and the environment during their
interaction is presented in Fig. 7.1. Episodes consist ofT time steps, where each
episode corresponds to a separate instance of the DDNR applied to the one-day
interval, and each RL agent's time step corresponds to the beginning of one time
interval in DDNR problem formulation (5.1). At each time step, active and reactive
power consumption data for the next hour are loaded. Then, the power ow calculation
is executed to create the state variables, which contain the time interval indext and
the apparent powers of all switches in the networkSt

sw , sw 2 1; : : : ; Nsw , as shown in
(7.1):

st = (t; S t
1; : : : ; St

N sw
): (7.1)

This choice of state variables, motivated by the fact that switch statuses, and hence
the network topology can be reconstructed using the apparent powers of the switches,
reduces the state space dimensionality and DQN size. The current network con�gura-
tion and power ow results are compressed into a single set of variables, from which
the agent can make its own representation of the environment, and use it as an input
in the decision-making process.

The action space contains all the switch combinations that lead the network in

1107. Reinforcement Learning based Dynamic Distribution Network Recon�guration

Agent: DDNR controller

Environment:
consumption data +

power ow calculation

Action: switch
combination

Reward:
- DDNR objective

- Voltage constraints
- Branch power

constraints

State:
- Time step index
- Apparent powers

of switches

Figure 7.1: The agent-environment interaction process for DDNR.

a feasible radial con�guration, in which all the buses are energized. These switch
combinations are enumerated uniquely so that one output neuron corresponds to one
feasible radial combination. This action space de�nition implies that the radiality
network constraint stated in (5.13) is always satis�ed, which accelerates the learning
process.

The reward value for each time interval t is equal to the negative sum of the
following terms:

� Price of active energy lossesCLoss T t
int P t

Loss , used to model the �rst term in the
DDNR objective function stated in (5.1);

� Price of the switching manipulations needed to conduct the network from the
previous con�guration to the current one CSW s SW t , used to model the second
term in the DDNR objective function stated in (5.1);

� Prede�ned penalty value CU if the bus voltage constraint is violated in any of
the buses, used to model the bus voltage constraints in (5.10);

� Prede�ned penalty value CS if the branch capacity constraint is violated for
any of the branches, used to model the branch capacity constraints in (5.11).

As an alternative to adding the prede�ned penalty to the reward function if the
number of switch manipulations exceeds the prede�ned limit for any of the switches,
we propose the following way to consider the switching operation constraints in(5.12):

� The subset of available actions is created at the beginning of each episode and

7.2. Training and Evaluation Algorithms 111

is initially equal to the action set (i.e., all the switch combinations that lead the
network into a feasible radial con�guration, in which all the buses are energized);

� During the episode, the number of operations of each switch in that episode
is updated. Prior to action selection, actions that would violate the switching
operation constraints if selected are removed from the subset of available actions;

� In each time interval, the action with the largest Q-value is selected from the
subset of available actions, instead of from the action set.

This approach improves the training e�ciency compared to the approach that would
penalize the exceeded number of switch operations. Since the actions that violate the
switching operation constraints cannot be selected in the �rst place, the computational
e�ort needed to learn Q-function values for those state-action pairs is eliminated.
It is convenient to consider the switching operation constraints using this approach
since only the selected action (switch combination) needs to be known, to conclude
if the constraint is violated. The subset of available actions can be determined
without executing the actions. Bus voltage and branch capacity constraints cannot
be modelled using this approach generally, since the action must be executed and
feedback from the environment is required for any conclusions about the constraint
violations. Active and reactive injection constraints in (5.8), as well as slack bus
constraints in (5.9) are satis�ed by the design of the power ow calculation [160] and,
therefore, are not considered in the reward function. Values of the state variables and
rewards are normalized, for the purpose of improving the numerical stability of neural
network training.

7.2 Training and Evaluation Algorithms
During the algorithm training N episodes are repeated, with each episode consisting
of a prede�ned number of time stepsT, where in each time step the interaction
between the agent and the environment takes place, as described in 7.1. The variety
of training scenarios is created by randomly sampling the daily load curves from some
prede�ned distribution. The way the exploration hyperparameter � is updated during
the training can also be tuned. In this work, we used the linear decrease of� until
the 0:8N th episode, and the constant value afterward. A detailed representation of
the agent training procedure is displayed in Algorithm 1.

Once trained, the deep Q-network model can be evaluated multiple times by
loading the saved trainable parameters, as shown in Algorithm 2. Note that during
the algorithm evaluation target deep Q-network, experience replay bu�er, neural
network parameter updates, and the random exploration strategy are not used,
reducing the memory storage and computational requirements per episode, when

1127. Reinforcement Learning based Dynamic Distribution Network Recon�guration

Algorithm 1: Deep Q-network training

Initialize the deep Q-network's Q(s j � Q) parameters randomly
Initialize the target deep Q-network's Q0(s j � Q target) parameters using the
original network's parameters

Initialize the experience replay bu�er
for episode= 1 ; 2; : : : ; N do

Sample daily load curves randomly
Initialize �
Initialize the subset of available actions to the action set
Run the initial power ow calculation
Send the initial state s1 to the agent
for t = 1 ; 2; : : : ; T do

rand = random number between 0 and 1
if rand > � then

Based on the current statest select the actionat with the largest
Q-value in the subset of available actions

else
Select random actionat from the subset of available actions

end
Update the subset of available actions
Update the network con�guration according to at

Run the power ow calculation
Collect the immediate reward r t and the next state st +1 data
Store tuple (st ; at ; r t ; st +1) in the experience replay bu�er
Sample the mini-batch of tuples from the experience replay bu�er
Create labels for deep Q-network training using (6.8)
Update deep Q-network parameters by minimizing the loss function given
in (6.9)

Set loads for the next time interval for each bus
end
if update target network periodthen

� Q target = � Q

Update �
end

compared to the training algorithm. The trained algorithm's evaluation reduces to
T + 1 power ow calculations and T neural network evaluations, which are almost
instantaneous, resulting in a computationally e�cient control procedure, which can be
used either standalone or as a part of the more complex power systems' application.

7.3. Numerical Results 113

Algorithm 2: Deep Q-network evaluation

Load previously saved parameters of the trained deep Q-networkQ(s j � Q)
Generate daily load curves for the evaluation example
Initialize the subset of available actions to the action set
Run the initial power ow calculation
Send the initial state s1 to the agent
for t = 1 ; 2; : : : ; T do

Based on the current statest select the actionat with the largest Q-value in
the subset of available actions

Update the subset of available actions
Update the network con�guration according to at

Run the power ow calculation
Retrieve the next state st +1

Set loads for the next time interval for each bus
end

7.3 Numerical Results
In this section, results and discussion are presented for benchmark test examples {
7.3.1, real-life large-scale distribution network { 7.3.2, and the IEEE 33-bus radial
system { 7.3.3, along with the choice of RL and deep learning hyperparameters.
The proposed algorithms were implemented in Python, deep neural networks were
modelled and trained using the PyTorch deep learning framework, and power system-
related modelling and calculations were completed using OpenDSSDirect, the Python
interface to OpenDSS distribution system simulation software [169]. The algorithms
were executed on a 64-bit Windows 10 with the following hardware con�guration:
AMD A8-6410 APU with AMD Radeon R5 Graphics 2.00 GHz, 4 cores, and 8 GB of
RAM.

7.3.1 Benchmark Test Examples
Fig. 7.2 illustrates a 15-bus test benchmark where a slack bus is the bus with the
marker 0 and the other 14 buses are of the PQ type. Loads are de�ned by the
chronological daily diagrams, which are sampled uniformly from the intervals de�ned
by dashed lines in Fig. 7.3. The length of all branches is 4:5km. All branches are
balanced with the direct sequence impedancer + jx = (0 :224 + j 0:109)
 =km. All
branches have switching devices, and the number of switch manipulations is not
constrained.

Penalty values used to model the bus voltage constraints in(5.10) and the branch
capacity constraints in (5.11) are: CU = CS = 10. The costs of energy losses and

1147. Reinforcement Learning based Dynamic Distribution Network Recon�guration

Figure 7.2: Single-line diagram for 15-bus test benchmark.

switching operations in the time interval are [100,170]:

� Cost of energy losses (CLoss): $6.5625 cents/kWh;

� Cost of switching manipulations (Csw): $1 per manipulation.

DQN used for this test example consists of the input layer, four hidden layers,
and the output layer. The input layer has 15 neurons, one for the time step index
variable, and 14 for the apparent powers of each switch. Each hidden layer has 256
neurons, and the output layer consists of 186 neurons, one for each switch combination
that leads to a feasible radial con�guration. Recti�ed Linear Unit (ReLU) activation
function is applied to each of the hidden layers and the output layer. The neural
network is trained using the Adam optimizer, with a learning rate of 10� 5 and a
mini-batch size of 128. We experimented with adding batch normalization on several
hidden layers, but it neither improved nor deteriorated the training results.

The number of training episodes we used is 60000. During the training, loads for
each hour were uniformly sampled from the intervals de�ned by dashed curves in
Fig. 7.3. The target DQN update frequency is 10 episodes and the mini-batches for
DQN training were sampled from experience replay memory, which has the capacity
of 106 samples. The initial value of the exploration parameter� is 1 and decreases
linearly to the episode index until it reaches the value 0:1 in 48000th episode. The

7.3. Numerical Results 115

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Lo
ad

[M
W

]

Feeder 1 load Limits

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Lo
ad

[M
W

] Feeder 2 load
Limits

0 2 4 6 8 10 12 14 16 18 20 22
0

0.2
0.4
0.6
0.8

1
1.2
1.4

Hour [h]

Lo
ad

[M
W

]

Feeder 3 load
Limits

Figure 7.3: Daily load pro�les for three feeders. Full lines represent average load
values, and dashed lines represent limits between which training set loads are sampled.

value of the discount factor is 0:99, as in [165].

Fig. 7.4. presents the average value of the DQN loss function, de�ned in(6.9),
over the episodes. As the training advances, the DQN loss decreases, which implies
that the Q-function is being approximated successfully. Additionally, the testing
performance of the RL algorithm with increasing training episodes is presented in
Fig. 7.4 by displaying the amount of the normalized received reward per episode and
its moving average. These rewards were obtained by executing the episodes with
the exploration parameter � equal to zero, after each training episode. The training
demonstrated asymptotic convergence within 20000 episodes.

Table 7.1 presents load, losses, and switch status changes for the proposed approach
in 24-hour optimization horizon, as well as the comparison of the same results with

1167. Reinforcement Learning based Dynamic Distribution Network Recon�guration

Figure 7.4: Average DQN loss per episode (top) and total reward per episode along
with its moving average (bottom).

the state-of-the-art method from [105]. The method from [105] minimizes the costs
of energy losses, switching manipulations, and outages. For this comparison, the
method from [105] is executed with the cost of outages set to zero. A graphical
representation of switch statuses is presented in Fig. 7.5. The results are additionally
compared with the method from [75], as is presented in Table 7.2. By comparing the
results of the proposed algorithm and the method from [105], it can be concluded
that the proposed switching actions are not the same, but the total costs only di�er
slightly. The execution time of the proposed algorithm is 0:148s, which is two orders
of magnitude smaller than the execution time of the method from [105].

Based on Table 7.2, it can be concluded that the proposed approach and the
method from [105] provide better solutions than the method from [75]. Solutions from
the proposed approach and the method from [105] provide greater cost savings, and
they achieve it with a lower number of switch manipulations.

Total losses in the time period of 24 hours for 15-bus test benchmark without DNR
are 6477:81kW, with the total cost of $425:1. With the proposed DDNR, losses are
reduced to 5978:48kW and the total cost is reduced to $402:3. Fig. 7.6 compares
loss reduction per hour for the proposed approach and for the method from [105]. In
Fig. 7.6 it can be seen that there is no reduction of losses in the interval from 10 to 16

7.3. Numerical Results 117

Table 7.1: Total load, active power losses and switch status changes in the 24-hour
time optimization period for the 15-bus test benchmark (O{open; C{close).

Proposed approach Method from [105]

Hour Load [kW] Losses [kW]
Switch status
changes

Losses [kW]
Switch status
changes

0 4554.0 114.06 4(O), 14(C) 131.73 No changes
1 4305.0 101.79 No changes 115.32 No changes
2 3876.0 82.49 No changes 89.97 No changes
3 3326.0 61.20 No changes 62.95 No changes
4 3205.0 57.03 No changes 57.81 No changes
5 3693.0 75.01 No changes 80.35 No changes

6 7542.0 316.63
10(O), 14(O),
4(C), 13(C)

316.63 10(O), 13(C)

7 7909.0 348.71 No changes 348.71 No changes
8 8279.0 384.08 No changes 384.08 No changes
9 6067.0 213.94 10(C), 13(O) 220.01 No changes
10 9369.0 465.82 No changes 465.82 10(C), 13(O)
11 9054.0 440.61 No changes 440.61 No changes
12 8823.0 423.20 No changes 423.20 No changes
13 8823.0 423.20 No changes 423.20 No changes
14 7670.0 375.02 No changes 324.18 10(O), 13(C)
15 9801.0 493.87 No changes 493.87 10(C), 13(O)
16 7440.0 278.42 4(O), 14(C) 278.42 4(O), 14(C)
17 7049.0 252.96 No changes 252.96 No changes
18 7317.0 276.55 No changes 276.55 No changes
19 6643.0 227.18 No changes 227.18 No changes
20 5651.0 178.27 No changes 178.27 No changes
21 5163.0 147.68 No changes 147.68 No changes
22 4793.0 126.72 No changes 126.72 No changes
23 4554.0 114.06 No changes 114.06 No changes

Table 7.2: Total losses, number of switch status changes, and total cost in the 24-hour
time optimization period.

Proposed approach Method from [105] Method from [75]
Total losses [kW] 5978.48 5980.28 5967.56
Number of switch
status changes

10 10 22

Total cost [$] 402.3 402.4 413.6

	List of Publications
	List of Figures
	List of Tables
	Abstract
	Abbreviations
	Introduction
	Deep Learning Fundamentals
	Convolutional Neural Networks
	Recurrent Neural Networks
	Graph Neural Networks
	Deep Reinforcement Learning
	Power System State Estimation using Graph Neural Networks
	Dynamic Distribution Network Reconfiguration based on Deep Reinforcement Learning

	I State Estimation and Graph Neural Networks
	Power System State Estimation
	Foundational Concepts
	Linear State Estimation
	Nonlinear State Estimation

	Graph Neural Networks
	Overview of Machine Learning on Graphs
	Graphs
	Common Tasks of Machine Learning on Graphs
	The Need for Graph Representation Learning
	Graph Representation Learning
	Graph Representation Learning using GNNs

	Theoretical Foundations of Spatial Graph Neural Network
	Graph Attention Networks

	Practical Aspects of Graph Neural Networks

	Graph Neural Network-based State Estimation
	Power System Factor Graph Augmentation
	Proposed GNN Architecture
	Computational Complexity and Distributed Inference

	Numerical results
	Linear State Estimation
	Scalability and Sample Efficiency Analysis of Linear State Estimation
	Nonlinear State Estimation

	Summary and future work

	II Dynamic Distribution Network Reconfiguration and Reinforcement Learning
	Dynamic Distribution Network Reconfiguration
	Distribution Network Reconfiguration
	Mathematical Formulation of the DDNR Problem
	Objective Function
	Constraints

	Reinforcement Learning
	Finite Markov Decision Processes
	Q-Learning
	Deep Q-learning

	Reinforcement Learning based Dynamic Distribution Network Reconfiguration
	Modelling Dynamic Distribution Network Reconfiguration as a Markov Decision Process
	Training and Evaluation Algorithms
	Numerical Results
	Benchmark Test Examples
	Real-Life Large-Scale Distribution Network
	IEEE 33-bus Radial System

	Summary and future work

	Conclusions
	Bibliography

